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ABSTRACT 

The human papillomavirus (HPV) life cycle is tightly linked to differentiation of the 

infected epithelium. This means that viral proteins must exert control over epithelial 

gene expression in order to optimize viral production. The HPV E2 protein controls 

replication, transcription and viral genome partitioning during the viral infectious life 

cycle. It consists of a nucleic acid-binding domain and a protein-protein interaction 

domain separated by a flexible serine and arginine-rich hinge region. Over the last 

few years, mounting evidence has uncovered an important new role for E2 in viral 

and cellular RNA processing. This Gem discusses the role of E2 in controlling the 

epithelial cellular environment and how E2 might act to coordinate late events in the 

viral replication cycle. 



The human papillomavirus life cycle 

Human papillomaviruses (HPV) are small (~8.0 kbp) circular double stranded DNA 

viruses that infect epithelial cells (keratinocytes) (1). There are over 200 HPV 

genotypes. For the most part, HPVs of the α-genotype group infect mucosal epithelia 

while the β-genotypes predominantly infect cutaneous epithelia (2). Most HPV 

infections are asymptomatic or they manifest as benign lesions or warts. They are 

usually transient and are eventually cleared by the immune system (3). Despite this, 

HPVs cause a high burden of clinically significant disease worldwide because the 

anogenital mucosal-infective “high risk” group of HPVs (HR-) HPVs can cause 

persistent infection that leads to epithelial dysplasia, and neoplasia. HR-HPVs are 

commonly associated with cervical cancer and tumors of other anogenital sites (2). 

Per annum, worldwide, there are around 500,000 new cases of cervical disease and 

around 270,000 women die from cervical cancer.  The two most prevalent HR-HPVs 

are HPV16 and 18 that are targeted by the current HPV vaccines (4). Over the last 

few decades, epidemic HR-HPV infection, especially in men, has been associated 

with a significant increase in oropharyngeal cancers (5).  Certain cutaneous HPVs 

can also cause tumours (squamous cell carcinomas) in immunocompromised or 

immunosuppressed individuals (6). Thus the causative association of HPV infection 

with a number of significant cancers indicates that increased understanding of the 

viral life cycle is essential.  

The HPV life cycle is intimately linked to epithelial differentiation (Figure 1A) (2). HPV 

normally infects dividing cells at the base of the epithelium (basal layer) but 

completes its life cycle by amplifying progeny DNA genomes in the mid epithelial 

layers (spinous layer) and carrying out viral encapsidation in the uppermost epithelial 

layer (granular layer) (Figure 1A). Viral production is achieved through a highly 

orchestrated and complex viral gene expression program (Figure 1A) (2). Mature 

virions are released upon shedding and disintegration of dead superficial epithelial 



cells into the environment. As a necessity, HPV infection alters the normal 

differentiation pattern of the epithelium and controls cellular gene expression to 

support viral replication (2). In short, differentiating cells in the mid-epithelial layers 

are induced into cell division and epithelial differentiation is somewhat delayed. 

 

RNA processing 

Cellular and viral gene expression is controlled at both the transcriptional and post-

transcriptional levels. Post-transcriptional events include RNA processing (the 

expression of mature messenger RNA (mRNA) from the primary transcript (pre-

mRNA), by capping, polyadenylation, and splicing), mRNA export from the nucleus to 

the cytoplasm, mRNA stability, and mRNA translation on the ribosomes. Tight control 

of all of these events is essential to ensure the appropriate profile of protein 

production in the cell. 

Splicing is the process by which non-coding introns are removed from pre-mRNAs 

and exons are spliced together to form a protein-coding mRNA. However, pre-

mRNAs transcribed from multi-exon/intron genes can undergo a process termed 

alternative splicing (7).  Alternative splicing is a regulated process in which a primary 

transcript can be spliced in more than one pattern (exon removal or retention) to 

generate multiple, distinct “splice isoform” mRNAs. For example, the average human 

gene can give rise to eight different mRNA isoforms each encoding a different protein 

isoform, meaning that alternative splicing is a key player in determining the final 

cellular protein profile. Alternative splicing is crucial for the life cycle of some viruses 

such as HIV which expresses over forty different alternatively spliced mRNAs (8). 

