
 
 
 
 

Bloemsma, E.A., Silvis, M.H., Stradomska, A. and Knoester, J. (2016) 

Vibronic effects and destruction of exciton coherence in optical spectra of J-

aggregates: a variational polaron transformation approach. Chemical 

Physics, 481, pp. 250-261. (doi:10.1016/j.chemphys.2016.06.018) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 

http://eprints.gla.ac.uk/120674/ 
     

 
 
 
 
 

 
Deposited on: 1 July 2016 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1016/j.chemphys.2016.06.018
http://eprints.gla.ac.uk/120674/
http://eprints.gla.ac.uk/120674/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Vibronic effects and destruction of exciton coherence in optical

spectra of J-aggregates: a variational polaron transformation

approach

E. A. Bloemsma, M. H. Silvis,∗ A. Stradomska,† and J. Knoester‡

Zernike Institute for Advanced Materials,

University of Groningen, Nijenborgh 4,

9747 AG Groningen, The Netherlands

(Dated: June 28, 2016)

Abstract

Using a symmetry adapted polaron transformation of the Holstein Hamiltonian, we study the in-

terplay of electronic excitation-vibration couplings, resonance excitation transfer interactions, and

temperature in the linear absorption spectra of molecular J-aggregates. Semi-analytical expressions

for the spectra are derived and compared with results obtained from direct numerical diagonal-

ization of the Hamiltonian in the two-particle basis set representation. At zero temperature, we

show that our polaron transformation reproduces both the collective (exciton) and single-molecule

(vibrational) optical response associated with the appropriate standard perturbation limits. Specif-

ically, for the molecular dimer excellent agreement with the spectra from the two-particle approach

for the entire range of model parameters is obtained. This is in marked contrast to commonly used

polaron transformations. Upon increasing the temperature, the spectra show a transition from the

collective to the individual molecular features, which results from the thermal destruction of the

exciton coherence.
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I. INTRODUCTION

Low-dimensional aggregates conceived by self-assembly of individual molecules in solution

are of significant interest for nanoscale functional materials [1–3]. Examples of such systems

include the natural light-harvesting complexes of chlorophyll molecules that appear in photo-

synthetic bacteria and plants [4–8], as well as aggregates formed by synthetic dye molecules,

such as the well-known class of J-aggregates formed by cyanine molecules [3, 9–12]. The

strong resonance interactions between the aggregated molecules in these systems give rise

to charge-neutral, collective electronic excitations called Frenkel excitons [13, 14]. These

excitons give rise to collective effects in the optical response, such as exchange narrowing

of optical line shapes [15, 16], enhanced spontaneous emission (exciton superradiance) [17],

strong nonlinear susceptibilities [18–21], and highly efficient excitation energy transfer [22–

25].

Of course, in general, Frenkel excitons are not coherently spread over the entire aggre-

gate, because their scattering on static disorder and dynamic (thermal) excitations, such as

vibrations, limits their delocalization and coherence size [26–33]. The complicated interplay

between intermolecular excitation transfer interactions, disorder, and coupling to vibrations

and its effect on spectral and energy transport properties have been topics continuously at-

tracting attention throughout the history of research on molecular aggregates [34, 35]. His-

toric examples are the formation of vibronic excitations and corresponding spectral bands

and dynamics [36–40], as well as the destruction of exciton superradiance with rising tem-

perature [17, 41]. A well-known recent example concerns the coherence of excitons in light-

harvesting antenna complexes, such as FMO, and its contribution to the excitation transport

efficiency in these systems [42–51]. Another recent example of interest relates to the coher-

ence between electronic excitations on inner and outer walls of double-walled cylindrical

molecular aggregates [52–57].

In this paper, we focus on the interplay between exciton-vibration coupling, intermolec-

ular interactions, and thermal effects (dynamic disorder) in the linear optical absorption

spectra of J-aggregates. We aim for an approach that allows to close the gap between various

perturbative regimes, such as the weak and strong exciton-vibration coupling limits. Thus,

we aim for a method that treats the intermolecular excitation transfer interactions and the

interactions with the dynamic environment (vibration-excitation coupling) on equal footing,
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i.e., non-perturbatively. Several numerical methods exist that go beyond the standard per-

turbation approaches, among which are density matrix renormalization group methods [58],

multiconfiguration time-dependent Hartree methods (MCTDH) [59], hierarchical equations

of motion techniques [60, 61], stochastic path integral evaluations [62], and multi-particle

basis set approaches [63–66]. While these methods have clear advantages in the sense that

they explore a larger part of the parameter space than the ordinary perturbation treat-

ments, they typically require high computational costs, especially for larger aggregate sizes.

Also, their complexity and the lack of analytical results makes these methods typically less

insightful than perturbation treatments.

An alternative approach utilizes the polaron transformation [67–70]. This approximate

method is based upon a Lang-Firsov transformation of the model Hamiltonian [71], which

leads to new exciton-vibration coupling terms that remain small over a larger range of pa-

rameters than the original vibronic interaction terms. Indeed, recently, it has been shown

that this method can capture both the coherent energy transfer limit and the incoherent

Förster limit in a consistent way [72–76]. In these studies, the focus has been on analyzing

energy transport within and between multi-chromophoric systems, while a detailed investi-

gation of their spectroscopic features based on these polaron transformation methods has

remained relatively unexplored.

Here we study the linear optical absorption spectra of J-aggregate model systems de-

scribed by the Holstein Hamiltonian [67]. This model Hamiltonian is well known and has

been used successfully to describe the optical spectroscopy of a variety of low-dimensional

molecular aggregates [36, 37, 39]. We employ a symmetry adapted polaron transformation

approach (abbreviated as APTA), which exploits the symmetry of the Hamiltonian [77, 78].

Specifically, it consists of two simultaneous transformations: a classical (full) polaron trans-

formation which is applied to the totally symmetric collective vibrational mode, followed

by a variational (partial) polaron transformation to minimize the couplings between the

electronic excitations and the remaining non-symmetric collective vibrational modes. The

semi-analytical expressions obtained for the low-temperature absorption spectra are com-

pared with results obtained from direct numerical diagonalization of the model Hamiltonian

in the two-particle approximation (abbreviated as TPA) [63–66], where the latter serves as

a benchmark to determine the range of validity of these expressions.

We establish that using the APTA, the spectral properties associated with both of the
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standard perturbation limits (weak and strong exciton-vibration coupling) are recovered,

while also in between these limits the spectra give reasonably good to excellent (depending

on the aggregate size) agreement with the results obtained from the TPA. In this respect,

we find that the collective representation of the molecular vibrations combined with the

variational nature of the polaron parameter plays a key role for the accuracy of the results

in this intermediate regime. In addition, we show that higher temperatures in general

destroy the spatial coherence of the excitons and their related optical features, such as the

superradiant optical transition.

This paper is organized as follows. In Sec. II, we introduce the Holstein Hamiltonian

model, present the symmetry adapted polaron transformation approach, and derive the

expressions for the linear absorption spectrum of the molecular aggregate. In Sec. III, we

give the analytical results for the spectrum at zero temperature and show explicitly how

these contain both well-known perturbation limits. Section IV is devoted to the numerical

results; here, we show the comparison of our method to the two-particle approximation,

discuss the results in the light of related polaron transformation methods, and present the

temperature dependence of the spectra. We conclude and make some final remarks in Sec. V.

