
Machine Learning with Sensitivity Analysis to Determine
Key Factors Contributing to Energy Consumption in

Cloud Data Centers

Yong Wee Foo1,2, Cindy Goh1, Yun Li1
1School of Engineering, University of Glasgow, Glasgow, U.K.

2School of Engineering, Nanyang Polytechnic, Singapore
2Foo_Yong_Wee@nyp.edu.sg

Abstract—Machine learning (ML) approach to modeling and
predicting real-world dynamic system behaviours has received
widespread research interest. While ML capability in
approximating any nonlinear or complex system is promising, it is
often a black-box approach, which lacks the physical meanings of
the actual system structure and its parameters, as well as their
impacts on the system. This paper establishes a model to provide
explanation on how system parameters affect its output(s), as such
knowledge would lead to potential useful, interesting and novel
information. The paper builds on our previous work in ML, and
also combines an evolutionary artificial neural networks with
sensitivity analysis to extract and validate key factors affecting the
cloud data center energy performance. This provides an
opportunity for software analysts to design and develop energy-
aware applications and for Hadoop administrator to optimize the
Hadoop infrastructure by having Big Data partitioned in bigger
chunks and shortening the time to complete MapReduce jobs.

Keywords—machine learning, artificial neural networks,
sensitivity analysis, cloud computing, energy efficiency, genetic
algorithm

I. INTRODUCTION
The accelerated growth in cloud computing is expected to

drive energy consumption of cloud data centers to new highs.
An effective engineering ratio that measures the data center
energy efficiency is the Power Usage Effectiveness (PUE). This
term records baseline data and traces energy efficiency
movements. It is expressed as a ratio as shown in Eq. 1, with the
overall energy efficiency improving as the value decreases
towards 1.

 𝑃𝑃𝑃𝑃𝑃𝑃 = ∑�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚ℎ+𝑃𝑃𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒+𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚+𝑃𝑃𝑐𝑐𝑒𝑒ℎ𝑚𝑚𝑒𝑒𝑒𝑒�
∑ 𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚

 (1)

where, the numerator denotes the sum of all power consume by
the cloud data center including the mechanical facility (chillers
and computer room air-con or CRAC), the electrical facility
(switchgear, UPS, battery backup), the ICT computing
infrastructure (servers, storage, networks and
telecommunications equipment) plus any other devices
(lightings, printers, personal computers, VoIP phones, fax
machines and etc.) expend to support the cloud data center
operations, and the denominator denotes the sum of all power
consume by the ICT computing infrastructure only that produces
useful IT work.

Based on Uptime Institute’s 2014 Data Center Industry
Survey, the average data centers’ PUE has only improved
slightly from 1.89 in 2011 to 1.7 in 2014 [1]. This is a gain of
11.2% compared to a gain 32.3% from PUE of 2.50 to 1.89 from
2007 to 2011. The survey also reported that 77% of the
participating industry cited that the management has set a target
PUE, with more than half expecting to lower PUE to 1.5 or
better. This scenario presents a tremendous opportunity for
researchers, engineers and technologists to further improve the
cloud data center energy efficiency.

Recently, applying data-driven ML techniques to lower
cloud data center energy consumption have been a hot research
topic. Gao [2], proposed improving the cloud data center Power
Usage Effectiveness (PUE) using ML technique based on
artificial neural networks (NN). The feed-forward NN takes in
19 inputs variables, contains 5 hidden layers with 50 nodes per
layer and outputs 1 variable. The NN model has achieved a high
predictive accuracy with a mean absolute error of 0.004 and
standard deviation of 0.005 on the test dataset. The model was
validated with a ‘live’ experiment conducte d by simulating an
actual increase in process water supply temperature to the server
floor by 3oF (or ~1.7oC) resulting in an expected decrease of
~0.005 PUE as predicted by the model.

Chen [3] suggested a spatially-aware Virtual Machine (VM)
workload placement method, called SpAWM to optimize the
consumption of power and cooling in cloud data center.
SpAWM adopts the ML approach using neural network and
reinforcement learning (RL). Developed from Markov Decision
Process (MDP), the central idea in RL is to learn the optimal
action, 𝑎𝑎𝑡𝑡 via a trial and error process, after taking into account
every state, 𝑠𝑠𝑡𝑡 visited by the system. For every state-action pair,
the RL keeps an associated Q value. If the selected action in a
state is positive, the feedback increases the Q value. Else, if the
feedback is negative, Q value is decreased. In the RL, the new Q
value is updated via the Eq. 2,

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝛼𝛼{𝑟𝑟𝑡𝑡 + 𝜆𝜆[𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) − 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)]} (2)

where, 𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) denotes the Q value of the next state t+1,
𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) denotes the Q value of the current state t, 𝛼𝛼 is the
learning rate, 𝜆𝜆 is the discount factor and rt is the immediate
reward received at state t. The number of Q values can grow
exponentially if the state-action pair is large, hence NN
modeling is utilized for the cloud data center environment to
capture the relationship between resource utilization (state
space), workload assignments (actions) and thermal distribution

