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Zebra pattern in rocks as a function
of grain growth affected by
second-phase particles
Ulrich Kelka*, Daniel Koehn and Nicolas Beaudoin

School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK

Alternating fine grained dark and coarse grained light layers in rocks are often termed

zebra patterns and are found worldwide. The crystals in the different bands have an

almost identical chemical composition, however second-phase particles (e.g., fluid filled

pores or a second mineral phase) are concentrated in the dark layers. Even though

this pattern is very common and has been studied widely, the initial stage of the

pattern formation remains controversial. In this communication we present a simple

microdynamic model which can explain the beginning of the zebra pattern formation.

The two dimensional model consists of two main processes, mineral replacement

along a reaction front, and grain boundary migration affected by impurities. In the

numerical model we assume that an initial distribution of second-phase particles is

present due to sedimentary layering. The reaction front percolates the model and

redistributes second-phase particles by shifting them until the front is saturated and

drops the particles again. This produces and enhances initial layering. Grain growth

is hindered in layers with high second-phase particle concentrations whereas layers

with low concentrations coarsen. Due to the grain growth activity in layers with low

second-phase particle concentrations these impurities are collected at grain boundaries

and the crystals become very clean. Therefore, the white layers in the pattern contain

large grains with low concentration of second-phase particles, whereas the dark layers

contain small grains with a large second-phase particle concentration. The presence of

the zebra pattern is characteristic for regions containing Pb-Zn mineralization. Therefore,

the origin of the structure is presumably related to the mineralization process and might

be used as a marker for ore exploration. A complete understanding of the formation of

this pattern will contribute to a more accurate understanding of hydrothermal systems

that build up economic mineralization.

Keywords: banding, dolomitization, grain growth, second-phase particles, zebra dolomite, zener drag

1. Introduction

The zebra texture is a periodic pattern which is encountered worldwide in geological formations
and is often associated with hydrothermal mineralization. Zebra banding occurs in claystones [1],
siderite ores [2, 3], and sphalerite mineralization [4]. The process of the zebra pattern formation
varies depending on the rock hosting this structure. Here we focus on the origin of zebra banding
occurring in dolostones that is often found in the vicinity of Pb-Zn mineralization. The banding
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consists of alternating dark and light layers which are built up
by a single mineral phase, namely dolomite. Despite the color
the only macroscopically recognizable difference is the grain
size, which can differ by several orders of magnitude between
the coarse grained light and the fine grained dark regions. The
pattern appears very symmetric and the layers comprise of
monotonic thickness and spacing at the local scale (Figure 1).
On a microscale other differences become visible between the
dark and the light regions (Figure 1). The fine grained areas are
always accompanied by a high density of opaque second-phase
material. Furthermore, the crystals in the fine grained layers
exhibit lobate grain boundaries whereas the grain boundaries in
the light regions display a more polygonal geometry. The overall
structure of the coarse grained layers is very similar to the type of
veins or crack fillings where the crystals grow toward the central
part of the opening and thus form a median line.

In order to be able to compare the outcome of our numerical
simulations with natural specimens, representative samples on
which analytical analysis can be performed were collected at the
San Vicente mine in Central Peru. This location is a good general
example of an ore deposit where numerous of the described
zebra textures occur with a high diversity of layer spacing and
thickness. The San Vicente mine is a case example of an ore
deposit with many typical characteristics of hydrothermal Pb-Zn
mineralization which is associated with the zebra textures where
ore occurs along and within the bands [5]. The San Vicente mine
is hosted in dolomitized platform carbonates in basin flanks in a
foreland thrust belt in front of the Andean mountains with larger
ore bodies bound to specific lithological units.

Different theories about the origin of the zebra textures in
dolostones have been formulated. It is widely accepted that
the formation of the structure consists of several phases of
which the dark fine grained dolomite is the first one. This first
phase represents the replacement of the initial limestone by
dolomite [5–15]. What exactly triggers the development of the
subsequent phases, which build up the coarse grained regions and

FIGURE 1 | Examples of zebra textures at different scales. The left picture shows an outcrop in the area of the San Vicente mine. On the right side a hand

specimen and two thin sections are shown. The area of the displayed thin sections is 1 cm2 which is equivalent to the area of the simulation. The two micrographs

show zebra banding with different spacing between the dark and the light layers.

are responsible for the final appearance of the pattern, is still a
point of debate.

A selection of existing models will be presented in this
paragraph. Zebra dolomites occurring in Northern Canada can
be related to pre-existing structures in the initial limestone [14].
Prior to the dolomitization the limestone comprised of rhythmic
sedimentary structures with a higher porosity/permeability.
During the replacement of the limestone by dolomite the fluid
flow was focused in these high permeability zones leading to
higher dissolution and dolomitization rates and the formation
of layers. Studies carried out on zebra dolomites in Belgium,
Spain and Canada concluded that the pattern evolved during
fracturing due to tectonic stress [8, 9] or hydrofracturing during
the pulsed influx of dolomitizing brines [12, 13, 15]. The light
coarse grained dolomite bands are interpreted as being at least
partly void filling cements which precipitated into extensional
fractures [12]. Based on the high symmetry of the banding it
has been stated that the process which leads to the formation
of the zebra texture has to involve self-organization [7, 10, 11].
The pattern of the zebra dolomite is found to be much too cyclic
to be related solely to pre-existing sedimentary features [7]. The
concept of self-organization can produce symmetric or rhythmic
patterns out of an initially unordered system. An example of such
a self-organizing process which produces equidistant concentric
banding are the Ostwald-Liesegang rings which evolve during a
reaction-diffusion process [16]. The necessary conditions for self-
organization processes were found to be present in rocks hosting
the zebra patterns [7]. The rhythmic pattern may evolve during
dolomitization due to cyclic dissolution/precipitation processes
focused in the white layers [7]. Another self-organizing concept
which may explain the monotonic thickness and equidistant
occurrence of the zebra patterns was introduced by Merino
et al. [10] and Merino et al. [11]. In this model the crystals in
the light layers displace the host rock during growth (displacive
vein growth). The growth of this second dolomite phase not
only pushes away the primary dolomite in the dark bands, but
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also induces a stress field around the light layers. This stress
field, which arises from the crystallization stress, is thought to
prevent the growth of new material in the direct vicinity [11]. A
more general model for the development of banded structures
in rocks is the crystal zoning model [3]. In this model a phase
transition front collects impurities during its propagation. If a
critical value of collected material is reached, the front switches
from collecting to releasing particles. This approach can generate
a periodic layered distribution of impurities similar tomud bands
in snow sediments or the opaque second-phase material in the
fine grained layers of the zebra dolomite. Even though this theory
does not account for the difference in grain size between the dark
and light regions, it may be regarded as a possible process which
triggers the formation of the zebra pattern.