II. THEORETICAL FRAMEWORK

A. Model Hamiltonian

We consider the Holstein model to describe the optical properties of an aggregate of

molecules, each of which has one electronic transition that is coupled to a local vibration.

The well-known corresponding Hamiltonian has the form (~ = 1) [67]

H =
(
E0 + λ2ω0

)∑
n

b†nbn +
∑′

n,m

Jnmb
†
nbm + λω0

∑
n

(
an + a†n

)
b†nbn + ω0

∑
n

a†nan. (1)

Here, E0 and ω0 denote, respectively, the bare (adiabatic) electronic molecular transition

energy and vibrational mode frequency, Jnm is the matrix element of the excitation transfer

interaction between molecules n and m (the prime on the summation excludes the case

n = m), and λ2 is the dimensionless Huang-Rhys factor, which determines the coupling

strength between the vibrational and electronic excitations. As we will not account for

electronic disorder, all molecular transition energies E0 are taken identical. Similarly, we do
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not consider disorder in the intermolecular interactions Jnm. These simplifications are not

restrictive, in the sense that in principle the symmetry adapted approach can be extended

to Hamiltonians that include heterogeneity in the electronic site energies and couplings (see

Sec. V). Furthermore, we have assumed that the frequency ω0 and coupling strength λ2 of

the vibrational mode is the same for each molecule. This is important for the application

of the symmetry adapted method, as will be explained in more detail at the end of this

section (below Eq. 3). Finally, for definiteness, we will restrict ourselves to linear aggregates

of equidistantly spaced molecules. We note, however, that the method may equally well be

applied to systems of arbitrary dimension and geometry.

The creation (annihilation) operators for electronic and vibrational excitations on molecule

n are given by b†n (bn) and a†n (an), respectively. They satisfy the usual (anti-)commutation

relations:
[
bn, b

†
m

]
= δnm

(
1− 2b†mbn

)
, b†nb

†
n = bnbn = 0, and

[
an, a

†
m

]
= δnm. These relations

reflect the bosonic nature of the vibrational operators, while the electronic operators are

governed by Pauli commutation relations. We stress that each molecule can carry at most

one electronic excitation, while the number of vibrational excitations is unlimited.

It is clear from Eq. (1) that the nature of the eigenstates of H is determined by a

competition between Jnm and λω0 [79, 80]. If λ = 0, a Bloch transformation diagonalizes H

(assuming periodic boundary conditions for the aggregate), giving rise to collective excitation

waves (Frenkel excitons) and vibrations. The eigenstates of the total Hamiltonian can then

be expressed as Born-Oppenheimer products of electronic and vibrational wave functions

for the whole aggregate. On the other hand, if Jnm = 0, the eigenstates can be found by

introducing displaced oscillator operators, yielding single-molecule excitation states. Thus,

if one of these parameters (either Jnm or λω0) is small compared to the other, one may

attempt to find the eigenstates using a perturbation scheme.

If such a procedure fails, an alternative approach is to apply a full polaron transformation

to Eq. (1) [71]. This transformation yields vibrational modes of the molecular excited

state that are undisplaced compared to the ground state modes. Consequently, a new

exciton-vibration interaction term appears after the transformation, which may be treated

perturbatively. A generalization of this method is the variational polaron transformation

where the excited state vibrational mode displacements are optimized using the variational

polaron parameter [70]. The main advantage of this method is that it typically yields

exciton-vibration interactions terms which remain of perturbative nature for a wider range
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of system parameters Jnm and λ compared to the full polaron transformation. It turns

out, however, that these conventional polaron transformation approaches lead to inadequate

results for the optical response in the intermediate coupling regime (see Sec. IV B), indicating

the importance of the remaining exciton-vibration interactions in this regime. A natural

way to overcome this is to develop approaches which lead to further minimization of these

coupling terms. Below, we will demonstrate that this can be accomplished by rewriting the

Hamiltonian [Eq. (1)] in the collective vibrational mode representation, because it allows

us to decouple in an exact way the totally symmetric vibrational mode from the electronic

excitations by means of a full polaron transformation. A variational polaron transformation

is then applied to the other collective modes in order to minimize the remaining coupling

between the electronic excitations and these modes.

As mentioned above, the key point in our approach is to exploit the symmetry of the

model. Thus, we introduce collective vibrational modes, defined by

a†q =
1√
N

∑
n

Φnqa
†
n, aq =

1√
N

∑
n

Φnqan, (2)

where q denotes the vibrational quantum number and N is the total number of molecules in

the aggregate. In what follows, we assume strictly real matrix elements Φnq, which can be ob-

tained as the symmetric and antisymmetric combinations of the usual Bloch waves. Explic-

itly, for N odd we have: Φnq=0 = 1, Φnq =
√

2 cos (2πqn/N) if q = − (N − 1) /2, ...,−1, and

Φnq =
√

2 sin (2πqn/N) when q = 1, ..., (N − 1) /2; forN even we find: Φnq=0 = 1, Φnq=N/2 =

(−1)n+1, Φnq =
√

2 cos (2πqn/N) if q = −N/2 + 1, ...,−1, and Φnq =
√

2 sin (2πqn/N) when

q = 1, ..., N/2− 1. In the collective vibrational mode representation H reads,

H =
(
E0 + λ2ω0

)∑
n

b†nbn +
∑′

n,m

Jnmb
†
nbm +

λω0√
N

(
a0 + a†0

)∑
n

b†nbn + ω0a
†
0a0

+
λω0√
N

∑
n,q 6=0

Φnq

(
aq + a†q

)
b†nbn + ω0

∑
q 6=0

a†qaq,

(3)

where we have explicitly split the vibrational part of H into two components: one part

describes the totally symmetric vibrational mode q = 0, while the other part contains all

the other modes. The reason for this is that the totally symmetric mode is unique in the

sense that the excited state displacements are identical for all molecules. Due to this feature,

the vibrations of this mode can be completely decoupled from the electronic excitations by

applying a full polaron transformation.
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B. Polaron transformations

In general, the transformed Hamiltonian is defined by H̃ = exp (G)H exp (−G), where

G is the generator of the transformation. The full polaron transformation for the symmetric

vibrational mode is governed by the generator,

GF =
λ√
N

(
a†0 − a0

)∑
n

b†nbn, (4)

which results, using Eq. (3), in the following form of H̃,

H̃ =
[
E0 + λ2ω0

(
1− 1

N

)]∑
n

b†nbn +
∑′

n,m

Jnmb
†
nbm

+
λω0√
N

∑
n,q 6=0

Φnq

(
aq + a†q

)
b†nbn + ω0

∑
q

a†qaq.
(5)

Above, we have chosen to express H̃ in the original (untransformed) creation and annihilation

operators for electronic excitations and vibrations, rather than in terms of their transformed

counterparts. Comparison of Eqs. (3) and (5) shows that after the transformation, the

totally symmetric mode is completely decoupled from the electronic excitations.

