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Abstract—Machine learning (ML) approach to modeling and 
predicting real-world dynamic system behaviours has received 
widespread research interest. While ML capability in 
approximating any nonlinear or complex system is promising, it is 
often a black-box approach, which lacks the physical meanings of 
the actual system structure and its parameters, as well as their 
impacts on the system. This paper establishes a model to provide 
explanation on how system parameters affect its output(s), as such 
knowledge would lead to potential useful, interesting and novel 
information. The paper builds on our previous work in ML, and 
also combines an evolutionary artificial neural networks with 
sensitivity analysis to extract and validate key factors affecting the 
cloud data center energy performance. This provides an 
opportunity for software analysts to design and develop energy-
aware applications and for Hadoop administrator to optimize the 
Hadoop infrastructure by having Big Data partitioned in bigger 
chunks and shortening the time to complete MapReduce jobs. 
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I.  INTRODUCTION 
The accelerated growth in cloud computing is expected to 

drive energy consumption of cloud data centers to new highs. 
An effective engineering ratio that measures the data center 
energy efficiency is the Power Usage Effectiveness (PUE). This 
term records baseline data and traces energy efficiency 
movements. It is expressed as a ratio as shown in Eq. 1, with the 
overall energy efficiency improving as the value decreases 
towards 1. 

  𝑃𝑃𝑃𝑃𝑃𝑃 = ∑�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚ℎ+𝑃𝑃𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒+𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚+𝑃𝑃𝑐𝑐𝑒𝑒ℎ𝑚𝑚𝑒𝑒𝑒𝑒�
∑ 𝑃𝑃𝑚𝑚𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝑚𝑚

          (1) 

where, the numerator denotes the sum of all power consume by 
the cloud data center including the mechanical facility (chillers 
and computer room air-con or CRAC), the electrical facility 
(switchgear, UPS, battery backup), the ICT computing 
infrastructure (servers, storage, networks and 
telecommunications equipment) plus any other devices 
(lightings, printers, personal computers, VoIP phones, fax 
machines and etc.) expend to support the cloud data center 
operations, and the denominator denotes the sum of all power 
consume by the ICT computing infrastructure only that produces 
useful IT work.  

Based on Uptime Institute’s 2014 Data Center Industry 
Survey, the average data centers’ PUE has only improved 
slightly from 1.89 in 2011 to 1.7 in 2014 [1]. This is a gain of 
11.2% compared to a gain 32.3% from PUE of 2.50 to 1.89 from 
2007 to 2011. The survey also reported that 77% of the 
participating industry cited that the management has set a target 
PUE, with more than half expecting to lower PUE to 1.5 or 
better. This scenario presents a tremendous opportunity for 
researchers, engineers and technologists to further improve the 
cloud data center energy efficiency. 

Recently, applying data-driven ML techniques to lower 
cloud data center energy consumption have been a hot research 
topic. Gao [2], proposed improving the cloud data center Power 
Usage Effectiveness (PUE) using ML technique based on 
artificial neural networks (NN). The feed-forward NN takes in 
19 inputs variables, contains 5 hidden layers with 50 nodes per 
layer and outputs 1 variable. The NN model has achieved a high 
predictive accuracy with a mean absolute error of 0.004 and 
standard deviation of 0.005 on the test dataset. The model was 
validated with a ‘live’ experiment conducte d by simulating an 
actual increase in process water supply temperature to the server 
floor by 3oF (or ~1.7oC) resulting in an expected decrease of 
~0.005 PUE as predicted by the model. 

Chen [3] suggested a spatially-aware Virtual Machine (VM) 
workload placement method, called SpAWM to optimize the 
consumption of power and cooling in cloud data center. 
SpAWM adopts the ML approach using neural network and 
reinforcement learning (RL). Developed from Markov Decision 
Process (MDP), the central idea in RL is to learn the optimal 
action, 𝑎𝑎𝑡𝑡 via a trial and error process, after taking into account 
every state, 𝑠𝑠𝑡𝑡 visited by the system. For every state-action pair, 
the RL keeps an associated Q value. If the selected action in a 
state is positive, the feedback increases the Q value. Else, if the 
feedback is negative, Q value is decreased. In the RL, the new Q 
value is updated via the Eq. 2, 

𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = 𝛼𝛼{𝑟𝑟𝑡𝑡 + 𝜆𝜆[𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) − 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡)]}           (2) 

where, 𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) denotes the Q value of the next state t+1, 
𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) denotes the Q value of the current state t, 𝛼𝛼 is the 
learning rate, 𝜆𝜆 is the discount factor and rt is the immediate 
reward received at state t. The number of Q values can grow 
exponentially if the state-action pair is large, hence NN 
modeling is utilized for the cloud data center environment to 
capture the relationship between resource utilization (state 
space), workload assignments (actions) and thermal distribution 



(reward function). In the paper, the NN RL is designed to 
optimize the objective function reward R, which is expressed in 
Eq. 3, 

   𝑅𝑅 = 𝑇𝑇𝑡𝑡ℎ𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑎𝑎𝑚𝑚�𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖� , 𝑖𝑖 ∈ [1,𝑛𝑛]          (3) 

where, 𝑇𝑇𝑡𝑡ℎ𝑖𝑖𝑖𝑖  is the safe threshold for server inlet temperature and 
max {𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖} is the maximum observed server inlet temperature for 
the ith server, their difference being resulted in R or the 
adjustable temperature for the CRAC. Therefore, the higher the 
R, the higher the savings for cooling energy. During the 
experiment, the environment is constantly monitored while VM 
workloads are being distributed in an energy-efficient manner 
by SpAWM to maintain a high R. The ML approach employs a 
backpropagation feed-forward NN with 6 input variables, 1 
hidden layer of 20 nodes, and 6 outputs. The inputs variables are 
the server resource utilization states and the outputs are inlet 
temperature, to be predicted. The experiment is based on the data 
collected from 6 blade server enclosures from each rack up to a 
total of 10 racks. Result from the simulated workload showed 
that NN RL is able to accurately predict the inlet server 
temperature, enabling SpAWM with energy-aware capability to 
optimize VM placement to servers. The trial and error nature of 
RL suggests there would be initial penalty in the form of wasted 
energy due to the ‘exploratory’ nature of the algorithm. That is, 
VMs workloads may be assigned to less optimal servers in order 
to ‘explore’ potential solution space in search for better 
‘rewards’. Premature convergence or convergence to a local 
minimum (sub-optimal convergence) could also dampen energy 
savings as tuning the learning rate and discount factor to avoid 
such, is an expensive process. 

Tarutani et al. [4] applied ML technique using regression 
models to predicting the cloud data center temperature 
distribution. The power consumption is then reduced via pro-
active control of the server load and tuning the CRAC settings. 
The inputs to the model consist of power consumption of 
servers, server intake air temperature, UPS power consumption, 
current temperature distribution and its temporal changes, 
CRAC outlet air temperature, and CRAC air volume. The inputs 
are denoted by 𝑚𝑚(𝑡𝑡) = �𝑚𝑚1(𝑡𝑡), 𝑚𝑚2(𝑡𝑡), … , 𝑚𝑚𝑁𝑁(𝑡𝑡)� where N is the 
number of sensor inputs or cloud data center operation 
parameters at time-step t. The output is the predicted 
temperature distribution in the cloud data center at time-step t, 
as denoted by 𝑦𝑦(𝑡𝑡) = �𝑦𝑦1(𝑡𝑡), 𝑦𝑦2(𝑡𝑡), … ,𝑦𝑦𝑀𝑀(𝑡𝑡)� where M is the 
number of temperature sensors.  The predicted temperature, 
𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) at time-step 𝑡𝑡 + Δ𝑡𝑡, is given by Eq. 4,  

 𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑘𝑘(𝑚𝑚(𝑡𝑡))           (4) 

where, 𝑦𝑦𝑘𝑘(𝑡𝑡) is the temperature obtained at time-step t by the kth 
sensors and 𝐹𝐹𝑘𝑘(𝑚𝑚(𝑡𝑡) is function for predicting the temperature 
of the kth sensor given the input variables at time-step t. The sum 
of squared error is given by Eq. 5, 

 𝑒𝑒𝑘𝑘 =  ∑ (𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) − 𝑦𝑦𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡))2𝑖𝑖
1          (5) 

where, n is the number of training dataset. However, the large 
number of input variables has compelled a reduction in the data 
dimensionality. Working with the transformed data whereby the 

input dataset is significantly reduced improves the learning 
process. A data compression technique using Principle 
Component Analysis (PCA) is then applied in addition to the 
regression model. Since there are correlations among input 
variables, PCA basically compress the data by expressing the 
data in terms of the patterns between the inputs. The components 
of x(t) are reduced to values denoted by p(t)=(p1(t), p2(t), …, 
pC(t)) where C≪ 𝑁𝑁, is the number of feature values. With this, 
Eq. (4) can be rewritten as: 