It can be summarized that several different models of
zebra dolomite formation exist which are either based on
focused fracturing or dissolution, self-organizational concepts or
simply link the textures to preexisting structural features in the
dolomitized limestone. A consensus has therefore not been found
yet, and the suggested models sometimes contradict each other.
Because the dolomitizing fluids which are likely to be linked to
the pattern formation are capable of delivering the metal content
to the respective deposit, a general model of the zebra texture
formation can widen the understanding of hydrothermal systems
that build up economic Pb-Zn mineralization.

Pattern formation in geological systems is often related to self-
organization processes. The pattern emerges out of an initially
unordered system which is out of equilibrium and in which
feedback reactions occur [17, 18]. Especially the genesis of a
rhythmic pattern like the one discussed in this paper are likely
to involve some kind of self-organization [7]. The concept of
self-organization applies to a broad range of scientific problems
like Biology [19], Chemistry [20], Geochemistry [17, 18], and
Mechanics [21]. Especially when dealing with two phase systems
like a fluid saturated rock were mechanical and/or chemical
reactions take place, self-organization is likely to occur. As
the concept of self-organization is a general approach, findings
achieved in one scientific field may also be applicable to another.
That self-organization occurs in the type of hydrological system
studied in this communication was already proposed by Ortoleva
et al. [18], where banded Pb-Zn mineralization was linked to
geochemical self-organization.

In this communication we present a simple generic model
which can explain the differences in color and grain size in the
layers of the zebra pattern. Ourmodel starts with the replacement
of the initial impurity rich limestone by dolomite according to
the crystal zoning model where the scattered second-phase is
redistributed along the propagation direction of the reaction
front. The complete dolomitization is followed by a grain growth
process that is influenced by second-phase particle densities. This
simulation setup involves feedback between the redistribution
of second-phase material and grain growth. Moreover, the
hydrological system has to be assumed to be out of equilibrium.
As already pointed out by Fontbote [7] the host rock and
the infiltrating dolomitizing fluid will account for the “out-of-
equilibrium condition.” These are general principles which are
present during self-organized pattern formation [17, 18].

2. Numerical Model

2.1. Setup
The numerical simulations were carried out in 2D at the scale of
a thin section (1 cm2) using the modeling environment “ELLE.”
In our simulations two grids are mapped onto each other
(Figure 2). The background is represented by nodes distributed
on a hexagonal grid that is stationary and records impurity
content, concentration and mineralization. The second grid is
a mobile boundary-model consisting of line segments that are
connected by nodes, where the line segments represent grain
boundaries of growing crystals. The two grids are linked to each
other so that the impurity content in the hexagonal grid can
influence the simulation of grain boundary migration in the
boundary model.

During the simulation of the pattern formation two main
processes are active, an initial replacement of calcite by dolomite
along a reaction front and a subsequent coarsening of grains as
a function of variations in surface energy. Both processes affect
impurity distributions whereas the grain growth process itself is
also affected by the redistributed scatter of impurities.

2.2. Dolomitization and Second-phase
Redistribution
The dolomitization in our model is simulated as a replacement
of the initial calcite (CaCO3) by dolomite (CaMg(CO3)2) due to
a concentration change of Mg2+ in the nodes of the hexagonal
grid. Usually the replacement process in large hydrothermal
systems involves convective fluid flow but because the area of our

FIGURE 2 | Schematic section of the model showing the basic

elements used to simulate the dolomitization and the grain growth. The

nodes which are distributed on a hexagonal lattice build up the background of

the simulation. The nodes have a value of Mg2+-concentration and the

parameters of the second-phase (radius and densities) assigned to them. The

later influences the migration rate of the grain boundaries. The top layer is built

up by the boundary model consisting of connected nodes (either double or

triple) which represent the grains. Only grains which are dolomitized can grow

whereas the driving force for migration is derived from the surface energy,

which is a function of the orientation of the c-axis of the considered crystal and

the adjacent grains.
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simulation is comparatively small we assume that on such a scale
convection can be neglected and a general transport equation can
be applied:

(

∂c

∂t

)

x

= vD

(

∂c

∂x

)

t

+ Df

(

∂2c

∂x2

)

t

(1)

This expression describes the change in concentration (c) in the
x-direction over time (t) due to advection (vD) and diffusion (Df )
of a specimen. As a simplification we assume the diffusivity to be
constant and isotropic. If we consider the transport of a specimen
in the saturated zone with non-turbulent flow (Re < 1) we can
calculate the advection part of Equation( 1) using Darcys law:

vD =
κ

φ
· 1P (2)

The velocity in this equation is a function of the pressure
gradient (1P) in the respective environment, the permeability
(κ) and the porosity (φ) of the considered medium. Compared
to the advection speed the diffusivity usually contributes only a
small amount to the overall concentration change and therefore
the Darcy velocity will be the critical term in Equation ( 1).
As a consequence the propagation of the reaction front is
mainly governed by the Darcy velocity. In order to apply
Equations ( 1) and ( 2) to our simulation we initially set a
constant pressure gradient, a randomly distributed porosity and
an initial concentration in the hexagonal grid. These parameters
are then used to calculate the concentration change in the
nodes due to the propagation of a fluid supersaturated with
Mg2+. The associated concentration change in the nodes is
proportional to the calculated Darcy velocity combined with
the constant diffusivity. The Darcy velocity itself is calculated
using the initially defined pressure gradient and the local
porosity/permeability. A threshold for the concentration ofMg2+

was set, above which we consider the node to be completely
dolomitized. In addition the porosity increases by about 13% [22]
when a node is changed completely to dolomite. Once a grain
becomes dolomitized the slower grain growth process can start.
However, the grain boundary migration only begins in the
considered grain if the adjacent grains are also dolomitized as
we assume grain growth to appear along dolomite/dolomite
boundaries (Figure 2).