As explained above, the other collective vibrational modes can not, in general, be com-

pletely decoupled from the electronic excitations. Therefore, we proceed by applying a

variational polaron transformation to these modes. The generator of this transformation is

given by

GV =
ξ√
N

∑
n

∑
q 6=0

Φnq

(
a†q − aq

)
b†nbn, (6)

where 0 ≤ ξ ≤ λ denotes the variational polaron parameter, of which the optimal value

can be found from free energy minimization arguments, as discussed at the end of this

section. We note that the case ξ = λ corresponds to a full polaron transformation, while

ξ = 0 is associated with performing no transformation at all. After applying this second

transformation to Eq. (5), we find

H̃ = Ẽ0

∑
n

b†nbn +
∑′

n,m

J̃nmb
†
nbm + ω0

∑
q

a†qaq +
ω0√
N

(λ− ξ)
∑
n,q 6=0

Φnq

(
aq + a†q

)
b†nbn, (7)

where we have introduced the following renormalized molecular transition frequencies,

Ẽ0 = E0 + ω0

(
1− 1

N

)
(λ− ξ)2 , (8)

7



and renormalized interactions,

J̃nm = Jnm exp

[
ξ√
N

∑
q 6=0

(Φnq − Φmq)
(
a†q − aq

)]
. (9)

Comparison of Eqs. (3) and (7) shows that, after applying both a full polaron transformation

(associated with the totally symmetric vibrational mode) and a variational one (associated

with all other vibrational modes), the original linear exciton-vibration interaction term is

still present (except for the totally symmetric vibrational mode) albeit its strength is lowered.

In addition, a new coupling term between the electronic and vibrational excitations appears

in the intermolecular interactions, i.e., Eq. (9).

In order to find the excited states of H̃, we perform a perturbation expansion in both

exciton-vibration coupling terms using the standard projection superoperator formalism [81].

The lowest perturbation order is given by the expectation value of the exciton-vibration

coupling terms with respect to the thermal equilibrium situation of the vibrational modes q

(mean field value). While the expectation value of the linear exciton-vibration coupling term

is trivially equal to zero, the mean field value of the intermolecular interactions, denoted〈
J̃nm

〉
, is in general different from zero. Its value can be calculated explicitly, yielding [72]

〈
J̃nm

〉
= Jnm exp

[
−ξ2 coth

(
ω0

2kBT

)]
, (10)

where kB is the Boltzmann constant and T the temperature. In the low-temperature limit

kBT � ω0/2, the electronic intermolecular interactions reduce to
〈
J̃nm

〉
= Jnm exp (−ξ2),

which depends on the value of the variational polaron parameter: if ξ ≈ 0 (appropriate

when |λω0| � |Jnm|), we find
〈
J̃nm

〉
≈ Jnm, while in the opposite case ξ ≈ λ (which

holds if |λω0| � |Jnm|), we have
〈
J̃nm

〉
≈ Jnm exp (−λ2) which is smaller in magnitude

than |Jnm|. Thus, due to exciton-vibration coupling the interactions between the molecules

are effectively lowered, resulting in a narrower exciton band. A similar effect also occurs

due to temperature: increasing the temperature leads to a decrease of
〈
J̃nm

〉
, which in the

high-temperature limit kBT � ω0/2, approaches
〈
J̃nm

〉
≈ 0. This phenomenon is typically

referred to as temperature-induced narrowing of the exciton band, although strictly speaking

it originates from the presence of vibrations.

By both adding and subtracting
〈
J̃nm

〉
from the right-hand side of Eq. (7), we may, after
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rearranging the terms, cast it into the form H̃ = H̃0 + H̃I ; the free Hamiltonian H̃0 reads

H̃0 = Ẽ0

∑
n

b†nbn +
∑′

n,m

〈
J̃nm

〉
b†nbm + ω0

∑
k

a†qaq, (11)

while the interaction Hamiltonian H̃I has the form,

H̃I =
∑′

n,m

(
J̃nm −

〈
J̃nm

〉)
b†nbm +

ω0√
N

(λ− ξ)
∑
n,q 6=0

Φnq

(
aq + a†q

)
b†nbn. (12)

Equations 11 and 12 constitute the final result for the transformed Holstein Hamiltonian

within the APTA approach. Here H̃0 describes the average effect of the exciton-vibration

coupling on the excited state properties of the original Holstein Hamiltonian, while H̃I

contains the residual exciton-vibration interaction terms. The latter depends explicitly on

the value of ξ: for ξ ≈ 0, the intermolecular interaction term (first right-hand side term of

Eq. (12)) disappears, while for ξ ≈ λ, the linear exciton-vibration coupling term (second

right-hand side term of Eq. (12)) vanishes. These two extremes roughly coincide with,

respectively, the weak exciton-vibration coupling and weak intermolecular interactions limit

of H in Eq. (3).

To end this section, we note that up to now the variational polaron parameter ξ is still

undetermined. As mentioned, setting ξ = 0 amounts to performing no transformation, while

taking ξ = λ corresponds to applying a full polaron transformation. The main idea behind

the variational polaron transformation is that the value of ξ can be adjusted such that H̃I

remains small for a wide range of parameters λ, Jnm, and T , and consequently may be

neglected (or treated perturbatively). This value of ξ may be obtained from the Bogoliubov

upper bound on the free energy, which is given by [69, 70]

AB = −kBT ln

[
Tr

{
exp

(
−H̃0

kBT

)}]
, (13)

where Tr{...} denotes the trace over all electronic and vibrational degrees of freedom. The

optimized value of ξ is that for which the free energy AB is minimal, i.e., it can be found

from the solution of the self-consistency equation dAB/dξ = 0. In general, this equation can

not be solved analytically and one has to resort to numerical methods in order to find ξ.
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C. Linear absorption spectrum

The absorption spectrum A (E) of molecular aggregates can be obtained from Fermi’s

Golden Rule. Neglecting numerical prefactors, it has the following form

A (E) =
∑
i,f

Pi |〈f |M · e |i〉|2 δ (E − ωfi) . (14)

Here i and f label the initial (before absorption) and final (after absorption) states, respec-

tively, Pi denotes the probability that initially the system resides in state i, and ωfi ≡ ωf−ωi

is the energy difference between final and initial states. Furthermore, e gives the polariza-

tion of the incident light beam, while M is the total dipole operator of the aggregate, which

is taken as a sum of single-molecule dipole operators, µn(b†n + bn), where µn denotes the

transition dipole matrix element (assumed real) of molecule n. It is clear from Eq. (14) that

the calculation of A (E) requires knowledge of the initial and final states. These can not, in

principle, be obtained in a simple way from Eq. (1), because the exciton-vibration coupling

term mixes the vibrational and electronic parts of the eigenstates. Below we will show how

A (E) can be obtained in a straightforward manner from H̃.

In Sec. II B, we showed that the transformed Hamiltonian can be written into the form

H̃ = H̃0+H̃I and discussed that the variational polaron parameter ξ can be used to minimize

the transformed exciton-vibration interaction term H̃I . Henceforth, to find the eigenstates

of H̃, we perform a perturbation expansion in H̃I thereby neglecting any terms of higher

order than the lowest one. In this approximation, we have H̃ = H̃0 (by construction, the

mean field value
〈
H̃I

〉
= 0); therefore, the eigenstates of H̃ are identical to those of H̃0.