(reward function). In the paper, the NN RL is designed to
optimize the objective function reward R, which is expressed in
Eq. 3,

 𝑅𝑅 = 𝑇𝑇𝑡𝑡ℎ𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖� , 𝑖𝑖 ∈ [1,𝑛𝑛] (3)

where, 𝑇𝑇𝑡𝑡ℎ𝑖𝑖𝑖𝑖 is the safe threshold for server inlet temperature and
max {𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖} is the maximum observed server inlet temperature for
the ith server, their difference being resulted in R or the
adjustable temperature for the CRAC. Therefore, the higher the
R, the higher the savings for cooling energy. During the
experiment, the environment is constantly monitored while VM
workloads are being distributed in an energy-efficient manner
by SpAWM to maintain a high R. The ML approach employs a
backpropagation feed-forward NN with 6 input variables, 1
hidden layer of 20 nodes, and 6 outputs. The inputs variables are
the server resource utilization states and the outputs are inlet
temperature, to be predicted. The experiment is based on the data
collected from 6 blade server enclosures from each rack up to a
total of 10 racks. Result from the simulated workload showed
that NN RL is able to accurately predict the inlet server
temperature, enabling SpAWM with energy-aware capability to
optimize VM placement to servers. The trial and error nature of
RL suggests there would be initial penalty in the form of wasted
energy due to the ‘exploratory’ nature of the algorithm. That is,
VMs workloads may be assigned to less optimal servers in order
to ‘explore’ potential solution space in search for better
‘rewards’. Premature convergence or convergence to a local
minimum (sub-optimal convergence) could also dampen energy
savings as tuning the learning rate and discount factor to avoid
such, is an expensive process.

Tarutani et al. [4] applied ML technique using regression
models to predicting the cloud data center temperature
distribution. The power consumption is then reduced via pro-
active control of the server load and tuning the CRAC settings.
The inputs to the model consist of power consumption of
servers, server intake air temperature, UPS power consumption,
current temperature distribution and its temporal changes,
CRAC outlet air temperature, and CRAC air volume. The inputs
are denoted by 𝑚𝑚(𝑡𝑡) = �𝑚𝑚1(𝑡𝑡), 𝑚𝑚2(𝑡𝑡), … , 𝑚𝑚𝑁𝑁(𝑡𝑡)� where N is the
number of sensor inputs or cloud data center operation
parameters at time-step t. The output is the predicted
temperature distribution in the cloud data center at time-step t,
as denoted by 𝑦𝑦(𝑡𝑡) = �𝑦𝑦1(𝑡𝑡), 𝑦𝑦2(𝑡𝑡), … ,𝑦𝑦𝑀𝑀(𝑡𝑡)� where M is the
number of temperature sensors. The predicted temperature,
𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) at time-step 𝑡𝑡 + Δ𝑡𝑡, is given by Eq. 4,

 𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑘𝑘(𝑚𝑚(𝑡𝑡)) (4)

where, 𝑦𝑦𝑘𝑘(𝑡𝑡) is the temperature obtained at time-step t by the kth
sensors and 𝐹𝐹𝑘𝑘(𝑚𝑚(𝑡𝑡) is function for predicting the temperature
of the kth sensor given the input variables at time-step t. The sum
of squared error is given by Eq. 5,

 𝑒𝑒𝑘𝑘 = ∑ (𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) − 𝑦𝑦𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡))2𝑖𝑖
1 (5)

where, n is the number of training dataset. However, the large
number of input variables has compelled a reduction in the data
dimensionality. Working with the transformed data whereby the

input dataset is significantly reduced improves the learning
process. A data compression technique using Principle
Component Analysis (PCA) is then applied in addition to the
regression model. Since there are correlations among input
variables, PCA basically compress the data by expressing the
data in terms of the patterns between the inputs. The components
of x(t) are reduced to values denoted by p(t)=(p1(t), p2(t), …,
pC(t)) where C≪ 𝑁𝑁, is the number of feature values. With this,
Eq. (4) can be rewritten as:

 𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑘𝑘′(𝑝𝑝(𝑡𝑡)) (6)

Finally, Tarutani et al. compared the prediction model with
random forest method that utilizes decision-tree as a weak
learner to avoid overfitting and to increase the accuracy and
speed of the prediction. From the result, it shows that the number
of input features selected affects the predictive accuracy of both
the linear regression method and the random forest method.
Higher number of feature inputs leads to lesser predictive
accuracy. As the number of sensors in the data center grows,
which is inevitable, feature selection to reduce the number of
inputs would become a challenge.