The initial scatter of impurities is alternated by the advancing
reaction front similar to the crystal zoning model [3]. The
reaction front in our model is capable of collecting second-phase
particles whereas the collected amount is inversely proportional
to the size of the impurities and proportional to the concentration
change between two time steps (Equation 3). For the collection
process we applied a size dependent step-function [f (rp)]
assuming that the mobility of second-phase particles during
replacement is similar to the mobility associated with grain
boundary migration described by Gottstein and Shvindlerman
[23]. Furthermore, we chose a function [f (c)] which relates
the amount of collected impurities to the concentration change
between two time steps which is directly proportional to the
replacement rate. The impurities should become mobile during
replacement as the calcite/dolomite transition is accompanied

by an increase of the crystallographic order. The originating
dolomite crystals will prefer a low internal energy state and
therefore tend to build in fewer impurities in their lattices.
This cleansing process of the crystals can be compared to the
generation of impurity free crystals from melt during industrial
zone melting [3] even though the transition in our model is
between two mineral phases and not a change of the state of
matter. The Equation( 3) outlines how we calculated the amount
of particles collected by the advancing front, if the threshold for
collection is not exceeded.

m = C1/2 · f (rp) · f (c); S = [0; 1] (3)

f (rP) = 1− tanh(rP) rP < rcrit

f (c) = 2 · (c1 − c0) c0/1 < 0.5

Heremp is the amount of the second-phase which is collected by
the reaction front, rp is the radius of the second-phase particles,
rcrit is the threshold of the particle size, c0 is the concentration
of the contaminant in the previous time step and c1 is the
concentration in the current time step, respectively. The factor
C1/2 is used to control the amount of particles collected or
released by the front. As the threshold for dolomitization in our
simulation was set to 0.5, the maximum solution of f (c) is 1 but
will usually be much lower. Once the loading-threshold of the
reaction front is reached the collecting force of the front breaks
down and the process switches to releasing particles [acc. [3]].
The release of second-phase particles in our model is a function
of particle size and concentration change according to:

f (rP) = tanh(rp) rp < rcrit

f (c) = 1−
(

2 · (c1 − c0)
)

c0/1 < 0.5

2.3. Grain Growth
Static grain growth can be divided into normal and abnormal
grain growth. During normal grain growth the coarse grains
grow and small grains shrink [24]. The driving force for this
process is usually derived from the specific surface energy (γ )
of the material and the local radius of curvature (r) of the grain
boundary. This driving force is proportional to the reduction of
the Gibbs free energy (1G) [25].

The energy for grain boundary migration derived from the
reduction of the Gibbs free energy is largest for surfaces with a
small radius of curvature (Equation 8). In general the reduction
of the surface free energy of the crystals tends to generate curved
boundaries and the direction of the migration depends on the
curvature of the considered crystal. Typically the grain boundary
will migrate toward its center of curvature [26]. If the reduction
of the Gibbs free energy is the main driving force and the surface
energy of the crystals is isotropic, the grain boundaries tend to
produce a polygonal pattern with straight boundaries. Once all
the grains have roughly the same size, the resulting structure
is a so-called foam structure with angles of ≈120◦ at triple
junctions [27].

In this study we simulated grain growth where grain
boundaries interact with a dispersed second-phase. In order to
find a kinetic rate-law governing the propagation of boundaries
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we chose a first order rate law for dissolution/precipitation based
on transient state theory [28]. The general form of the applied
equation is:

Dr = krVs

[

1− exp

(

CA

C
eq
A

)]

(4)

In this expression Dr is the dissolution rate [m/s], kr is a rate
constant [molm−2s−1] at a given temperature and pH , Vs is
the molar volume [m3mol−1], CA is the concentration of the
specimen in the fluid and C

eq
A is the equilibrium concentration

of the solute. If we use the expression for the equilibrium
constant Keq:

C
eq
A ≈ Keq = K0exp

(

1PnVs

RT

)

exp

(

19s

RT

)

(5)

and assume an equilibrium saturation and no stress acting on the
crystal surface, we can derive an expression for the dissolution
or precipitation rate at constant fluid pressure under saturated
conditions as Koehn et al. [29, 30]:

Dr = krVs

[

1− exp

(

−
19s

RT

)]

(6)

where R is the universal gas constant and T is the temperature
[K]. We then get a temperature dependent rate law for
dissolution/precipitation processes using the Helmholtz free
energy change 19s. Further details on the derivation can be
found in Koehn et al. [29, 30]. If we now substitute 19s with
1G we can describe the process by means of Gibbs free energy
reduction. This energy change is closely related to the change of
the radius of curvature (1r) of the considered grain. If this energy
reduction is the main driving force for grain boundary migration,
the velocity of a point on the grain boundary can be calculated
using the surface energy (γ ), the grain boundary mobility (m)
and the radius of curvature (r) as:

1r ≈

(

−mγ

r

)

↔ v =
∂r

∂t
=

−mγ

r
(7)

Based on Equation( 7) the velocity of a grain boundary (v) is a
function of the reduction of r over time or the grain boundary
mobility (m) and the surface free energy (γ , respectively [31]. We
can simplify this expression and determine the energy of a point
on the grain boundary by:

1Er =
γ

r
(8)

This expression can be regarded as the apparent activation energy
and we substitute the energy change in Equation( 6) by 1Er .
Hereby it is possible to formulate a general rate law depending
on the reduction of the Gibbs free energy with a temperature
dependent Arrhenius term which is often used to describe grain
growth processes. To compute the migration rate of a grain
boundary in our simulation we then applied:

vgb = krVs

[

1− exp

(

−
1Er

RT

)]

(9)

By implementing a uniform surface energy γ , isotropic grain
growth will be simulated and the developing grains will generate
a foam structure. In order to resemble grain boundary migration
which produces a more dolomite-like crystal shape we adopted
a function for anisotropic grain growth developed by Bons et al.
[27], in which the surface energy of the grains is a function of
the c-axis orientation of the considered- and the adjacent grain.
By relating the surface energy to the angle between the grain
boundary and the c-axis, the problem is reduced to a function of
γ over 90◦ (Figure A1a). The shape of this function determines
to a certain extent the geometry of the developing grains. The
energy state of the considered boundary segment is a function of
four angles for any node on a boundary but will be a function of
six angles for a node at a triple junction. The value of the surface
energy of a single node is derived by adding up the energies of
the adjacent boundary segments and accounting for the length of
every segment. The energy state of a single segment is the product
of its length and the sum of the energy values according to the
function in Figure A1a. The process developed by Bons et al. [27]
also accounts for low energy boundaries related to coincident side
lattices. In Figure A1b the distribution of the calculated surface
energy of a simulation consisting of 10.000 time step is shown.
The distribution of the surface energies shows two distinct peaks
at ≈0.2 and ≈0.5 Jm−2. This bimodal distribution is caused by
the underlying function (Figure A1a).

In contrast to normal grain growth, abnormal grain growth
can occur in aggregates where some large grains exist in an
otherwise fine grained matrix. The larger grains will then
grow at the cost of many small grains which will shrink or
disappear [25].

In this work we mainly focus on normal static grain growth,
but depending on the distribution of the developing grain
sizes, abnormal grain growth may occur at later stages of the
simulations. The shift from normal to abnormal grain growth
might be caused by the anisotropic distribution of surface
energies [32] or by the distribution of impurities.

2.4. Drag Force of Mobile Particles
Fluid films, inclusions, melt, pore size, and the chemical
composition of fluids can all change the grain boundary
mobility [24, 25, 33]. In our simulation we focus on the
interaction of a second-phase volume fraction with a migrating
grain boundary. This second-phase can for example be fluid filled
pores or a differentmineral phase [23–25, 33–35]. The interaction
between the grain boundary and an impurity, which results in
reduction of the driving force for migration, can be quantified
by the so-called Zener drag. Zener formulated equations to
calculate the influence of second-phase particles on a moving
grain boundary based on laboratory experiments [36]. That
the results achieved during laboratory studies can approximate
the interaction of crystal growth and a dispersion of second-
phase particles in geological systems was shown by Mas and
Crowley [34], who achieved a quantitative analysis of the
relationship between second-phases and the grain size in marble.
It was found that already volume fractions of ≈5% will have a
significant effect on the grain size in natural systems and even a
very fine grained second-phase can have a remarkable effect on
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the growth rate as long as the volume fraction is sufficiently high
enough.

When amoving grain boundary encounters a single, coherent,
spherical second-phase particle, this obstacle initially applies
an attraction force to the crystal surface. In order to migrate
over the obstacle, the grain boundary has to increase its area
proportional to the size of the impurity. During progressive
boundarymigration the particle will then exert a drag force on the
surface (Figure 3A). The area increase of the grain boundary and
the drag force both result in additional energy needed for further
grain boundary migration, whereas the effective drag force is
primarily dependent on the size of the considered particle [25]. In
order to calculate the drag force of a single second-phase particle
the assumption has to be made that the surface tensions of the
particle and the grain boundary are in equilibrium. If this is
assumed and the grain boundary meets the obstacle at an angle
of 90◦, the two tensions will cancel out leaving only one surface
tension (γ ) [36]. This surface tension is the internal energy
of the matrix/matrix boundary and not of the matrix/particle
interface [25]. The general equation of the Zener drag (FZ) is then

Fz = 2πγ rp · cos2 · sin2 (10)

where γ is the resulting surface tension, rp is the radius of
the particle and 2 is the angle between the tangent to the
pinned matrix boundary at its intersection with the particle and
the tangent to the boundary when no particle is present. The

FIGURE 3 | (A) Basic concept of the Zener drag applied to a grain boundary

by a single coherent, spherical particle. In the first stage when the grain

boundary encounters a particle it will be attract by it. In order to move over the

particle the grain boundary has to increase its area which is associated with a

higher energy needed for further migration. During progressive grain boundary

migration the particle will exert a drag force on the particle. This force is

highest for angles of 45◦ between the bend grain boundary and an imaginary

undeformed boundary. The area increase and the applied drag force from

particle result in a higher energy needed for grain boundary migration and

therefore slow down or even inhibit further grain boundary migration [after Nes

et al. [36]]. (B) Concept of the Zener pressure applied to a grain boundary by

multiple spherical, coherent particles of the same radius. The Zener pressure is

the drag force of a distribution of particles which are present in the

particle-boundary interaction-zone (Rgb). The assumption for the validity of this

concept is that the volume fraction of particles equals the area fraction of

particles on the grain boundary [after Nes et al. [36]].

maximum pinning force occurs at 2 = 45◦. In this case the
product of the two trigonometric functions equals 1/2, leaving:

Fz = πγ rp (11)

which is the equation for the maximum Zener-force of a single
coherent spherical particle, disregarding the shape of the actual
grain boundary [36].