Because electronic excitations and vibrations are completely decoupled in H̃0 (Eq. 11), the

eigenstates follow directly as products of the individual electronic and vibrational excited

states of the aggregate. This allows us to evaluate them separately, as detailed below.

We first consider the electronic part of the eigenstates. They can be obtained by diago-

nalizing the electronic part of H̃0, i.e., the first two terms on the right-hand side of Eq. (11).

This yields exciton states of the general form

|k〉 =
∑
n

Ψnkb
†
n |g〉 , (15)

with corresponding energies denoted by Ek. Here k denotes the excitation quantum number

and |g〉 is the electronic ground state of the aggregate (i.e., the state where all molecules
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reside in their respective ground states). Explicitly, for an ordered (periodic) system, the

exciton state coefficients Ψnk follow from the usual Bloch waves.

Next, we address the vibrational part of H̃0, i.e., the last term on the right-hand side of

Eq. (11). Expressed in terms of the ladder operators, they are given by

|Nq〉 =

(
a†q
)Nq√
Nq!
|0q〉 , (16)

where Nq is the number of vibrational quanta of mode q and |0q〉 denotes the lowest (ground)

vibrational state of this mode, i.e., we have aq |0q〉 = 0. The energy of the eigenstate |Nq〉 is

given by ENq = Nqω0.

The absorption spectrum of the molecular aggregate can now be derived from Eq. (14).

When we assume that the aggregate starts in the collective electronic ground state, the

initial state in Eq. (14) is given by |i〉 = |g〉
∏

q |Nq〉. The final state is expressed likewise as

|f〉 = |k〉
∏

q |Mq〉, where the aggregate is assumed to be raised to an electronically excited

state |k〉 right after absorption. Because the initial and final states are obtained from the

transformed Hamiltonian H̃0, we need to transform A (E) as well. Replacing the total dipole

operator M by its transform M̃, we obtain the following general expression for A (E)

A (E) =µ2
∑

k,{Nq},{Mq}

P{Nq}

×

∣∣∣∣∣〈M0|e
λ√
N

(a†0−a0)|N0〉
∑
n

Ψnk

∏
q 6=0

〈Mq|e
ξ√
N

Φnq(a†q−aq)|Nq〉

∣∣∣∣∣
2

× δ
(
E −

(
Ek + E{Mq} − E{Nq}

))
.

(17)

Here {Nq} ({Mq}) denotes any possible configuration of vibrational quanta of the vibra-

tional modes for the initial (final) state, E{Nq} (E{Mq}) is the energy corresponding to these

configurations and P{Nq} gives the probability that a certain configuration {Nq} occurs ini-

tially. Furthermore, we took for simplicity the single-molecule transition dipoles equal in

magnitude, i.e. |µn| = µ, and oriented along e.

It follows from Eq. (17) that, in principle, transitions between all vibrational states in

initial and final states are allowed; the strengths of these transitions are determined by

vibrational overlap integrals UNM ≡ 〈M | exp
(
s
(
a† − a

))
|N〉, explicitly given by [81]

UNM = exp

(
−s2

2

) N∑
p=0

sM−N+p

(M −N + p)!

(−s)p

p!

√
N !M !

(N − p)!
. (18)
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Beside the vibrational overlap integrals, P{Nq} also has to be determined. When the vibra-

tional states are in thermal equilibrium, P{Nq} has the form,

P{Nq} =
exp

(
−E{Nq}/kT

)∑
{Nq} exp

(
−E{Nq}/kT

) , (19)

where the denominator is introduced to guarantee that
∑
{Nq} P{Nq} = 1.

III. ZERO-TEMPERATURE ABSORPTION SPECTRUM

A. General expressions

At T = 0, Eq. (17) is considerably simplified because initially (before absorption) only

the vibrational ground states are occupied [see Eq. (19)]. Specifically, the initial state is

given by |i〉 = |g〉
∏

q |Nq = 0〉. As a result, the only important vibrational overlap integrals

are U0M ≡
〈
M | exp

[
s
(
a† − a

)]
|0
〉
. These can be calculated using Eq. (18), yielding U0M =

exp (−s2/2) sM (M !)−1/2. This then leads to the following expression for A (E),

A (E) =µ2 exp

(
−λ

2

N

)
exp

(
−ξ

2

N
(N − 1)

) ∑
k,{Mq}

1∏
qMq!

(
λ2

N

)M0

×

∣∣∣∣∣∑
n

Ψnk

∏
q 6=0

(
ξΦnq√
N

)Mq

∣∣∣∣∣
2

δ

(
E −

(
Ek + ω0

∑
q

Mq

))
,

(20)

where we made use of the relation
∑

q 6=0 Φ2
nq = N − 1 (completeness).

Equation (20) may be simplified even further by realizing that the vibronic transitions

associated with each of the exciton states can be classified into manifolds according to the

number of vibrational excitation quanta involved, as these transitions have the same energy.

The energetically lowest manifold consists of the transitions to the vibrational ground state,

which is the state where all modes are in their respective vibrational ground states (Mq = 0

for all q). This manifold is typically referred to as the 0 − 0 vibronic band (or 0 − 0

vibronic line). The second lowest manifold contains transitions to N states that carry a

single vibrational quantum. This manifold is termed accordingly as the 0− 1 vibronic band

and has energy equal to E = Ek +ω0 (where Ek is the energy of the kth exciton state). The

next manifold, with energy equal to E = Ek + 2ω0, consists of all possible states that have

two vibrational quanta, etc. The transition strength of the manifold with M vibrational
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excited quanta together with the simultaneous excitation of the exciton state k, denoted

Ik0−M , is given by

Ik0−M =µ2 exp

(
−λ

2

N

)
exp

(
−ξ

2

N
(N − 1)

)
× 1

M !

[(
λ2 + ξ2 (N − 1)

N

)M

+

(∑′

n,m

ΨnkΨmk

)(
λ2 − ξ2

N

)M
]
,

(21)

where the prime in the summation excludes the case n = m; the energies corresponding to

these transitions are given by E = Ek + ω0M . In deriving Eq. (21), we used the relation∑
q 6=0 ΦnqΦmq = −1. We note that the spectrum in terms of Ik0−M is given by

A (E) =
∑
k,M

Ik0−Mδ (E − (Ek +Mω0)) . (22)

B. Molecular dimer

To gain more physical insight into Eqs. (20), (21), and (22) we will discuss in this section

the simplest example of an aggregate, namely the dimer, and show how these expressions

give rise to the well-known zero-temperature absorption spectra in the standard perturba-

tion limits of the Holstein Hamiltonian. For explicitness, our dimer model consists of two

molecules, labeled 1 and 2, with equal transition energies E0 (i.e., no electronic disorder)

and coupled via a resonant energy transfer interaction, denoted by J (we take J < 0).

The transition dipoles are oriented parallel to each other with equal magnitude µ and each

electronic excitation is coupled to a vibrational mode of frequency ω0 with strength λ.