In this paper, we apply the ML approach combining
evolutionary NN and SA to model the energy consumption of a
dynamic cloud data center. Our approach employs a Genetic
Algorithm (GA) for feature selection utilizing SA as a guide.
The feature subset, along with the NN architecture, is
represented by a structurally-inclusive encoding scheme in the
form of a chromosome matrix. A population of chromosomes is
maintained through the genetic process of crossover and
mutation. The chromosome’s fitness is evaluated at every
generation to determine its survival in the next generation. The
algorithm “prunes” away connections between the neurons to
deemphasize a particular input neuron’s contribution to the
NN’s output should such an input feature causes the
chromosome to have a weak fitness. The eventual NN is a
network with reduced complexity. This leads to a model with
better generalization and at lower computational cost. A
complex NN has high computational cost and the tendency to
overfit. The proposed evolutionary NN combined with SA helps
to extract the key factors impacting the cloud data center energy
performance. This information provides insights for better
decision-making and management of the cloud data center
energy consumption. The rest of the paper is organized as
follows: Section II explains the evolutionary NN, Section III
describes the data collection and SA approach, the experiments
and results are discussed in Section IV and Section V concludes
with recommendations for future work.

II. EVOLUTIONARY NEURAL NETWORK

Machine learning approach to reducing energy consumption in
cloud data center is a viable solution. To appreciate the interest
in this hot topic relating to ML applications for energy efficient
management in cloud computing environment, one may refer to
the survey papers by Demirci [5], Tantar [6] and Zhan [9].
Evolutionary NN as a ML approach to modeling and predicting
non-linear dynamic system such as the cloud data center is a
powerful and promising approach. However, one area that has
not been adequately address is the area of establishing impacts

of the inputs to a FFNN, in particular, our interest is to discover
which input features have the most impact to the cloud data
center energy performance. Our approach is to apply
evolutionary algorithm to detect the ‘weightier’ input features
that contribute positively to the NN’s fitness, directed by SA.
As NNs are black-box models, the technique itself prevents any
easy analysis of the relationships between the inputs and
outputs. In NN modeling, every computational iteration ends up
with new and different connection weights. The results in these
different weight settings can be nearly or totally the same. This
is because each starting weight matrices are different and during
the training, the number of free degree is very high. The
numerical input-output relationships can be satisfied by
separate groups of neurons, weights and connections. This is

the short-coming for a black-box modeling approach. Hence,
establishing impacts of the inputs to a FFNN is non-trivial.

A. Multi-Layer Feed-Forward Neural Network

The NN architecture used for modeling the cloud data center
is a multi-layer feed-forward neural network (FFNN). It has
three layers; namely the input layer, the hidden layer and the
output layer. The input layer has a total of 12 input nodes and 1
bias node. The input nodes represent 12 energy-related variables
of the Hadoop cluster. The hidden layer has a maximum of 20
hidden nodes and 1 bias node. The output layer has 1 output
node. Table 2 summarizes the description of the NN inputs and
output and Fig. 1 depicts the NN architecture. During the
evolution process, the number of NN connections, the
connection weights and the number of hidden layer neurons, are
determined. GA explores the solution space in search of the
fittest or the optimal NN structure.

B. Genetic Algorithm for NN Optimization
Table 1 depicts a chromosome matrix example which is

encoded to represent the problem in the GA solution space. The
chromosome matrix is an individual, known also as the
genotype, which has a corresponding mapping to its phenotype

as shown in Fig. 2. A population of these individuals is
maintained with each chromosomes representing a possible
solution in the GA search space. The optimal solution will be
the fittest individual over many cycles of genetic evolution. The
optimum NN structure is the phenotype mapping of the fittest
genotype.

TABLE 1 A CHROMOSOME MATRIX EXAMPLE
 Hidden node 1 Hidden node 2 Hidden node 3 Hidden node 4

Input node 1 0 -0.348 0 0.492
Input node 2 0 0 0.492 0.214
Input node 3 0.628 0 0.914 0
Bias node -0.583 -0.569 0.239 -0.921
Output node 0.023 -0.345 0.295 0.148

Embodied in the chromosome matrix in Table 1 are the
weights and connection characteristics. In this example, the
input weights (denoted by values in the first 3 rows) represent
the corresponding links between the input nodes and the hidden
nodes. The output weights (denoted by values in the last row)
represent the corresponding links between the output node and
the hidden nodes. A ‘zero’ value represents no connectivity
between the corresponding nodes. For instance, the input
weights in the matrix positions (1,1), (1,3), (2,1), (2,2), (3,2)
and (3,4) are zeroes, it means that there are no connection
between the corresponding input nodes and the hidden nodes.
And if the one of the output weight is zero, this connection, or
column, can be ignored as it will not affect the output in any
way. If all the input for that hidden node is zero, regardless of
the output weight, that connection will also be ignored as there
is no neuron activation of that hidden node to the output node.
Another matrix with the redundant columns removed will be
stored to reduce computation from recalculating the matrix. The
matrix with the redundant columns is still kept as its dimension
is required for crossover and any residual values might be
important for the crossover.