It is very unlikely that there is just one single particle at one
grain boundary in a natural system. It is more reasonable to
consider a dispersion of particles with different radii (rp). The
effective driving force for grain growth (Feff ) will then be reduced
by the cumulative attraction forces of all particles with the same
radius (rp). This can be written as

1Feff = Feff −

np
∑

i= 1

niFzi (12)

with ni being the number of particles with the radius rp, np the
maximum number of these particles and Fzi the Zener drag of a
particle with the considered radius [23].

In order to simulate the drag force of several particles on
a grain boundary we chose Equation( 13), which gives a good
estimate for the drag force resulting from a volume fraction
of particles. This equation is based on the assumption that the
particles contributing to the drag force all have the same radius. A
zone of interaction between the particles and the grain boundary
(Rgb) has to be defined (Figure 3B), which has approximately the
diameter of a single particle (2rp). Furthermore, only second-
phase particles which are in the interaction zone (Rgb) behind the
moving grain boundary will contribute to the drag force because
the impurities in the particle-boundary interaction zone (Rgb) in
front of the boundary will produce an attractive force. Finally it
is assumed that the volume distribution of particles equals the
area distribution (f ) on the grain boundary. The equation to
calculate the drag force resulting from a volume distribution of
second-phase particles is:

Pz =
3

2
f

γ

Rgb
RGb ≈ 2rp (13)

We simplified the process of calculating the impurity-depending
drag force by computing the volume fraction of impurities in one
node of the hexagonal grid and introducing this value as the area
fraction of second-phase particles in Equation( 13) (Figure 3B).

To simulate the interaction of a grain boundary with a fraction
of impurities we calculated the drag force resulting from the
scatter of second-phase particles in the background of the model.
The derived drag force reduces the apparent activation energy or
driving force for grain boundary migration according to:

Dr = krVs



1− exp



−

[

(

γ 1
r

)

−

(

3
2 f

γ
Rgb

)]

RT







 (14)

This is the equation on which our simulation of anisotropic grain
growth hindered by a dispersed second-phase is based. The final
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average and the maximum grain size are both affected by the size
and number of impurities present in a volume [23, 33, 35–41].

In addition to applying a drag force on grain boundaries,
second-phase particles are not stationary during grain growth.
A moving grain boundary can capture particles and shift them
in its propagation direction if the grain boundary migration
rate is sufficiently low and the diameter of the second-phase
particles is small enough. During continuous grain growth the
grain boundary will be loaded with progressively more particles
that are smaller than a critical size [23]. As the value of the
grain boundary velocity derived from the driving force is crucial
to the loading process, it is also possible that a loaded grain
boundary detaches itself from the particles when the driving force
increases. At this point the grain boundary velocity will have
the value of a boundary without any particle. Grain boundary
migration can therefore take place in two regimes, an impurity
controlled regime, with a slow grain boundary migration and an
impurity-free regime with a fast grain boundary migration [26].
According to the theory of mobile particles by Gottstein and
Shvindlerman [23] we chose a threshold for the radius of the
second-phase and for the velocity of themigrating boundary. The
amount of the second-phase particles that are redistributed by a
moving grain boundary is inversely proportional to the particle
size and to the velocity of the grain boundary according to:

mp = C1 · f (r) · f (vgb) S = [0; 1] (15)

f (r) = 1− tanh(rp) rp < rcrit

f (vgb = 1− tanh(vgb) vgb < vcrit

It can be inferred that the maximum drag force and therefore
the maximum grain size achieved during grain growth are both
a function of the size and the dispersion of the second-phase
[25, 35]. In order to quantify this relationship Equation( 16) can
be used to estimate the maximum achievable grain size.

Amax = C
′(m)

·
dp

f
(16)

Where Amax is the maximum grain area, dp is the initial grain

size, f is the volume fraction of the second-phase and C
′(m) is a

constant that depends on the model assumptions. The dispersion
of the second-phase particles has a high impact on final grain
size whereby the smallest grain size is reached when the particles
are not randomly dispersed and most of them lie on grain
corners [25].

3. Results

3.1. Initial Setup
Prior to every simulation a constant pressure gradient, a random
distribution of porosity, second-phase particle radii and densities
were assigned to the nodes of the hexagonal grid. Particle
distributions are aligned horizontally in order to mimic an initial
sedimentary layering with graded beds. Such a sedimentary
layering can often be found in limestones and may be caused
by cyclic sedimentary deposition. Banding in calcareous rocks

might as well be of biological origin of which Stromatolites,
Stromatoporoids or algae mats are good examples. In addition
compaction during diagenesis might form a layered distribution
of impurities resulting from pressure solution and subsequent
precipitation. An example of a banded dolomite which was found
in the Upper Silesian Pb-Zn district in Poland compared with the
initial impurity scatter in our model is shown in Figure A2. The
Upper Silesian ore deposit is of the same type as the one hosting
the San Vicente mine in Peru but a zebra pattern is not frequently
observed in this region.

The c-axis orientation of grains varies randomly throughout
the model (Figure A1c). We chose the area of the model as being
equivalent to 1 cm2, the time scale of a single time step was set to
1 h for the dolomitization and once the volume was completely
dolomitized the time scale was switched to 10a in order for grain
growth to occur. According to the chosen spatial scale one node
in the hexagonal grid is thought to equal a spherical volume with
a diameter of ≈45 µm in which a fraction of impurities can be
present.