 𝑦𝑦�𝑘𝑘(𝑡𝑡 + Δ𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡) + 𝐹𝐹𝑘𝑘′(𝑝𝑝(𝑡𝑡))           (6) 

Finally, Tarutani et al. compared the prediction model with 
random forest method that utilizes decision-tree as a weak 
learner to avoid overfitting and to increase the accuracy and 
speed of the prediction. From the result, it shows that the number 
of input features selected affects the predictive accuracy of both 
the linear regression method and the random forest method. 
Higher number of feature inputs leads to lesser predictive 
accuracy. As the number of sensors in the data center grows, 
which is inevitable, feature selection to reduce the number of 
inputs would become a challenge.  

In this paper, we apply the ML approach combining 
evolutionary NN and SA to model the energy consumption of a 
dynamic cloud data center. Our approach employs a Genetic 
Algorithm (GA) for feature selection utilizing SA as a guide. 
The feature subset, along with the NN architecture, is 
represented by a structurally-inclusive encoding scheme in the 
form of a chromosome matrix. A population of chromosomes is 
maintained through the genetic process of crossover and 
mutation. The chromosome’s fitness is evaluated at every 
generation to determine its survival in the next generation. The 
algorithm “prunes” away connections between the neurons to 
deemphasize a particular input neuron’s contribution to the 
NN’s output should such an input feature causes the 
chromosome to have a weak fitness. The eventual NN is a 
network with reduced complexity. This leads to a model with 
better generalization and at lower computational cost. A 
complex NN has high computational cost and the tendency to 
overfit. The proposed evolutionary NN combined with SA helps 
to extract the key factors impacting the cloud data center energy 
performance. This information provides insights for better 
decision-making and management of the cloud data center 
energy consumption. The rest of the paper is organized as 
follows: Section II explains the evolutionary NN, Section III 
describes the data collection and SA approach, the experiments 
and results are discussed in Section IV and Section V concludes 
with recommendations for future work.  

 
II. EVOLUTIONARY NEURAL NETWORK  

Machine learning approach to reducing energy consumption in 
cloud data center is a viable solution. To appreciate the interest 
in this hot topic relating to ML applications for energy efficient 
management in cloud computing environment, one may refer to 
the survey papers by Demirci [5], Tantar [6] and Zhan [9]. 
Evolutionary NN as a ML approach to modeling and predicting 
non-linear dynamic system such as the cloud data center is a 
powerful and promising approach. However, one area that has 
not been adequately address is the area of establishing impacts 



of the inputs to a FFNN, in particular, our interest is to discover 
which input features have the most impact to the cloud data 
center energy performance. Our approach is to apply 
evolutionary algorithm to detect the ‘weightier’ input features 
that contribute positively to the NN’s fitness, directed by SA. 
As NNs are black-box models, the technique itself prevents any 
easy analysis of the relationships between the inputs and 
outputs. In NN modeling, every computational iteration ends up 
with new and different connection weights. The results in these 
different weight settings can be nearly or totally the same. This 
is because each starting weight matrices are different and during 
the training, the number of free degree is very high. The 
numerical input-output relationships can be satisfied by 
separate groups of neurons, weights and connections. This is  

the short-coming for a black-box modeling approach. Hence, 
establishing impacts of the inputs to a FFNN is non-trivial.  

A. Multi-Layer Feed-Forward Neural Network 

The NN architecture used for modeling the cloud data center 
is a multi-layer feed-forward neural network (FFNN). It has 
three layers; namely the input layer, the hidden layer and the 
output layer. The input layer has a total of 12 input nodes and 1 
bias node. The input nodes represent 12 energy-related variables 
of the Hadoop cluster. The hidden layer has a maximum of 20 
hidden nodes and 1 bias node. The output layer has 1 output 
node. Table 2 summarizes the description of the NN inputs and 
output and Fig. 1 depicts the NN architecture. During the 
evolution process, the number of NN connections, the 
connection weights and the number of hidden layer neurons, are 
determined. GA explores the solution space in search of the 
fittest or the optimal NN structure. 

B. Genetic Algorithm for NN Optimization 
Table 1 depicts a chromosome matrix example which is 

encoded to represent the problem in the GA solution space. The 
chromosome matrix is an individual, known also as the 
genotype, which has a corresponding mapping to its phenotype 

as shown in Fig. 2. A population of these individuals is 
maintained with each chromosomes representing a possible 
solution in the GA search space. The optimal solution will be 
the fittest individual over many cycles of genetic evolution. The 
optimum NN structure is the phenotype mapping of the fittest 
genotype.  