The NN input layer comprises of n features denoted as
(𝑋𝑋1 𝑋𝑋2, … 𝑋𝑋𝑖𝑖) During the NN learning process, the evaluation
of the intensity of the stimulation (excitatory or inhibitory) from
the neurons of the preceding layer is expressed in Eq. 7,

 𝑎𝑎𝑗𝑗 = ∑ 𝑋𝑋𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗
𝑖𝑖
𝑖𝑖=1 (7)

1

2

3

1

2

3

4

O

Disabled connection
Active connection

B

Fig. 2. NN Phenotype Mapping from its Corresponding Genotype

Fig. 1. NN Architecture with Input Features

File size

Duration

CPU Util %

Memory Util %

System load

Network BW

Map Bwyte Read

Map File Byte Write

Reduce File Byte Read

Reduce File Byte Write

Reduce Shuffle Byte

Instruction No.

 Input Bias

Hidden Layer Input Layer

Energy
Consumption
(kWh)

Output Layer

Bias

1
2
3
4
5
6
7
B

TABLE 2 NN INPUT FEATURE SUBSET PRESENTING THE HADOOP CLUSTER

where, 𝑎𝑎𝑗𝑗 is the activation function of the jth downstream neuron,
Xi is the output value of the ith neuron at the previous layer and
Wij is the connection weight between the ith neuron of the
previous layer and the jth neurons of the current layer. The
activation function implemented is the sigmoid function shown
in Eq. 8.

 𝑓𝑓�𝑎𝑎𝑗𝑗� = 1
1+e−𝑎𝑎𝑗𝑗

 (8)

The objective function to minimize (or to maximize in the case
of the fitness function) during the NN training is the mean
squared error (MSE) given by Eq. 9,

 𝑀𝑀𝑀𝑀𝑃𝑃 = 1
𝑚𝑚
∑ (𝑌𝑌 − 𝑌𝑌�𝑚𝑚
𝑖𝑖=1)2 (9)

where, Y is the target at the output of the NN and 𝑌𝑌� is the actual
calculated value by the NN and m is the number of samples. This
fitness indicates how good the chromosome is in comparison
with the other solutions in the population. The chromosomes
compete for survival. Thus, the higher the fitness value, the
higher the chances of survival, reproduction and representation
in the subsequent generation.

The GA optimization of NN starts with an initial set of
random potential solutions, expressed as a population of
chromosomes. In order to create the subsequent generation,
chromosomes from the previous generation are merged using
the crossover operation or modified by using the mutation
operator. These processes populate the subsequent generation
with new chromosomes, also known as offspring. Fitter
chromosomes are selected and weaker chromosomes are
rejected to keep the population size constant and to maintain the
overall health of the population on a progressing level. After
repeating the process for several generations, the best
chromosome will emerge, representing the optimum or
suboptimal solution to the problem.

III. DATA COLLECTION AND SENSITIVITY ANALYSES
A. Experiment Setup and Data Collection

A Hadoop cluster with Hadoop Distributed File System
(HDFS) and MapReduce stack (Facebook Apache Hadoop
version 0.20.1), is set up to perform the experiments. The
software stack is installed over 6 x HP Proliant DL360P and
DL380P Gen8 servers, consisting of 120 cores housed within a
single rack. Each server is equipped with 64 GB memory, dual
socket 6-core Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz with
hyper-threading technology. The Hadoop cluster comprises of
1 x namenode, 1 x secondary namenode and 4 x datanodes. All
nodes are installed with CentOS 6.5 and running on bare-metal
hardware without hypervisor or virtualization. A top-of-rack
(TOR) Gigabit Ethernet switch connects the nodes at 1Gigabit
per second speed. A mixture of MapReduce jobs, in the form of
the WordCount application and Sort application are executed
during the experiments. The Hadoop MapReduce counters such
as the Map file byte read, the Reduce file byte write and etc. are
extracted using the build-in Hadoop web admin user interfaces
(UIs). The counters can be access via the HDFS namenode
admin at port 50070 and the MapReduce Job tracker admin at
port 50030. The other counters such as the CPU and memory
utilization and network IO are collection using Ganglia, an open
source monitoring system. The power consumption data is
collected using the Raritan intelligent Power Distribution Unit
(iPDU), through which the servers’ power supply are connected
into. The data collected from the Hadoop cluster are used to
train and calibrate the NN models. The details of the testbed
setup and evolutionary NN training is described in our earlier
work in [7][8].