From the procedure outlined in Sec. II B, it follows that H̃0 for the dimer is given by

H̃0 =
(
E0 + ω0

2
(λ− ξ)2) [|1〉〈1|+ |2〉〈2|]+ J exp

(
−ξ2

) [
|1〉〈2|+ |2〉〈1|

]
+ ω0

(
a†+a+ + a†−a−

)
,

(23)

where we introduced electronic excitation state vectors |n〉 = b†n |g〉 (n = 1, 2) and included

the explicit expressions for the renormalized molecular transition energy and renormalised

interaction using Eqs. (8) and (10), respectively. The creation and annihilation operators

for the collective symmetric (+) and antisymmetric (−) vibrational modes are expressed in

terms of the original modes (labeled 1 and 2) as a†± = (a†1± a
†
2)/
√

2 and a± = (a1± a2)/
√

2,

respectively. The electronic part of H̃0 is a 2×2 matrix that can be diagonalized analytically,
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yielding the symmetric and antisymmetric exciton states |±〉 and corresponding energies

|±〉 =
1√
2

[
|1〉 ± |2〉

]
, E± =

(
E0 +

ω0

2
(λ− ξ)2

)
± J exp

(
−ξ2

)
. (24)

The absorption spectrum of the molecular dimer is, using Eqs. (20) and (24), expressed

as,

A (E) =
µ2

2
exp

(
−λ

2 + ξ2

2

) ∑
M+,M−

1

M+!M−!

(
λ2

2

)M+
[(

ξ√
2

)M−

±
(
−ξ√

2

)M−
]2

× δ (E − (E± + ω0M+ + ω0M−)) ,

(25)

where the ± sign refers to the symmetric and antisymmetric exciton state |±〉, respectively.

Accordingly, using Eq. (21), the transition strengths of the M th vibrational manifold asso-

ciated with excitation of one of the exciton states |±〉, denoted I±0−M , are given by

I±0−M = µ2 exp

(
−λ

2 + ξ2

2

)
1

M !

[(
λ2 + ξ2

2

)M

±
(
λ2 − ξ2

2

)M
]
. (26)

Here M = M+ + M− denotes the total number of vibrational quanta. It is evident from

Eq. (26) that the total oscillator strength O, i.e., the sum of all the transition strengths, is

a conserved quantity given by O =
∑

M(I+
0−M + I−0−m) = 2µ2.

It follows from Eqs. (25) and (26) that the spectra strongly depend on the variational

polaron parameter ξ. As explained in Sec. II B, ξ is determined by minimizing the free

energy [see Eq. (13)]. For the dimer at T = 0, this leads to the following self-consistency

equation [74],

ξ = λ

[
1 +

2 |J |
ω0

exp
(
−ξ2

)]−1

, (27)

from which it is evident that 0 ≤ ξ ≤ λ. In principle, the values of ξ can only be obtained

by numerically solving Eq. (27). However, in the standard perturbation limits of weak and

strong exciton-vibration coupling they can be approximated, respectively, by ξ ≈ 0 and

ξ ≈ λ. Below, we examine these extreme limits and show that Eq. (25) correctly reproduces

the optical response of the dimer in these situations.

i) |J |/ω0 � |λ|. In this limit, the exciton-vibration coupling dominates the intermolecular

interaction such that the optical response is expected to be determined by the single-molecule

state properties rather than by delocalized exciton states. This is consistent with Eq. (27),

which in this limits yields ξ ≈ λ, associated with a full polaron transformation. Setting
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ξ = λ in Eq. (25), we obtain the following approximate solution for A (E),

A (E) ≈ 2µ2 exp
(
−λ2

) ∞∑
M=0

λ2M

M !
δ (E − E0 −Mω0) . (28)

where we used E± ≈ E0 (|J |/ω0 � 1) and denoted the total number of vibrational quanta by

M . It follows directly from Eq. (28) that A (E) is simply given by the sum of the two single-

molecule spectra. It consists of several active transitions with energy separation between

adjacent peaks given by ω0, while the transition strengths depend both on λ and M . Here

we can distinguish between the two limits: weak (|λ| � 1) and strong (|λ| � 1) exciton-

vibration coupling. In the former limit, A (E) is dominated by the 0−0 transition (M = 0),

located at E0 and strength roughly equal to µ2. In the opposite limit, |λ| � 1, the spectrum

consists of multiple transition lines with strengths that obey the Poisson distribution. The

transition with M ≈ λ2 has the highest intensity and is positioned at E ≈ E0 + λ2ω0.

ii) 0 ≈ |λ| � |J |/ω0. In this case, the intermolecular interaction dominates the vibronic

coupling strength, resulting in a collective optical response of the dimer, and we have ξ ≈ 0

from Eq. (27), consistent with performing no transformation as expected for this limit.

Keeping only the lowest order term in λ in Eq. (25), A (E) reduces to

A (E) ≈ 2µ2δ (E − E+) , (29)

where E+ ≈ E0 + J . Equation (29) shows the characteristic optical response of a molecular

dimer in the absence of exciton-vibration coupling: a single absorption peak that carries

twice the single-molecular oscillator strength and is shifted towards the red (J < 0) or blue

(J > 0) side of the energy spectrum compared to the single-molecule transition energy.

iii) 1 � |λ| � |J |/ω0. Similar to the previous limit, the optical response is expected to

be dominated by the formation of excitons and we may set ξ ≈ 0 again. Contrary to the

previous case, however, is that higher-order terms in λ can not be, a priori, discarded. In

this case, A (E) is approximately given by

A (E) ≈ 2µ2 exp

(
−λ

2

2

)∑
M+

1

M+!

(
λ2

2

)M+

δ (E − E+ −M+ω0) , (30)

with E+ ≈ E0 + J . Thus, we see from Eq. (30) that the symmetric exciton state carries

all the oscillator strength while the antisymmetric exciton state is essentially an optically

dark state, similar to Eq. (29). However, due to the strong exciton-vibration coupling
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the oscillator strength is redistributed over various vibrational transitions, giving rise to a

vibrational progression structure, similar to that for single molecules [Eq. (28)]. We note

that in general the 0− 0 transition carries a little more than twice the single-molecule 0− 0

oscillator strength, while the distribution of oscillator strengths of the higher vibrational

replicas also differs slightly from the sum of single-molecule transitions. These effects are

related to the collective nature of the eigenstates of the dimer, resulting in a reduced effective

exciton-vibration coupling strength λ∗ = λ/
√

2.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Comparison with the two-particle approximation

So far we have demonstrated that the APTA successfully reproduces the optical response

of the dimer in the perturbation limits of the Holstein Hamiltonian. The important ques-

tion remains whether this method is also applicable in the intermediate regime, which is

inaccessible by means of the usual perturbation approaches, and how it performs for larger

aggregates. To address this issue, we compare the absorption spectra obtained using the

APTA with those resulting from the two-particle approximation (TPA). We stress that in

case of a molecular dimer, this latter method gives numerically exact results which makes

it an ideal method to test the validity of the APTA. Within the TPA, the excited states of

the Hamiltonian in Eq. (1) are expressed in terms of a basis set of n-particle states. Here,

an n-particle state consists of a vibronically (i.e., both vibrationally and electronically) ex-

cited molecule and (n− 1) molecules that are excited vibrationally (but not electronically).

Numerical diagonalization of Eq. (1) expressed in the two-particle basis state representation

yields the optical spectra in a straightforward manner [63, 65, 66].