Splicing is controlled by specific cellular activators (serine-arginine-rich splicing 

factors (SRSFs)) and repressors (heterogeneous nuclear ribonucleoproteins 

(hnRNPs)) (9). There are nine classical SRSFs (SRSF1-9) (10) that consist of at 



least one RNA recognition motif (RRM) that binds the pre-mRNA and one serine-

arginine-rich domain that interacts with partner proteins such as other splicing factors 

(11). The serine-arginine domain can undergo cycles of 

phosphorylation/dephosporylation to control splicing, protein-protein interactions and 

subcellular location (11). The relative levels of SRSF proteins are pivotal in 

maintaining the correct balance of cellular mRNA isoforms in normal cells while 

overexpression of some SRSF proteins has been shown to lead to cancer 

progression (12). 

Splicing occurs co-transcriptionally, linked through the carboxy-terminal domain of 

RNA polymerase II, which acts as a landing pad to recruit mRNA processing factors 

(13). Moreover, SRSFs have been shown to regulate elongation of transcription by 

RNA polymerase II (13). Apart from regulating transcription and splicing, SRSFs 

have multiple other roles in the cell, including regulating polyadenylation, nuclear 

export, mRNA stability, translation, genome stability maintenance, nucleolar stress, 

cell cycle progression, control of apoptosis, and protein sumoylation (12). This means 

that SRSFs can coordinately control transcription and splicing in the nucleus while 

also providing a link to other post-transcriptional processes and the cellular 

environment. 

 

HPV E2  

E2 plays a crucial role in the HPV life cycle (14). It possesses a DNA-binding domain 

and a transactivation domain that are linked by a serine-arginine-rich hinge region 

(Figure 1B)(15). E2 is normally found as a homodimer that binds cognate sequences 

(E2-binding sites (E2BSs)) in the viral long control region (LCR) (Figure 1C), which 

contains the viral early promoter, origin of replication, enhancer and upstream, the 

late 3’ UTR and polyadenylation sites (not shown in Figure 1C). For the mucosal-



infective HPVs, two E2BSs are proximal to the viral early promoter, the third is 

located at the origin of DNA replication, and the fourth is located in the enhancer 

region (Figure 1C) (14). E2 has been shown to be capable of either activating or 

repressing transcription in different experimental systems. However, the evidence 

points to a repressive function of E2 in controlling the viral early promoter (14). On 

the other hand, the most important role of E2 may be as an auxiliary replication 

factor. At the origin of DNA replication, E2 interacts with and loads the HPV E1 

replication helicase, which in turn recruits the cellular DNA replication machinery 

(14). E2 also has an important role in partitioning viral episomal genomes during 

division of infected cells by interacting with chromatin adapter proteins that tether 

them to host mitotic chromosomes (14).  

 

E2 as a serine-arginine-rich splicing factor (SRSF) 

It addition to its DNA-related roles, there is evidence that E2 can bind RNA and has 

properties and functions similar to those of SRSF splicing regulators. Like the serine-

arginine domain in which phosphorylation controls the function of SRSF proteins, the 

long  hinge region (130-209 amino acids) of some β-type E2 proteins is rich in serine 

and arginine residues and can be phosphorylated (16, 17). Like all SR proteins, E2 is 

normally located in the nucleus (18) and, at least for HPV1 and HPV5, can be found 

in nuclear speckles (16, 19), the storage sites of splicing factors in the nucleus. HR-

HPV E2 proteins can also shuttle between the nucleus and the cytoplasm (20). An 

early report indicated that the β-genotype HPV5 E2, which carries a long hinge 

region, could regulate both transcription and splicing of reporter pre-mRNAs (19). 