B. Sensitivity Analysis
Various authors have explored various SA techniques in

determining which inputs in NN are significant
[11][12][13][14][15]. In [10], a series of seven different SA
methods were reviewed. Amongst these methods, two are of

Category Metric Unit Description Method of collection

In
pu

t

System

1. CPU utilization % % CPU time on MapReduce process Ganglia

2. System Load % % system load on MapReduce process Ganglia

3. Memory use % % memory use for MapReduce process Ganglia

IO

4. Map file byte read
5. Reduce file byte read
6. Map file byte write
7. Reduce file byte write

Gigabyte
Gigabyte
Gigabyte
Gigabyte

Data read by Map from local disk
Data read by Reduce from local disk
Data written by Map to local disk
Data written by Reduce to local disk

Hadoop built-in counters

Network
Transfer

8. Reduce Shuffle bytes Gigabyte Data transferred from Map to Reduce Hadoop built-in counters

9. Network Bandwidth Gigabit per sec Data transmitted and received Ganglia

Job Profile

10. No. of MapReduce Instructions Number Job’s instruction number Ganglia

11. File size Gigabyte Size of MapReduce jobs Hadoop built-in counters

12. Job completion duration Hour Time taken to finish a MapReduce job Hadoop built-in counters

O
ut

pu
t Energy 1. Energy consumption kWh Energy consumed by Hadoop cluster SNMP on iPDU

particular interest. They are; the Partial Derivatives (PaD)
method which consists of calculating the partial derivatives of
the output according to the input variables, and the ‘weights’
method which is a technique for partitioning the connection
weights to determine the relative importance of the various
inputs.

1) Partial Derivatives Method
The PaD method [16][17], allows contribution analysis of

the inputs by providing a profile of the variation of the output
for small changes of one input variable. For instance, in a
network with ni inputs, one hidden layer with nh neurons, one
output no=1 and using the logistic-sigmoid activation function,
the partial derivatives of the output yi with respect to input xj
(with j=1, …, N and N the total number of samples) is given by
the following relationship in Eq. 10,

 𝑑𝑑𝑗𝑗𝑖𝑖 = 𝑀𝑀𝑗𝑗 ∑ 𝑤𝑤ℎ𝑜𝑜𝐼𝐼ℎ𝑗𝑗
𝑖𝑖ℎ
ℎ=1 �1 − 𝐼𝐼ℎ𝑗𝑗�𝑤𝑤𝑖𝑖ℎ (10)

where, Sj is the derivative of the output neuron with respect to
its input, 𝐼𝐼ℎ𝑗𝑗 is the response of the hth hidden neuron, 𝑤𝑤ℎ𝑜𝑜 is the
weight between the hth hidden neuron and the output neuron and
𝑤𝑤𝑖𝑖ℎ is weight between the ith input neuron and the hth hidden
neuron. If the partial derivative is negative, which indicates
negative impact, that is, as the input variable increases, the
output variable will decrease. On the contrary, if the partial
derivative is positive, which indicates a positive impact, that is,
as the input variable increases, the output variable will increase.
The relative contribution of an input to the NN output can be
obtained via the sum of square derivatives (SSD) value as
expressed in Eq. 11. The input variable that has the highest SSD
value, has the highest impact on the output variable.

 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖 = ∑ �𝑑𝑑𝑗𝑗𝑖𝑖�
2𝑁𝑁

𝑗𝑗=1 (11)

2) ‘Weights’ Method
The ‘weights’ method [18], [19] is a technique for segregating
the connection weights to accord relative importance to the
inputs. The connection weights between the hidden node and
the output node are associated with the connection weights of
the input nodes to that hidden node. For example, in a NN with
n input nodes, m hidden nodes and 1 output node, the ‘weights’
method is implemented using the following relationships in Eq.
12,

 𝑄𝑄𝑖𝑖ℎ = |𝑤𝑤𝑖𝑖ℎ.𝑤𝑤ℎ𝑐𝑐|
∑ |𝑤𝑤𝑖𝑖ℎ.𝑤𝑤ℎ𝑐𝑐|𝑖𝑖

 (for i=1,..,n; h=1,..,m) (12)

where, 𝑤𝑤𝑖𝑖ℎ is the connection weight between the input node i
and the hidden node h, 𝑤𝑤ℎ𝑜𝑜 is the connection weight between
the hidden node h and the output node o, and 𝑄𝑄𝑖𝑖ℎ is the weighted
influence of individual hidden node h to the output given its
association with all its inputs i, and in Eq. 13,

 𝑅𝑅𝐼𝐼𝑖𝑖(%) = ∑ 𝑄𝑄𝑖𝑖ℎℎ
∑ ∑ 𝑄𝑄𝑖𝑖ℎ𝑖𝑖ℎ

x100 (for i=1,..,n; h=1,..,m) (13)

where, RIi is the relative importance of input node i in
percentage term.

IV. EXPERIMENTS AND RESULTS
Though both the PaD method and the ‘weight’ method are

able to provide ML with explanatory capability [10], the
‘weight’ method is adopted in our implementation as it
combines more readily with our GA chromosome matrix
encoding. Table 3 illustrates, by means of the chromosome
matrix described in Table 1, our GA with SA approach to
determine the relative importance of the input features on the
output. By applying Eq. 11 and Eq. 12, it can be seen that input
node 1 has the highest relative importance at 42.4%, followed
by input node 3 at 41.3% and input node 2 at 16.3%.