Figure 1 presents the calculated zero-temperature absorption spectra A(E) of the molec-

ular dimer for various values of J/ω0 using the APTA (solid lines), i.e., based on Eq. (25),

together with the numerical results obtained from the TPA (dashed lines). In all calcula-

tions we take λ = 1. Furthermore, here and in all other numerical results, we set ω0 = 1. To

stress, however, the role of ω0, we explicitly indicate it in parameter ratios and scales. It is

clear from Fig. 1 that the spectra from both methods are almost identical to each other for

a large range of values J/ω0. Thus, the APTA captures not only the standard perturbation
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regimes, but in fact also can successfully reproduce the optical response of the dimer in the

intermediate regime. This will be discussed in more detail below.

Figure 1(a) shows A(E) for |J |/ω0 = 0; here, as expected, A(E) simply consists of the sum

of the single-molecule spectra, clearly showing the characteristic vibrational progression of

the 0−M transitions for single molecules [i.e., Eq. (28)]. Note that the transition strengths

of the 0 − 0 and 0 − 1 transition are identical for λ = 1. Increasing the intermolecular

interaction to J/ω0 = −0.25λ, we have A(E) as in Fig. 1(b). We observe that the 0 − 0

transition strength increases slightly, while the replicas tend to lose some of their strengths.

Besides these small discrepancies, A(E) still resembles the single-molecule spectrum to a

large extent, as expected for the weak intermolecular interaction regime.

In Figs. 1(c-e), we display A(E) for the intermediate coupling regime J/ω0 ≈ −λ. The

spectra clearly start to show the optical signatures of exciton formation; that is, the absorp-

tion peaks are shifted to lower energies compared to the single-molecule case and a clear

increase in the intensity of the 0− 0 transition (lowest energy peak) is observed. We point

out that in this intermediate regime the spectra resulting from the APTA and those ob-

tained from the TPA show somewhat larger (though still quite small) discrepancies than in

the weak and strong coupling limits [Figs. 1(b) and 1(f)], mostly featured in the high-energy

region of the spectra E ≥ 2ω0 [Figs 1(d) and 1(e)]. This part of the spectrum is mostly

dominated by vibronic transitions associated with the antisymmetric exciton state, while

the low energy part is mainly determined by vibronic transitions belonging to the symmet-

ric exciton state. We stress, however, that the overall qualitative agreement between the

spectra is still very good in the intermediate coupling regime.

Finally, in Fig. 1(f) we present A(E) for J/ω0 = −2λ, which is close to the weak exciton-

vibration coupling regime. In this case, the spectrum is almost entirely determined, except

for the weak absorption band seen for energies E ≈ 3ω0, by the vibronic transitions connected

to the symmetric exciton state, in accordance with Eq. (30). These transitions are in perfect

agreement with the TPA results.

We now turn our attention to the absorption spectra for larger aggregates. To this end, we

consider linear aggregates with nearest-neighbor electronic interactions J only and assume

periodic boundary conditions. We will restrict ourselves to J < 0, as is appropriate for

J-aggregates. All molecular transition dipoles have magnitude µ and identical orientation.

In Fig. 2, we present the calculated zero-temperature spectra for N = 8 (top row) and
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N = 32 (bottom row) molecules based on the APTA. These results (shown as blue solid

lines) are compared with both the one (black dash-dot lines) and two (red dashed lines)

particle approximation (OPA and TPA, respectively). We point out that for systems with

more than two molecules, the TPA method no longer provides exact results. However,

comparing the results from the OPA and the TPA does give some insight into the validity of

the TPA method. In all calculations we took λ = 1. Similar to the case of the dimer, again,

all the results clearly show the evolution of the spectra from the single-molecule spectrum

at small values of |J |/ω0 [Figs. 2(a) and 2(d)] towards the spectrum with the characteristic

exciton features [Figs. 2(c) and 2(f)] for large values of |J |/ω0.

We first consider the weak intermolecular interaction regime (J/ω0 = −0.25λ), depicted

in Figs. 2(a) and 2(d). Here, the spectra obtained from the OPA and the TPA are almost

identical, indicating that the TPA method forms a good frame of reference in this regime.

Comparison of the spectra from the TPA and the APTA reveals that the number of transi-

tions as well as their energy positions coincide reasonably well. However, the higher-energy

absorption bands, arising from 0− 1, 0− 2 transitions etc., have a somewhat broader line-

shape in the APTA-based spectra compared to the TPA results. The reason for this is that

these bands consist of vibronic transitions associated with every exciton state. Because the

exciton states have slightly different energies, this gives rise to an overall broadening of these

bands. Despite this, the results obtained using the APTA are still in reasonable agreement

with the TPA spectra.

Next, we increase the intermolecular interactions to J/ω = −λ. The resulting spectra for

N = 8 and N = 32 molecules in this intermediate coupling regime are displayed in Fig. 2(b)

and 2(e), respectively. Similar to the dimer, we start to see exciton features where the

intensity of the 0−0 transition is increased and shifted to lower energy compared to the single-

molecule spectrum. The calculated oscillator strength and spectral position of this transition

roughly coincide for all three methods. On the other hand, the higher-energy structure in

the spectra, associated with vibronic replicas, shows several clear differences which are most

pronounced in the N = 32 case. In particular, in the APTA spectra the remaining oscillator

strength is distributed over the entire exciton band, resulting in a long absorption tail [see

Fig. 2(e)]. This stems from the fact that all non-symmetric vibrational modes are treated

with the same variational parameter, such that all non-symmetric electronic eigenstates have

an identical vibronic structure (M > 0). In contrast, the TPA method does not give rise to a
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broad vibrational structure but rather yields distinct 0−1 and 0−2 peaks in the spectra. A

possible solution to overcome this discrepancy is to describe each non-symmetric vibrational

mode by its own variational parameter. In this respect, we point out that the OPA- and

TPA-based spectra also deviate significantly from each other (for higher vibronic replicas),

indicating that the validity of the TPA results is not clear in this region.

In Figs. 2(c) and 2(f) we present the spectra in the strong intermolecular interaction

regime (J/ω0 = −2λ). The spectra from the APTA and the TPA are found to be in good

agreement with each other. The spectra in this regime consist of the vibronic transitions

(mainly 0−0 and 0−1) associated with the totally symmetric, lowest-energy, exciton state.

In particular, we found that the ratio between the two lowest transitions is roughly equal to

N/λ2, in agreement with a weak (perturbative) exciton-vibration coupling analysis. Note

also the similarity between the OPA and the TPA, which indicates that the TPA method

provides trustworthy results in this region.

B. Comparison with related polaron transformations

One of the key elements of the APTA, as already explained in Sec. II, is to represent

the molecular vibrational modes in terms of a set of collective modes [Eq. (2)]. This allows

one to completely decouple the symmetric vibrational mode from the electronic excitations

using a full polaron transformation, while the other modes are partially decoupled by means

of a variational polaron transformation. In this section, we compare our results of the

dimer with those obtained using a different approach in which the (variational) polaron

transformation is applied directly to Eq. (1), i.e., without introducing collective modes. We

distinguish between two different methods: (i) a full polaron transformation applied to both

local vibrational modes (FPT method), and (ii) a variational polaron transformation for

both local modes (VPT method).