However, a later study could not verify this finding and instead found that the α-

genotype HPV16 E2, which possesses a much shorter hinge region (14), could 

inhibit splicing in vitro (21). Although E2 does not possess an RNA recognition motif 

required by the SRSFs for RNA binding (11), one study showed HPV16 E2 could 



bind RNA directly via its carboxy-terminal domain in a UV crosslinking assay (21). 

However, improved approaches such as cross-linking immunoprecipitation (CLIP) in 

vivo are required before E2 can be considered a true RNA-binding protein.  

 

The cellular interactomes of E2 proteins from a range of different HPV genotypes 

have been dissected by two studies. Although not yet critically evaluated in most 

cases, as expected, many E2-interacting proteins are transcription or replication or 

chromatin remodelling factors or histone modifying enzymes (22, 23). E2 also 

interacts with proteins involved in apoptosis regulation, cell cycle, keratinocyte 

migration and differentiation, and intracellular transport. Although the majority of E2 

interactors are involved in processes related to transcription, replication, or chromatin 

remodelling, the next most frequently identified set of proteins are involved in RNA 

processing. These proteins included components of the basic splicing machinery 

such as SMN, SF1, and U170K (Table 1). In addition, serine-arginine protein kinases 

(SRPKs), which control SRSFs through phosphorylation (24), were also detected (22, 

23, 25). Of particular note, E2 from most of the genotypes tested interacted with the 

splicing activators SRSF1, 2, and 7 and 10 (Tra2β) (22, 23). The involvement of E2 

in post-transcriptional as well as transcriptional processes is perhaps unsurprising, 

given the close association between transcription and RNA processing. These 

studies suggest that E2 may integrate viral transcription and RNA processing, 

leading to efficient production of processed viral mRNAs. Although further work is 

required to support this hypothesis, it is clear that E2 has properties suggestive of a 

role in controlling pre-mRNA splicing by recruiting cellular splicing factors.  

 

E2 as a regulator of SRSFs 

In normal keratinocytes, E2 is detected at highest levels in the mid to upper epithelial 

layers (Figure 1A) (26) where viral vegetative replication takes place. Interestingly, 



expression of the late mRNAs that encode the viral capsid proteins also begins in 

these layers (Figure 1A) (27, 28). In vivo, SRSF expression is highest in uninfected, 

undifferentiated basal epithelial cells. However, SRSF levels are high in infected cells 

in differentiated HPV-infected keratinocytes (Figure 1A), (29, 30). Specifically, HPV16 

and HPV31 E2 can transcriptionally up-regulate expression of at least SRSFs 1, 2 

and 3 (Figure 1D) (31). This exciting finding implies that, because the relative levels 

of SRSFs in a cell determine alternative splicing outcomes and thus the overall 

protein profile, E2 may control the cellular environment via control of SRSF 

expression to optimize viral replication. In support of this, a recent study has revealed 

that overexpression of E2 in U2OS osteosarcoma cells resulted in very significant 

changes in cellular alternative splicing, with 522 mRNAs affected (32). Cancer genes 

and genes encoding proteins involved in cell motility were the most affected. U2OS 

cells are tumour cells that have altered gene expression compared to normal cells, 

and this may explain the cancer-related pattern of gene expression changes. It will 

be of interest to see how E2 can alter splicing in the normal keratinocytes that are the 

target of HPV infection and whether the process of epithelial differentiation required 

for a productive HPV life cycle alters cellular splicing. These studies reveal that E2 

has a pivotal role to play in controlling cellular and viral splicing, and may regulate 

splicing by stimulating SRSF expression, acting as an SRSF to regulating splicing 

directly, or modulating SRSF activity through direct binding.  