TABLE 3 EXAMPLE CHROMOSOME MATRIX FOR SA USING ‘WEIGHTS’
METHOD

 Hidden
node 1

Hidden
node 2

Hidden
node 3

Hidden
node 4

Sum impact of
input node at
output or RI(%)

Input node 1 Q11=0 Q21=1.0 Q31=0 Q41=0.697 1.697 or 42.4%

Input node 2 Q12=0 Q22=0 Q32=0.350 Q42=0.303 0.653 or 16.3%

Input node 3 Q13=1.0 Q23=0 Q33=0.650 Q43=0 1.650 or 41.3%

A. Actual Data
Integrating the ‘weights’ method into our evolutionary NN

approach, the RI of the input variables from the Hadoop dataset
is plotted for further analysis. In the experiment, we set the GA
population size to 100 chromosomes for 100 generations. At
each generation, the chromosomes fight for survival by
evolving towards an optimal solution through the process of
selection, crossover and mutation. The fittest chromosome from
each generation is selected to compute the inputs’ RI. The data
is collected and averaged over 100 generations. The process is
repeated for 20 runs and the result is shown in Fig. 3 and Table
5.

Fig. 3. Relative Importance of Input Variable on the Energy Consumption

From Fig. 3, it is observed that ‘Job duration’ ranks the highest
with RI at 10.0%. The next three variables of importance are
‘Reduce shuffle bytes’, ‘Reduce file byte write’ and ‘Number

7.17.27.37.78.18.28.38.59.29.29.210.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Re
la

tiv
e

Im
po

rt
an

ce
 (%

)

Input Features

Sensitivity Analysis - Key Factors Determining the Energy
Consumption of a Hadoop Cluster

of mapreduce instructions’, with RI at 9.2% each. The ‘Reduce
shuffle bytes’ counter keeps track of the total bytes being
shuffled which is an indicator of high presence of network-
intensive activities. At the shuffle stage of the MapReduce
process, files are shuffled from mappers to reducers. Depending
on the nature of the task, as in the case of the Sort tasks, shuffle
activities could be intensive. The variables ‘Memory use’,
‘System load’ and ‘CPU utilization’ are ranked 7th, 8th and 11th
respectively. This may seem as a surprise at first, which shall
be explained with Fig. 4 in the later section. Another
observation in Fig. 3 is that the input variable ‘file size’ is
ranked 5th. As MapReduce is a distributed and parallel
processing framework where the Big Data files are split into
chunks of HDFS blocks. The larger the files the more chunks to
be distributed into HDFS blocks residing at various datanodes.
The mapper and reducer daemons in the datanodes perform the
MapReduce tasks on the data as assigned by the Job tracker.
The input variable ‘file size’, in this case, has a fairly high RI
as it is a key factor contributing to the energy consumption. The
variable ‘Network bandwidth’ is the least in relative
importance. This counter keeps track of the total number of
bytes sent and received in the Hadoop cluster.

In Fig. 4, the input variables are grouped by categories with
the breakdown shown in Table 4. It is observed that the ‘I/O’
category has the most impact over energy consumption,
followed by ‘Job profile’. The ‘System’ category, which
includes utilization of CPU and memory, and OS processes, is
ranked third. The least in relative importance is the ‘Network
transfer’ category. Earlier in Fig. 3, it was noted that the input
variables ‘Memory use’, ‘System load’ and ‘CPU utilization’
are ranked 7th, 8th and 11th respectively. However in the category
chart in Fig. 4, ‘System’ taken as a whole, is ranked closely
behind ‘Job profile’.

Fig. 4. Relative Importance of Input Features Grouped by Categories

Fig. 5 shows the RI plots for each of the twelve input
variables of the NN. The RI is calculated from the fittest
chromosome structure of that generation and traced over 100
generation or until convergence is reached, i.e. the optimal
solution is found.

TABLE 4: INPUT VARIABLES GROUPED BY CATEGORIES

Category Input Variables

System
CPU Utilization
Memory Use
System Load

I/O

Map file byte Read
Map file byte Write
Reduce file byte Read
Reduce file byte Write

Network Transfer Network Bandwidth
Reduce Shuffle Bytes

Job Profile

Job completion duration
File size
Number of MapReduce
Instructions

16.4

23.5

27.6

32.5

0 10 20 30 40

Network Transfer

System (CPU, Memory, Proc. etc.)