Figure 3 presents the spectra calculated based on the various methods (dash-dotted lines:

FPT, dashed lines: VPT, and solid lines: APTA). The results clearly reveal that in the single-

molecule limit J/ω0 � λ2 = 1 the three methods give very similar spectra [Fig. 3(a)]. The

reason is that in this limit we have ξ ≈ λ, which means that the transformations performed

in the VPT and APTA method are very close to full polaron transformations, as performed

in the FPT method. With increasing values of J/ω0 (keeping λ = 1), we see from Figs. 3(b)
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and 3(c) that the resulting spectra differ significantly for the different methods. In particular,

for J/ω0 � λ = 1 [Fig. 3(c)], the FPT method yields an absorption structure associated

with excitation of the symmetric exciton state which still looks quite similar in shape to

that of the APTA method, although the energy positions of the transitions differ. The

intensities of the higher vibrational replicas associated with excitation of the antisymmetric

exciton state, however, are highly overestimated in the FPT method compared to the APTA.

Specifically, the intensities of the higher vibrational replicas connected with the symmetric

and antisymmetric exciton state are exactly the same within the FPT method. On the other

hand, in the VPT method the absorption spectrum in this limit [Fig. 3(c)] consists of only

the 0-0 vibronic transition associated with the symmetric exciton state, i.e., all vibrational

structure is lost. The reason for this is that in this limit the variational polaron parameter

is roughly equal to ξ ≈ 0.

The above arguments suggest that in the limit of strong intermolecular interactions

J/ω0 � λ and weak exciton-vibration coupling λ � 1 the three methods should again

give very similar results, as the effects of the higher vibrational states may to good approx-

imation be ignored in this situation. This is illustrated in Fig. 3(d), where the absorption

spectra are plotted for λ2 = 0.1. Despite a few small discrepancies, all three methods indeed

give a very similar absorption spectrum, consisting mainly of the single 0 − 0 transition of

the symmetric exciton state.

Thus, we found that in the limits J/ω0 � λ and 1� λ� J/ω0, the optical response of

the dimer is very similar for all polaron transformation methods, while outside these regions

only the APTA yields correct absorption spectra of the dimer, as was already established

through the comparison with the TPA (see Fig. 1). These results clearly demonstrate that

the collective mode representation of the vibrations together with the variational nature

of the polaron parameter for the antisymmetric vibrational mode are essential to correctly

describe the optical response in the intermediate regime (i.e., in between the perturbation

limits).

C. Thermal effects

Up till now we discussed the absorption spectra at zero temperature. In this section we

address the effects of temperature on the optical spectra, again focusing on the molecular
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dimer.

For temperatures T 6= 0, in principle any vibrational state can be occupied initially; the

probability of this follows from the thermal equilibrium distribution function in Eq. (19). As

a consequence, for non-zero temperatures more transitions are optically accessible, spanned

over a wider range of energies compared to the T = 0 limit. If the linewidths of the transitions

are large compared to their typical energy separation, this results in temperature-induced

broadening of the lineshape. Moreover, as explained in Sec. II B, temperature also gives rise

to reduction of the electronic intermolecular interactions, as can be seen from Eq. (10). Thus,

we expect that with increasing temperature the spectral features associated with the coherent

nature of excitons (for appropriate values of J/ω0 and λ) diminish and, correspondingly, the

optical response evolves towards the single-molecule spectra.

It is noteworthy that the value of the variational polaron parameter ξ itself also depends

on temperature. For the dimer, the value of ξ follows, using Eq. (13), from the following

self-consistency equation [74],

ξ = λ

[
1 +

2|〈J̃〉|
ω0

coth

(
ω0

2kBT

)
tanh

(
|〈J̃〉|
kBT

)]−1

, (31)

where 〈J̃〉 is the renormalized intermolecular interaction defined in Eq. (10). For T = 0, the

above relation reduces to Eq. (27), while in the high-temperature limit (T → ∞) we find

ξ ≈ λ. Similar to Eq. (27), the values of ξ should, in general, be found by numerically solving

the above self-consistency equation. Here we point out that with increasing temperatures,

the optimal values of ξ obtained from Eq. (31) not necessarily increase towards λ in a regular

fashion, as physically expected, but rather show a sudden jump towards ξ = λ (see Ref. [69]

for a detailed discussion). This also has obvious consequences for the spectral changes of

the dimer with increasing temperature, as we will see below.

In Fig. 4 we show the calculated spectra of the homogeneous dimer for various values of

the temperature, taking system parameters J/ω0 = −λ (λ = 1). The spectra clearly reveal

the destruction of the optical features associated with coherent electronic excitations with

increasing temperature, as already anticipated above. For low temperatures, as plotted in

Fig. 4(a) (kBT/ω0 = 0.5), the absorption spectrum is not significantly changed compared

to the zero-temperature case [see Fig. 1(d)]. The most pronounced effect of temperature

here is the formation of an additional small low-energy transition, which can be associated

with 1 − 0 vibronic transitions of the symmetric exciton state. Increasing the temperature
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to kBT/ω0 = 1, we see from Fig. 4(b) that the intensity of this transition is increased while

at the same time a new low energy transition appears (associated with 2 − 0 transitions).

While these thermal effects lead to minor redistributions of the oscillator strengths over the

various transitions, the excitonic character is still preserved, as can clearly be seen through

comparison with the single-molecule spectra displayed in Figs. 4(a) and 4(b).

A further increase in the temperature to kBT/ω0 = 1.5 gives rise to a drastic change in

the optical response, as seen in Fig. 4(c). In fact, at this temperature the spectrum of the

dimer is identical to the sum of the single-molecule spectra; the physical explanation for this

is the destruction of intermolecular coherence when kBT exceeds ω0. Mathematically, the

reason for the drastic change is that the value of the variational polaron parameter makes a

sudden jump towards the value ξ = λ, as touched upon already below Eq. (31), resulting in

single-molecule features. For the system parameters used here (J/ω0 = −λ), we found that

this discontinuity (sudden jump) occurs around kBT/ω0 ≈ 1.2. Finally, if we increase the

temperature even more to kBT/ω0 = 2 we observe that the spectrum of the dimer remains

similar to the sum of the single-molecule spectra, as expected. The only difference between

the spectra in Figs. 4(c) and 4(d) is that for higher temperatures generally more vibrational

transitions are optically active, which occur both at the low- and high-energy sides of the

spectrum.

V. SUMMARY AND CONCLUDING REMARKS

We have investigated the linear optical response of molecular J-aggregates by applying

a symmetry adapted polaron transformation approach (APTA) to the underlying Holstein

Hamiltonian. This method is based on the symmetry of the model and consists of two

polaron transformations: (i) a full transformation to completely decouple the symmetric

collective vibrational mode from the electronic excitations, and (ii) a variational (partial)

transformation to minimize the coupling between the electronic excitations and the remain-

ing (non-symmetric) vibrational modes. As a result, the expressions for the absorption

spectrum are expected to be valid for a wide range of exciton-vibration couplings, inter-

molecular interactions, and temperatures, beyond the standard perturbation limits of weak

(strong) exciton-vibration (excitation transfer) interactions. To establish this, we have com-

pared our results with those obtained from direct numerical diagonalization of the model
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Hamiltonian in the two-particle basis set approximation (TPA). Although we have restricted

our analysis to linear molecular aggregates, we note that the APTA approach can equally

well be applied to aggregates of other dimension and geometry, as the totally symmetric vi-

bration can always be extracted with a proper basis transformation. Similarly, in principle

the method developed here is not limited to J-aggregates, but may equally well be used for

H-aggregates, although in that situation the inclusion of intra-band relaxation [39, 41] will

be essential to describe the optical linewidths.