3.2. Dolomitization and Second-phase
Redistribution
Initially a reaction front progresses through the material. This
front changes calcite to dolomite, a reaction that includes an
increase in porosity (up to 13%). The reaction is induced
by an influx of fluid from the lower boundary of the model
and is calculated using an advection-diffusion algorithm (see
Section 2.2). We use intermediate Péclet and Damköhler
numbers to avoid too pronounced fingering in the front. This
setup leads to a wavy front in the simulations (Figure 4A) with
an intermediate width. During the progression of the reaction
the second-phase particles are collected within the front and
move with the front until a threshold is reached and the front

FIGURE 4 | Simulated reaction front after 2500 time steps. (A)

Concentration (c) of Mg2+. The Bottom part is already dolomitized (black) and

the grain growth process could already start. Different layers of concentration

change are visible and these different bands of Mg2+ could be interpreted as

metastable phase in the transition from pure calcite to dolomite. The fluid flow

follows the initially set pressure gradient (1P). (B) The advancing dolomitization

front collects second-phase material along its propagation direction. The

amount of captured particles depends on the size of the particles and the

concentration change in the front between two time steps. The mobile

particles (red) are moving together with the advancing front and represent the

amount of second-phase material which is released from the crystal lattices by

the dolomitization process.
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loses particles again. Behind the front the particle densities are
generally lower unless the front is oversaturated and releases
particles. The progressing reaction front enhances the initial
second-phase distribution (horizontal sedimentary layering). A
zonation in concentration change is clearly visible in Figure 4A.
The development of channels is minimal but the shape of the
front is clearly irregular. The second-phase particle loading
process (Equation 3) is displayed in Figure 4B. The highest
densities of mobile particles are present close to the actual
replacement where the concentration change nearly exceeds
the threshold for dolomitization. Once the reaction front has
changed the material to dolomite grain boundary migration
becomes active (Figure 2).

3.3. Grain Growth with Zener Pressure
Based on the analyzed natural samples, in which saddle dolomite
is present in the coarse layers, we assumed a temperature of at
least 80◦C [22, 42]. This temperature regime is also found in
the literature for the area of the San Vicente mine where the
involved fluids are characterized as brines with a temperature
of ≈75–160◦C and a pH of ≈5 [11, 43, 44]. The pH in
the work of Spangenberg et al. [44] was determined through
geochemical analyses on sulfates giving the hydrogeochemical
parameters of the mineralizing brine. The dolomitizing brine
probably percolated through the same underlying detrital rocks
generating a similar slightly acidic fluid. The in situ pH of
general dolomitizing brines presented in the work of Merino and
Canals [11] is also 5. However, a change in pH and/or T will
accelerate or slow down the precipitation rate of dolomite as
both affect the dissolution constant (kr) used in Equation( 14).
We estimated the value of kr trough an extrapolation to pH 5
from a series of experiments carried out by Gautelier et al. [45].
The measurement of the steady-state dolomite dissolution rate in
the work of Gautelier et al. [45] was performed at a maximum
temperature of 80◦C and is in the temperature range we consider
appropriate for our simulations. The value of the surface free
energy for limestone is 0.27 Jm−2 [46] whereas the value for
dolomite is poorly known. We therefore based the distribution of
the surface energy in our model on the work of Austen et al. [47].
Although the simulated process is thought to be situated in a
burial environment with an average depth of 2 km, we neglected
the pore pressure and the stresses acting on the crystals assuming
that these play only a minor role.

We first tested the implementation of Equation( 9) with
the chosen constants by comparing the analytical solution with
the outcome of the simulation. In Figures A3a,b the derived
velocities for different surface energies (0.2–0.8 Jm−2) are plotted
against an increasing radius of curvature. The theoretical solution
(Figure A3b) and the values computed during the simulation
(Figure A3a) fit well. The boundary velocity is inversely
proportional to the radius of curvature (r) and proportional to
the surface energy (γ ) in accordance to theory [27, 31]. We
further tested the reliability of our applied rate law by simulating
the shrinking of a single circular grain (Figure A3c). The radius of
curvature will decrease with time and the time steps can therefore
be related to a relative radius. As the energy for grain boundary
migration is a function of the radius of curvature and the surface

energy in our simulation, the different surface energies (0.2–
0.8 Jm−2) can be related to different grain boundary mobility.
A linear decrease of the grain area over time is expected for
an isotropic surface energy distribution and the shrinking rate
should be proportional to the grain boundary mobility [27],
which is the case for the outcome of our simulation.

The maximum grain size and the reduction of grain
numbers in our simulation are different for isotropic grain
growth, anisotropic grain growth and anisotropic grain boundary
migration influenced by second-phase particles (Figure 5). The
reduction of the grain number shows an exponential decrease in
all three cases, whereas the actual rate is highest for the isotropic
case. The difference in the average grain size between anisotropic
grain growth and the impurity-controlled growth seems small
but is still significant considering that either one or no impurity
was assigned to every node in the hexagonal grid, which gives
a small volume fraction. Furthermore, the distribution of the
surface energy along grain boundaries according to Figure A2a
results in grain shapes which are similar to the ones observed in
the natural samples. In contrast to the foam structure achieved
by isotropic grain growth the angles at triple junctions differ
significantly from 120◦ and the grain shapes are more irregular.
In the case of impurity-controlled growth the shapes become
even more irregular and the average grain size is slightly smaller.

Figure 6 shows simulations with different particle densities
with initial distributions shown in Figure A4a. The maximum
grain size depends inversely on the particle densities with
larger grains in aggregates with lower second-phase densities
(Figure 6). There is a large difference in the maximum grain size
between a simulation with one or zero mobile impurity and a
simulation with a maximum of 15 second-phase particles per
node. Grain growth stops and a stable grain size is achieved
at time step 2500 in the simulation with 15 mobile impurities
per node whereas in the simulation with fewer impurities the
maximum grain size is still increasing at time step 7500.

Abnormal grain growth appeared during the simulation with
a maximum of 10 impurities assigned to every node in the
hexagonal grid (Figure 6). This process is likely to be caused by

FIGURE 5 | Graph showing the number of grains and the average grain

size during simulations with 10.000 time steps (100ka). The exponential

decrease of grain numbers is visible in all three simulation. The maximum grain

size is achieved by isotropic grain growth and the smallest maximum grain size

is found in the impurity controlled regime. This area increase is inverse

proportional to the number of grains at the end of the simulation.
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FIGURE 6 | Top: Graph showing the evolution of the maximum grain size

during simulations of 7500 time steps. Bottom: The grain size distribution for

the case of 5 and the case for 10 impurities per point in the hexagonal grid.

the redistribution of second-phase particles during grain growth
in combination with a energetic advantageous orientation of the
c-axis in the large grain compared to its adjacent neighboring
crystals. The anhedral shape of the grain boundaries of the large
grain leads to an additional driving force, which is probably the
reason for the abnormal grain growth of those crystals.