 

E2 controls late events in viral replication 

Apart from E1, there is evidence that E2 can bind other viral proteins such as E4 

(33), E6 (25), E7 (34), L1 (35) and L2 (36). In particular E2 binding L1 and L2 could 

affect virus capsid formation and virus release. However, E2 may have a more 

fundamental role to play in controlling late events in the viral replication cycle as a 

transcription activator. E2-mediated control of SRSF expression could have 



implications for the viral replication cycle because viral proteins are translated from 

multiple mRNAs that are the products of SRSF-regulated alternative splicing 

(http://pave.niaid.nih.gov/#explore/transcriptmaps) (37). Previous studies on 

keratinocytes stably transfected with a genome of HPV31 (the genotype most closely 

related to HPV16) containing an E2 point mutation (I73L) that inactivated the E2 

trans-activation function showed no effect on viral replication but a reduction of 80% 

in viral late mRNA expression (38). Recently, we extended this observation to show 

that in keratinocytes maintaining E2:I73L mutant genomes there was a 75% 

decrease in capsid protein production compared with wild-type HPV31 genomes 

(31). SRSF1, 2, and 3 levels in the E2:I73L genome-containing cells were all 

significantly reduced, in agreement with wild-type E2 trans-activation of the 

promoters of the genes encoding these proteins (Figure 1D). In order to discover 

which SRSF protein was responsible for controlling capsid protein expression, 

SRSFs 1, 2, 3, 5, and 7 were siRNA depleted in differentiated HPV16-positive 

keratinocytes. Depletion only of SRSFs 1 and 3 caused a change in L1 capsid 

protein expression, with the latter causing the greater reduction (50-55%). 

Conversely, SRSF3 overexpression in undifferentiated keratinocytes resulted in 

some induction of L1 protein expression (31). SRSF3 was required for production of 

the spliced E4^L1 mRNA that encodes the L1 major capsid protein. SRSF3 likely 

controls viral RNA alternative splicing because, upon depletion, concomitant with a 

decrease in levels of the E4^L1 mRNA, there was an increase in the unspliced L2L1 

mRNA that encodes the L2 minor capsid protein. Although the observations of E2-

mediated transcriptional control of SRSF and capsid protein expression and SRSF3-

mediated control of capsid protein expression are correlative, it seems reasonable to 

propose that E2 induces SRSF levels in differentiated HPV-infected keratinocytes in 

order to facilitate viral capsid protein expression and completion of the viral 

replication cycle. Interestingly, another study showed that E2 could control induction 

of HPV late mRNA expression post-transcriptionally, and this phenomenon was 

http://pave.niaid.nih.gov/#explore/transcriptmaps


observed for HPVs of different phylogenetic types, namely HPV1, 5, and 16 (39). In 

this case, both the E2 transactivation domain and the hinge region were required for 

control of capsid mRNA levels. E2 interacted with the 30 kDa component of the 

cleavage and polyadenylation specificity factor (CPSF) complex and controlled use of 

the viral early polyadenylation signal (39). Similar to the level of change that we 

observed, E2 overexpression induced a 3- to 5-fold change in late mRNA expression, 

although late protein expression was not examined. Therefore, the data suggest that 

there may be two E2-mediated post-transcriptional mechanisms for regulating viral 

late gene expression: SRSF-mediated control of splicing and CPSF-mediated control 

of polyadenylation. 

 

Summary and perspectives 

E2 can bind viral capsid proteins directly, and, at least for L1 this interaction can 

enhance E2-dependent replication and transcription activation (35). However, E2-

mediated post-transcriptional control of L1 expression indicates that the physical E2-

L1 interaction can be assured in differentiating keratinocytes, in which viral genome 

replication takes place. It is clear from the new data described above that E2 could 

integrate and regulate all the main late events in the viral life cycle. Aside from RNA 

processing, SRSF proteins may control other events in the life cycle of RNA 

molecules, including nuclear export, mRNA stability, and translation (11). If E2 

controls SRSF expression or if E2 has SRSF-like activities, it could affect viral mRNA 

export to the cytoplasm, stability, and translation. A full examination of how E2 

integrates the various late events in viral replication with the cellular environment via 

E2-mediated control of SRSF is now warranted. 
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Table 1. Known E2 interactions with RNA splicing factors. 

Protein Aliases Function HPV Type 

SRSF1 ASF, SF2, 
SRp30a 

Control of pre-mRNA splicing. 
Paradigm SRSF protein. 