It is useful to comment here on possible effects of electronic disorder, i.e. variation in the

electronic molecular transition energies E and the intermolecular interactions Jnm. Math-

ematically, the symmetry-adapted polaron transformation only relies on negligible disorder

in the vibrational frequency ω0 and coupling strength λ2. The totally symmetric vibrational

mode may just as well be decoupled in the presence of electronic disorder, although it is

not a priori clear how good the results then would be. Electronic disorder would lead to

localization of the vibronic states on part of the aggregate, which intuitively would coun-

teract the quality of the symmetry adapted polaron transformation approach. We have not

performed an in-depth study of the effects of disorder for large aggregates, but calculations

for dimers with differences in the electronic excitation energies on both molecules indicate

excellent performance of the transformation for small and large values of the electronic dis-

order, while for intermediate values (disorder approximately equal to J) the performance

still is good. It turns out that with increasing disorder the minimization of the free energy

leads to an increased value of ξ, which in turn leads to a stronger reduction of the effective

intermolecular interaction, thereby promoting localization.

At zero temperature, we have shown that our approach captures both the perturbation

limits of weak exciton-vibration coupling, giving rise to a collective (exciton) optical re-

sponse, and weak intermolecular interaction, resulting in absorption spectra with mostly

single-molecule features. In between these limits, we found that our results showed reason-

ably good agreement with those obtained from the TPA, which strongly suggests that the

APTA can also accurately describe the spectral combination of single-molecule and exciton

properties associated with this intermediate regime, which in general is not accessible by

means of standard perturbation techniques.

In particular, for the molecular dimer the zero-temperature spectra obtained from both

methods coincided almost perfectly with each other for the entire range of model parameters.
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With increasing number of molecules in the aggregate, the results obtained from the APTA

and the TPA method started to reveal some spectral discrepancies for the intermediate

regime, which were mostly manifested in the higher-energy vibronic absorption bands. The

intensity and energy position of the optically relevant vibrationless transition, on the other

hand, still showed good agreement between both methods. These findings reflect that using

a single polaron transformation for all the non-symmetric vibrational modes is likely an

oversimplification for aggregates consisting of many molecules.

We have also compared the zero-temperature spectra of the dimer with those obtained

from related polaron techniques, where either a full or variational transformation is applied to

both vibrational modes in the Hamiltonian. While all three approaches gave similar results

for the weak exciton-vibration coupling and weak intermolecular interaction limits, only the

augmented polaron scheme could successfully explain the optical response of the dimer in the

intermediate regime. These results illustrate the key importance of introducing a collective

mode representation of the molecular vibrations together with a polaron transformation of

variational nature to minimize the remaining vibronic interactions.

With increasing temperature, the absorption spectra evolved from having collective op-

tical properties, owing to the coherent nature of the exciton states, to the single-molecule

features, associated with spatially incoherent electronic excitations (i.e., single-molecule exci-

tations). These spectral changes originate from reduced effective intermolecular interaction

strengths at higher temperatures. We note that within our APTA method, the spectral

changes do not occur in a smooth, regular fashion with increasing temperature, as would

physically be expected. Rather, the spectra reveal a sudden drastic change of their optical

features, resulting from a discontinuity in the variational parameter. It would be worth-

while, therefore, to explore alternative ways to optimize this parameter which allows one to

circumvent such discontinuities.

To end, we point out that all the results shown here were calculated on a standard,

commercially available computer and took at most a calculation time in the order of minutes.

This clearly demonstrates the low computational costs and implementation simplicity of the

presented method. In that respect, our approach can also be extended to incorporate more

complex models of the environment of the aggregate, including for example spectral densities

(large number of independent vibrational modes), possible environmental correlations and

non-equilibrium situations. Finally, the perturbation nature of our method allows for the
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evaluation of (semi-)analytical expressions for the spectra, which often can provide deeper

insight into the physics than numerical methods.
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FIG. 1. Calculated zero-temperature absorption spectra for a homogeneous molecular dimer from

the augmented polaron transformation approach (APTA, solid lines) and within the two-particle

approximation (TPA, dashed lines). In all calculations we set E0 = 0, µ = 1, ω0 = 1 and take

λ = 1. Values for the variational polaron parameter are: a) ξ = 1, b) ξ = 0.788, c) ξ = 0.449,

d) ξ = 0.363, e) ξ = 0.305, f) ξ = 0.207. The transitions have been broadened for clarity by

Gaussian functions with standard deviation given by Γ = 0.28ω0. The ratio of the magnitude of

the intermolecular interaction and the vibrational frequency, |J |/ω0, increases from left to right

and from top to bottom.
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FIG. 2. Calculated zero-temperature absorption spectra for linear aggregates (using periodic

boundary conditions) with N = 8 (top row) and N = 32 (bottom row) molecules and param-

eters similar to those in Fig. 1. Each panel shows the results based on the augmented polaron

transformation approach (APTA, blue solid line), one-particle approximation (OPA, black dash-

dotted line) and the two-particle approximation (TPA, red dashed line). Values for the variational

polaron parameter are: a) ξ = 0.756, b) ξ = 0.328, c) ξ = 0.185, d) ξ = 0.785, e) ξ = 0.355, f)

ξ = 0.201.The transitions have been broadened for clarity by Gaussian functions with standard

deviation given by Γ = 0.14ω0. The ratio of the magnitude of the intermolecular interaction and

the vibrational frequency, |J |/ω0, increases from left to right.
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FIG. 3. Comparison of zero-temperature dimer absorption spectra obtained from the full po-

laron transformation method (FPT, dash-dotted lines), variational polaron transformation method

(VPT, dashed lines), and augmented polaron transformation (APTA, solid lines). In all calcula-

tions we set E0 = 0, µ = 1, and ω0 = 1. Values for the variational polaron parameter are: a)

ξ = 0.788, b) ξ = 0.363, c) ξ = 0.092, d) ξ = 0.092.The transitions have been broadened for clarity

by Gaussian functions with standard deviation given by Γ = 0.28ω0.
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FIG. 4. Calculated temperature-dependent absorption spectra for the molecular dimer (solid lines)

for system parameters J/ω0 = −λ. For reference, the sum of the two temperature-dependent

single-molecule spectra (dashed lines) are plotted in each panel. In all calculations we set E0 = 0,

µ = 1, ω0 = 1, and λ = 1. Values for the variational polaron parameter are: a) ξ = 0.315, b)

ξ = 0.288, c) ξ = 0.991, d) ξ = 0.999. The transitions have been broadened for clarity by Gaussian

functions with standard deviation given by Γ = 0.28ω0. The temperature increases from left to

right and from top to bottom.
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