The redistribution of second-phase particles during a
simulation with exclusively mobile particles is shown in Figure 7.
Every node in the hexagonal grid had either one or zero particles
assigned to it and the distribution of the impurity radii is shown
in Figure A4a. At the end of the simulation the highest particle
densities occur on grain boundaries and especially at triple
junctions. This is in good agreement with the simulations carried
out by Shelton and Dunard [39] and with our observations on
natural samples. In thin sections the grain boundaries in the fine
grained layers of the zebra dolomite appear dark, which implies
that the grain boundaries captured particles. This can be seen
in Figure 7B where an electron-backscattered image of a fine
grained band in between two coarse grained bands is shown. The
second-phase particle distribution appears to be non-random,
with highest particle densities in the fine grained layer and
specifically along grain boundaries (Figure 7C). In accordance
with the simulations the highest particle densities in the real
samples occur at the triple junctions.

3.4. Pattern Formation
To model the formation of the zebra texture we combined
the simulation of the dolomitization and associated impurity
redistribution with the simulation of grain growth influence by

FIGURE 7 | (A) Particle redistribution during the simulation of anisotropic grain

growth shown in Figure 5. The left picture in (A) shows the initial impurity

distribution and the right image shows the second-phase particle scatter after

10,000 time steps of the simulation. (B) Backscattered SEM image showing a

fine grained layer in the center. The highest particle densities occur in the fine

grained part which is indicated by the black line. (C) Combined backscattered

and second-electron image showing the area indicated by the blue dotted line

in (B). Larger second-phase particles are lined up along the grain boundary

(black circles) and the highest density of impurities is visible at the triple

junction.

second-phase particle densities. The initial distribution of the
impurities (Figure A4b) represents graded bedding with one
sedimentary cycle consisting of 15 single layers with a change in
the mean grain size of 0.05 µm from one to the subsequent layer
(Figure 8). The reaction front moves from the bottom to the top
of the simulation following a predefined pressure gradient and
redistributes the impurities along its way.

The advancing reacting front collects the second-phase
particles whereas the amount of particles depends on the radius
of the impurities (Equation 3). The width of the front expands
successively with time and the amount of particles collected by
the front rapidly increases as soon as the front enters regions with
smaller second-phase particle radii. Areas with larger particles
sizes are not cleared as effective as areas with smaller particles
sizes (Equation 3). The dolomitizing front leaves layers with
high particle densities behind and releases impurities in small
patches when the loading threshold of the front is exceeded (top
of Figure 8). Since the amount of collected particles is related to
the concentration change between two time steps (Equation 3)
the loading process is also related to the development of fingers
in the front so that the critical loading value is reached faster in
regions between pronounced fingers (Figure 8).

Once the dolomitization front has passed through the sample
the time scale is changed so that grain growth becomes active.
Due to the layered distribution of second-phase particle densities,
which were superimposed by the dolomitization front, high
grain boundary migration rates only occur in regions with low
impurity densities. This produces larger and potentially more
isotropic grains, whereas areas with high particle densities only
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FIGURE 8 | Simulation of the zebra pattern formation by combining the simulation of the dolomitization and the grain growth. Both simulated processes

redistribute the initial impurity scatter. The bifurcation is achieved because the initial set graded bedding distribution of particle size is superimposed by the

size-dependent shift of the reaction front. A secondary redistribution is then performed during the propagation of the grain boundaries.

show minor grain growth. Because of the bifurcation of growth
rates due to the impurity concentrations a pattern consisting of
layers with a large, and layers with a smaller grain size develops.
The grain growth process itself will then also account for the
secondary redistribution of particle densities and leads to a
secondary cleaning of the growing grains. As an additional result
of the bifurcation of the growth rate, the larger grains in the low
density second-phase areas are cleaned more effectively by the
grain boundary migration as this process is much longer active
in these grains than in the grains located in regions with high
impurity densities. The stable grain size achieved in the light
and dark layers is in good agreement with the natural samples
(Figure 9). The grain sizes are found to vary between 80 and 150
µm in the dark and 0.5–5mm in the light layers [12]. The crystals
in the simulations have final grain sizes ranging from ≈ 200 µm
in the impurity rich to 2mm in the impurity free layers.

4. Discussion

A combination between second-phase particle redistribution by
a replacement front and subsequent grain growth can generate
patterns similar to zebra textures observed in natural samples.
We therefore put forward a process of pattern formation based
on the bifurcation of the overall grain boundary migration
rate, where this dichotomy in grain boundary mobility is
caused by a layered distribution of second-phase particle
densities.

Our simulation of the calcite-dolomite replacement governed
by a general transport equation can produce instabilities in
the reaction front leading to fingering. This is due to the
increasing porosity which accompanies the replacement process
and can be compared to the general process of reactive
infiltration instabilities [48]. Even though our simulation of the
dolomitization is a simplified model of the natural process it
is sufficient to simulate the impurity redistribution mechanism
which we assume to be crucial for the textural evolution.
The basis for the second-phase rearrangement is the crystal
zoning model [3] combined with the theory of particle mobility

FIGURE 9 | (A) Initial distribution of second-phase particles for the simulations

in (B,C). (B) Result of a grain growth simulation without the redistribution

performed by the reaction front after 3500 time steps. A stable grain size is

reached and no pronounced banding is observable. (C) Result of s simulation

of dolomitization followed by grain boundary migration after 30,000 time steps.