Job Profile

I/O

Relative Importance (%)

in
pu

t F
ea

tu
re

 S
ub

se
ts

Sensitivity Analysis - By Input Categories

 File Size Job Duration CPU Utilization Memory Use System Load Network Bandwidth

Map file byte read Map file byte write Reduce file byte read Reduce file byte write Reduce shuffle byte Instruction Number

Fig. 5. Relative Importance of Inputs in Sensitivity Analysis of Neural Networks using ‘Weighted’ Method Combined with Genetic Algorithm

TABLE 5: COMPUTATION OF RI (%) FOR 20 RUNS
Ru

n

In
pu

t
V

ar
ia

bl
e

1

In
pu

t
V

ar
ia

bl
e

2

In
pu

t
V

ar
ia

bl
e

3

In
pu

t
V

ar
ia

bl
e

4

In
pu

t
V

ar
ia

bl
e

5

In
pu

t
V

ar
ia

bl
e

6

In
pu

t
V

ar
ia

bl
e

7

In
pu

t
V

ar
ia

bl
e

8

In
pu

t
V

ar
ia

bl
e

9

In
pu

t
V

ar
ia

bl
e

10

In
pu

t
V

ar
ia

bl
e

11

In
pu

t
V

ar
ia

bl
e

12

1 7.6 16.4 4.4 7.5 13.9 4.0 6.1 9.1 5.9 10.2 8.4 6.4
2 10.7 9.5 5.8 12.0 6.8 7.0 8.4 9.3 5.8 9.1 7.2 8.5

3 7.9 4.5 7.7 11.3 7.6 7.0 10.3 7.4 6.2 7.9 8.8 13.5
4 9.9 5.3 12.3 7.9 7.6 5.8 8.3 9.0 8.3 6.6 6.9 12.2
5 8.5 7.1 7.2 5.3 5.9 12.1 6.6 6.5 9.8 4.1 12.4 14.5
6 10.8 7.2 8.3 7.7 6.7 6.3 7.1 6.3 9.2 13.5 8.5 8.5
7 8.0 8.0 7.1 10.5 7.5 6.9 11.0 12.1 7.3 9.5 5.5 6.5
8 11.4 9.6 6.2 7.2 10.5 9.7 7.6 8.8 6.8 6.1 8.6 7.6

9 7.3 9.2 6.5 8.4 9.7 6.3 10.2 5.8 10.1 6.3 12.4 7.7
10 11.4 8.5 4.1 7.1 7.9 2.6 6.8 10.1 6.5 15.5 12.3 7.3
11 7.0 12.0 7.6 3.1 8.9 12.8 6.4 6.4 10.9 8.5 7.5 8.9
12 7.9 8.3 7.9 7.2 7.9 8.1 8.4 5.6 6.7 11.0 13.6 7.4
13 5.4 10.3 5.4 9.5 11.3 6.1 4.3 7.8 7.8 9.9 15.4 6.8
14 4.1 10.3 6.8 7.7 6.9 7.8 8.5 3.5 8.6 12.9 10.9 12.2

15 8.6 14.7 6.5 12.9 10.9 5.1 8.7 5.5 8.2 7.3 4.6 7.1
16 6.9 12.2 7.1 9.4 6.7 8.3 6.7 8.7 9.2 9.0 8.3 7.5
17 8.1 10.6 8.3 10.4 5.8 7.7 7.7 7.2 10.6 9.2 5.9 8.6
18 8.6 12.3 7.7 8.5 6.2 9.2 5.6 3.0 9.7 8.7 9.6 11.0
19 10.5 13.1 7.1 3.8 6.1 5.3 6.6 4.8 9.6 9.3 9.7 14.1
20 9.2 10.1 10.9 6.3 7.7 4.5 8.1 8.6 8.6 9.7 8.3 8.0

Ave 8.5 10.0 7.2 8.2 8.1 7.1 7.7 7.3 8.3 9.2 9.2 9.2
Stdev 1.8 1.7 1.7 1.6 1.5 1.8 1.6 1.6 1.7 1.7 2.0 1.7

V. CONCLUSION AND FUTURE WORK
The ability to give meaningful insights to black-box NN

models can provide explanation on how the various system
parameters affect its output. This benefit is of interest as useful
and novel information can be derived to improve system
characteristics and performance. In this paper, we have
presented an approach combining evolutionary NN with
sensitivity analysis. It was shown that the ‘weights’ method is
able to seamlessly integrate with our GA to determine key
factors contributing to energy consumption in cloud data
centers. The results show that IO activities contribute most
significantly to energy consumption. Armed with this insight,
data centers can reduce energy consumption by minimizing
access to storage or utilizing more efficient storage
infrastructures and components. The other aspect revealed in
our experiment is that the job profile such as file size, time taken
to complete a task and the resources assigned to the job have
relatively high impact on the energy consumption. As jobs may
be bounded by service-level-agreement (SLA), adequate
resources are usually assigned to complete the tasks within a
certain time. Hence, this knowledge provides an opportunity for
software analyst to design and develop energy-aware
applications that optimizes resource allocation. Another
potential energy savings that could be realized is to partition the
Big Data into bigger chunks and place them closest to the
mappers and reducers in the Hadoop HDFS. By doing so would
shorten the time to complete the MapReduce jobs and thus
saving energy.

Although our experiment combining GA and SA has
managed to shed light on key factors contributing to energy
consumption, further investigations are still needed. For future
developments, we plan to take advantage of ML black-box
approach with SA to develop a ‘grey box’ that will preserve the
physical significance of the system parameters while at the
same time model the nonlinear complexities of the cloud data
center to allow for greater energy savings and better
understanding of the system.