TABLE 1 A CHROMOSOME MATRIX EXAMPLE 
 Hidden node 1 Hidden node 2 Hidden node 3 Hidden node 4 

Input node 1 0 -0.348 0 0.492 
Input node 2 0 0 0.492 0.214 
Input node 3 0.628 0 0.914 0 
Bias node -0.583 -0.569 0.239 -0.921 
Output node 0.023 -0.345 0.295 0.148 

Embodied in the chromosome matrix in Table 1 are the 
weights and connection characteristics. In this example, the 
input weights (denoted by values in the first 3 rows) represent 
the corresponding links between the input nodes and the hidden 
nodes. The output weights (denoted by values in the last row) 
represent the corresponding links between the output node and 
the hidden nodes. A ‘zero’ value represents no connectivity 
between the corresponding nodes. For instance, the input 
weights in the matrix positions (1,1), (1,3), (2,1), (2,2), (3,2) 
and (3,4) are zeroes, it means that there are no connection 
between the corresponding input nodes and the hidden nodes. 
And if the one of the output weight is zero, this connection, or 
column, can be ignored as it will not affect the output in any 
way. If all the input for that hidden node is zero, regardless of 
the output weight, that connection will also be ignored as there 
is no neuron activation of that hidden node to the output node. 
Another matrix with the redundant columns removed will be 
stored to reduce computation from recalculating the matrix. The 
matrix with the redundant columns is still kept as its dimension 
is required for crossover and any residual values might be 
important for the crossover.  

The NN input layer comprises of n features denoted as 
(𝑋𝑋1 𝑋𝑋2, … 𝑋𝑋𝑖𝑖) During the NN learning process, the evaluation 
of the intensity of the stimulation (excitatory or inhibitory) from 
the neurons of the preceding layer is expressed in Eq. 7, 

   𝑎𝑎𝑗𝑗 = ∑ 𝑋𝑋𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗
𝑖𝑖
𝑖𝑖=1            (7) 
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Fig. 2.  NN Phenotype Mapping from its Corresponding Genotype 

Fig. 1.  NN Architecture with Input Features 
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TABLE 2 NN INPUT FEATURE SUBSET PRESENTING THE HADOOP CLUSTER
 

where, 𝑎𝑎𝑗𝑗 is the activation function of the jth downstream neuron, 
Xi is the output value of the ith neuron at the previous layer and 
Wij is the connection weight between the ith neuron of the 
previous layer and the jth neurons of the current layer. The 
activation function implemented is the sigmoid function shown 
in Eq. 8. 

             𝑓𝑓�𝑎𝑎𝑗𝑗� = 1
1+e−𝑎𝑎𝑗𝑗

                     (8) 

The objective function to minimize (or to maximize in the case 
of the fitness function) during the NN training is the mean 
squared error (MSE) given by Eq. 9, 

  𝑀𝑀𝑀𝑀𝑃𝑃 =  1
𝑚𝑚
∑ (𝑌𝑌 − 𝑌𝑌�𝑚𝑚
𝑖𝑖=1 )2                    (9) 

where, Y is the target at the output of the NN and 𝑌𝑌�  is the actual 
calculated value by the NN and m is the number of samples. This 
fitness indicates how good the chromosome is in comparison 
with the other solutions in the population. The chromosomes 
compete for survival. Thus, the higher the fitness value, the 
higher the chances of survival, reproduction and representation 
in the subsequent generation. 

The GA optimization of NN starts with an initial set of 
random potential solutions, expressed as a population of 
chromosomes. In order to create the subsequent generation, 
chromosomes from the previous generation are merged using 
the crossover operation or modified by using the mutation 
operator. These processes populate the subsequent generation 
with new chromosomes, also known as offspring. Fitter 
chromosomes are selected and weaker chromosomes are 
rejected to keep the population size constant and to maintain the 
overall health of the population on a progressing level. After 
repeating the process for several generations, the best 
chromosome will emerge, representing the optimum or 
suboptimal solution to the problem. 