The redistribution of the second-phase material leads to a bifurcation in grain

growth rates and this causes banding. (D) Scan of a thin section. The area of

the scan is equivalent to the area of the simulation. The location of the dark

and light layers as well as the grain size differences are in good agreement with

the result of the simulation shown in (B).

during grain boundary migration [23]. We had to estimate the
parameters for the impurity-loading process of the reaction
front because the actual values have not yet been determined
experimentally. We applied general laws for second-phase
particle mobility during the replacement because we assumed
that the process is similar to the shifting of particles during
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grain boundary migration. The mechanism which is of high
importance for the pattern formation is the impurity size
dependent shift as it superimposes the initial graded bedding
distribution in our simulations. The size dependence of the
impurity sweep can superimpose a graded bedding structure and
build up a layered scatter of impurities. The particle collecting
and precipitating reaction front will cleanse areas consisting
of second-phase particles with a smaller grain size more
efficiently. The resulting structure will consist of equidistant,
almost particle free layers alternating with high particle density
layers. Thus, the initial layering controls where the respective
bands will be formed. We propose that this process produces
a basic conditions for formation of banded structures in
rocks.

We could further show that our model can reliably calculate
grain boundary velocities in a system with mobile second-phase
particles (Equation 14). Particle numbers and maximum grain
size relationships (Equation 16) are in good agreement with the
general theory of grain boundary motion in the presence of
impurities [23, 25, 49]. Our simulation can show that during
progressive grain boundary migration the impurities will line up
along grain boundaries [38, 39, 49] and that surviving grains
comprise of a core which is not affected by grain growth [50].
Both simulated processes comprise of some simplification but
reflect the natural processes to the extent needed to show how
a layered pattern can be generated by combining these two
mechanisms.

Based on our simulations we can suggest a general hypothesis
for the development of the initial zebra textures or the
development of banded structures in crystalline materials.
The crucial point in our theory is the development of an
equidistant layered distribution of impurity densities. Without
the redistribution of the initial impurity scatter by the reaction
front no bifurcation in grain growth rates is observed (Figure 9).
If the differences in second-phase particle radii and densities
are high enough grain growth rate bifurcation might also be
observable without the redistribution by the reaction front.
However, the dolomitization front will always enhance the
banding. Based on that we propose that the layered scatter of the
second-phase can either evolve by superimposing a pre-existing
structure (like a graded bedding distribution in our model), it
could be generated out of an initially random distribution of
particles which has been shown be the crystal zoning model
developed by [3] or could even be solely of sedimentary origin.
The model shown in this communication generates structures
which are similar to the ones observed in the natural samples.
Even on a microscale the simulations give results which are in
good agreement with the samples. The noticeable high densities
of opaque material along grain boundaries in the thin sections
are also observable in our simulations and are generated by
the mobility of the second-phase particles during grain growth.
We can therefore conclude that the crucial parameters needed
for zebra texture evolution are the initial porosity of the
limestone, the saturation of the hydrothermal fluid with respect
to dolomite and the porosity change associated with the calcite-
dolomite replacement. We would like to point out that the actual
redistribution process of second-phasematerial in our simulation

is a strong simplification of the natural process. Pattern formation
in natural materials, especially when it happens on a localized
scale often involves self-organization [17, 18]. If the process of
impurity redistribution as it is simulated in our model is active in
every environment where an impurity rich limestone is replaced
by dolomite, zebra textures would occur in much more regions
than they actually do. Therefore, some critical parameters must
be present which produce the layered distribution of second-
phase material.

On the large scale these critical parameters could be related
to the geometry of the specific tectonic environment and over-
pressured fluid systems in which large hydrothermal Pb-Zn
mineralization are formed, whereas on the small scale variations
in porosity or impurity content could trigger banding or not.

Our model may represent the initial trigger of the pattern
formation but can not explain all features, like the elongated
shape of the light crystals and the sometimes observed
macropores along the median line. It is conceivable, that after
the formation of the two maximum grain sizes in our model
another process might become active. The final pattern could
be formed by one of the existing models (see Section 1). For
instance, the grain coarsening could lead to a feedback with
the fracturing as the yield stress will drop with increasing grain
size leading to a late fracturing of median lines or preferred
dissolution along them. The initial sedimentary bedding related
anisotropy is in good agreement with the work of Morrow
[14]. As suggested by Fontbote [7] a self-organization process
is expected to be crucial for the pattern formation. However,
whether hydrofracturing, focused dissolution or crystal growth
accompanied by the displacement of the fine grained bands is
the final stage of pattern formation cannot be said with certainty.
Further research is needed to combine the model introduced in
this work with either one of the pre-existing theories or with an
additional process which has not yet been regarded.
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List of Symbols

A Grain area

Aav Average grain area

Amax Maximum grain area

c Concentration of specimen

c0 Concentration

c1 Concentration

C
′ (m) Modelling constant

cγ Surface energy factor

C1/2 Modelling parameter

CA Concentration of specimen in fluid

C
eq
A

Equilibrium concentration of specimen

dp Initial grain size

Dc Diffusion coefficient

Dr Dissolution rate

f Volume fraction of particles

kr Steady-state dissolution constant of dolomite

K0 Rate constant

Keq Equilibrium constant

m Grain boundary mobility

mp Amount of second-phase particles

np Number of particles

No Number of grains

r Radius of curvature

rcrit Critical particle radius

rP Radius of particle

R Ideal gas constant 8.314 J
mol·K

Rgb Particle-grain-boundary interaction zone

S Solution of equation

t Time

T Temperature

vcrit Critical grain boundary velocity

vD Darcy velocity

vgb Velocity of grain boundary

Vs Molar volume

α Angle between c-axes and grain boundary

γ Surface free energy

κ Permeability

φ Porosity

2 Angle between tangent of grain boundary and particle surface

1G Gibbs Potential

19 Helmholtz potential

19s Pressure gradient

1Pn Change in normal pressure on surface
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