REFERENCES
[1] Uptime Institute, 2014 Data Center Industry Survey.
[2] J. Gao, “Machine learning applications for data center optimization,”

Research at Google, 2014.
[3] H. Chen, M. Kesavan, K. Schwan, A. Gavrilovska, P. Kumar and Y. Joshi,

“Spatially-aware optimization of energy consumption in consolidated
data center systems,” Proceedings of the ASME 2011 Pacific Rim
Technical Conference and Exhibition on Packaging and Integration of
Electronic and Photonic Systems, 2011, pp. 461–470.

[4] Y. Tarutani, K. Hashimoto, G. Hasegawa, Y. Nakamura, T. Tamura, K.
Matsuda and M. Matsuoka, “Temperature Distribution Prediction in Data
Centers for Decreasing Power Consumption by Machine Learning,” IEEE
7th International Conference on Cloud Computing Technology and
Science (CloudCom), 2015, pp. 635-642.

[5] M. Dermirci, “A Survey of Machine Learning Applications for Energy-
Efficient Resource Management in Cloud Computing Environments,”
IEEE 14th International Conference on Machine Learning and
Applications, 2015, pp. 1185-1190.

[6] A.-A. Tantar, A. Q. Nguyen, P. Bouvry, B. Dorronsoro and E.-G. Talbi,
"Computational Intelligence for Cloud Management Current Trends and
Opportunities," in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), 2013, pp. 1286-1293.

[7] Y. W. Foo, C. Goh, H. C. Lim, Z. H. Zhan and Y. Li, “Evolutionary
Neural Network Based Energy Consumption Forecast for Cloud
Computing,” Proceedings of the 2015 International Conference on Cloud
Computing Research and Innovation, 2015, pp. 53-64.

[8] Y.W. Foo, C. Goh, H.C. Lim and Y. Li, “Evolutionary Neural Network
Modeling for Energy Prediction of Cloud Data Centers,” International
Symposium on Grids and Clouds, 2015.

[9] Z. H. Zhan, X. F. Liu, Y. J. Gong, J. Zhang, S.H. Chung, and Y. Li.,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Computing Surveys, vol. 47, no. 4, Article 63, pp. 1-
33, Jul. 2015.

[10] M. Gevrey, I. Dimopoulos and S. Lek, “Review and comparison of
methods to study the contribution of variables in artificial neural network
models,” Ecological Modelling, 2003, vol. 160(3), pp. 249-264.

[11] P. Cortez and M. J. Embrechts, “Opening black box Data Mining models
using Sensitivity Analysis,” IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), 2011

[12] A. Jain and D. Zongker, “Feature selection: evaluation, application, and
small sample performance”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1997, vol, 19(2), pp. 153-158.

[13] T. Tchaban, M. J. Taylor and J. P. Griffin, “Establishing Impacts of the
Inputs in a Feedforward Neural Network,” Neural Computing and
Application, 1998, vol. 7, pp. 309-317

[14] A. Hunter, L. Kennedy, J. Henry and I. Ferguson, “Application of Neural
Networks and Sensitivity Analysis to Improved Prediction of Trauma
Survival,” Computer Methods and Programs in Biomodicine, 2000, vol.
62, pp. 11-19.

[15] S. Lek, M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga and S. Aulagnier,
“Application of Neural Networks to Modeling NonLinear Relationships
in Ecology,” Ecological Modelling, 1996, vol. 90, pp. 39-52.

[16] Y. Dimopoulos, P. Bourret and S. Lek, “Use of Some Sensitivity Criteria
for Choosing Neteworks with Good Generalization Ability,” Neural
Processing Letter, 1995, vol.2(6), pp. 1-4.

[17] I. Dimopoulos, J. Chronopoulos, A. Chronopoulou-Sereli and S. Lek,
“Neural Network Models to Study Relationships between Lead
Concentration in Grasses and Permanent Urban Descriptors in Athens
City (Greece),” Ecological Modelling, 1999, vol. 120(2-3), pp. 157-165.

[18] G. D. Garson, “Interpreting Neural Network Connection Weights,”
Artificial Intelligence Expert, 1991, vol. 6, pp. 47-51.

[19] A. T. C. Goh, “Back-propagation Neural Networks for Modelling
Complex Systems,” Artificial Intelligence in Engineering, 1995, vol. 9,
pp. 143-151.

	I. Introduction
	II. Evolutionary Neural Network
	A. Multi-Layer Feed-Forward Neural Network
	B. Genetic Algorithm for NN Optimization

	III. Data Collection and Sensitivity Analyses
	A. Experiment Setup and Data Collection
	B. Sensitivity Analysis
	1) Partial Derivatives Method
	2) ‘Weights’ Method

	IV. Experiments and Results
	A. Actual Data

	V. Conclusion and Future Work
	References