1,3,5,6,8,9,11,16,18 

SRSF2 SC35, PR264, 
SRp30b 

Control of pre-mRNA splicing 1,5,8,9 

SRSF4 SRp75 Control of pre-mRNA splicing 16 

SRSF5 SRp40, HRS Control of pre-mRNA splicing 16 

SRSF7 9G8 Control of pre-mRNA splicing 1,3,5,6,8,9,11,16,32,39 

Tra2β SRSF10, 
PPP1R156, 
TRANS2B 

Control of pre-mRNA splicing 5 

SRPK1 SFRSK1 SRSF protein kinase 1,8,11,16, 18,31 

SRPK2 SFRSK1 SRSF protein kinase 1,8 

SMN Gemin1, 
BCD541. 
SMA 

Role in assembly of snRNPs that 
form the splicing machinery  

16,18,11 

SF1 ZNF162, 
ZFM1, BBP, 
D11S636, 
ZCCHC25 

Necessary for spliceosome assembly: 
branch point binding protein 

16 

snRNP70 U170K, 
RPU1,U1AP1, 
Snp1, 
RNPU1Z 

Component protein of U1 snRNP, the 
first RNA/protein complex to interact 
with pre-mRNA in a splicing reaction 

5 

PRPF31 PRP31, 
NYBR99 

Required for the assembly of the 
U4.U5.U6 tri-snRNP in a splicing 
reaction 

1,5,6,8,9,18 

EFTUD2 SNRP116, 
U5116KD, 
HSNU114, 
MFDGA, 
MFDM 

Spliceosome component 1,8,11,16, 18,31 

PCBP1 hnRNPE1, 
hnRNPX, 
HELS85 

Regulates alternative splicing 1,3,5,8,9,16,18 

TNPO3 Importin12, 
TRN-SR 

Nuclear import of SRSF proteins 5 

 



Figure legend 

Figure 1. Activity of E2 during the human papillomavirus (HPV) replication 

cycle. (A) Haematoxylin-stained (blue stain) high risk human papillomavirus (HR-

HPV)-positive low grade cervical lesion. The various epithelial layers are indicated on 

the left. The basement membrane is indicated with a dotted blue line. Note the 

enlarged nuclei (a hallmark of HPV infection) of cells in the mid epithelial layers. The 

events in the HPV replication cycle and an approximate indication of where they 

occur within the infected epithelium are indicated on the right. The blue shaded 

triangle indicates the extent of E2 expression in the epithelium and the red shaded 

triangle indicates the restricted expression of the viral capsid proteins L1, and L2 in 

the upper epithelial layers. (B) A diagrammatic representation of the domain structure 

of E2. Light green, the transactivation domain. Dark green, the DNA binding domain. 

Gray  wavy line, the hinge domain. (C) A portion of an α-genotype HPV genome is 

shown from the enhancer in the long control region (LCR) to the late gene region. In 

the LCR, the four E2 homodimer binding sites are represented by green squares and 

the E1 binding site is indicated with a blue circle in the origin of DNA replication (ori: 

blue horizontal line). In mid to upper epithelial layers the viral late promoter (black 

arrow) is active and the viral late RNAs (shown as a red curved line) are expressed. 

RNA Pol II, RNA polymerase II. RNA pol II is shown as a pink circle with an 

extension indicating the carboxy-terminal domain. SRSF proteins are indicated by an 

orange oval binding the late pre-mRNA. (D) An E2 binding site (green box) is shown 

in the promoter of SRSF genes (orange rectangle) that binds E2 (not shown) to 

trans-activate (blue curved arrow, +ve) expression of SRSF genes. A brown curved 

arrow indicates E2-transactivated SRSF (orange oval)-regulated activity in HPV late 

mRNA processing (31). However, E2 could also upregulate late mRNA production 

directly by recruiting other cellular RNA processing factors (39) or by acting as viral 

SRSF-like regulator of late mRNA splicing (21).
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