III. DATA COLLECTION AND SENSITIVITY ANALYSES  
A. Experiment Setup and Data Collection  

A Hadoop cluster with Hadoop Distributed File System 
(HDFS) and MapReduce stack (Facebook Apache Hadoop 
version 0.20.1), is set up to perform the experiments. The 
software stack is installed over 6 x HP Proliant DL360P and 
DL380P Gen8 servers, consisting of 120 cores housed within a 
single rack. Each server is equipped with 64 GB memory, dual 
socket 6-core Intel(R) Xeon(R) CPU E5-2667 @ 2.90GHz with 
hyper-threading technology. The Hadoop cluster comprises of 
1 x namenode, 1 x secondary namenode and 4 x datanodes. All 
nodes are installed with CentOS 6.5 and running on bare-metal 
hardware without hypervisor or virtualization. A top-of-rack 
(TOR) Gigabit Ethernet switch connects the nodes at 1Gigabit 
per second speed. A mixture of MapReduce jobs, in the form of 
the WordCount application and Sort application are executed 
during the experiments. The Hadoop MapReduce counters such 
as the Map file byte read, the Reduce file byte write and etc. are 
extracted using the build-in Hadoop web admin user interfaces 
(UIs). The counters can be access via the HDFS namenode 
admin at port 50070 and the MapReduce Job tracker admin at 
port 50030. The other counters such as the CPU and memory 
utilization and network IO are collection using Ganglia, an open 
source monitoring system. The power consumption data is 
collected using the Raritan intelligent Power Distribution Unit 
(iPDU), through which the servers’ power supply are connected 
into. The data collected from the Hadoop cluster are used to 
train and calibrate the NN models. The details of the testbed 
setup and evolutionary NN training is described in our earlier 
work in [7][8]. 

B. Sensitivity Analysis  
Various authors have explored various SA techniques in 

determining which inputs in NN are significant 
[11][12][13][14][15]. In [10], a series of seven different SA 
methods were reviewed. Amongst these methods, two are of 

Category Metric Unit Description Method of collection 

In
pu

t 

System 

1. CPU utilization % % CPU time on MapReduce process Ganglia 

2. System Load % % system load on MapReduce process Ganglia 

3. Memory use % % memory use for MapReduce process Ganglia 

IO 

4. Map file byte read 
5. Reduce file byte read 
6. Map file byte write 
7. Reduce file byte write 

Gigabyte 
Gigabyte 
Gigabyte 
Gigabyte 

Data read by Map from local disk 
Data read by Reduce from local disk 
Data written by Map to local disk 
Data written by Reduce to local disk 

Hadoop built-in counters 

Network 
Transfer 

8. Reduce Shuffle bytes  Gigabyte Data transferred from Map to Reduce Hadoop built-in counters 

9. Network Bandwidth Gigabit per sec Data transmitted and received  Ganglia 

Job Profile 

10. No. of MapReduce Instructions Number Job’s instruction number Ganglia 

11. File size Gigabyte Size of MapReduce jobs Hadoop built-in counters 

12. Job completion duration Hour Time taken to finish a MapReduce job Hadoop built-in counters 

O
ut

pu
t Energy 1. Energy consumption kWh Energy consumed by Hadoop cluster  SNMP on iPDU 



particular interest. They are; the Partial Derivatives (PaD) 
method which consists of calculating the partial derivatives of 
the output according to the input variables, and the ‘weights’ 
method which is a technique for partitioning the connection 
weights to determine the relative importance of the various 
inputs.  

1) Partial Derivatives Method 
The PaD method [16][17], allows contribution analysis of 

the inputs by providing a profile of the variation of the output 
for small changes of one input variable. For instance, in a 
network with ni inputs, one hidden layer with nh neurons, one 
output no=1 and using the logistic-sigmoid activation function, 
the partial derivatives of the output yi with respect to input xj 
(with j=1, …, N and N the total number of samples) is given by 
the following relationship in Eq. 10, 

    𝑑𝑑𝑗𝑗𝑖𝑖 = 𝑀𝑀𝑗𝑗 ∑ 𝑤𝑤ℎ𝑜𝑜𝐼𝐼ℎ𝑗𝑗
𝑖𝑖ℎ
ℎ=1 �1 − 𝐼𝐼ℎ𝑗𝑗�𝑤𝑤𝑖𝑖ℎ        (10) 

where, Sj is the derivative of the output neuron with respect to 
its input, 𝐼𝐼ℎ𝑗𝑗  is the response of the hth hidden neuron, 𝑤𝑤ℎ𝑜𝑜 is the 
weight between the hth hidden neuron and the output neuron and 
𝑤𝑤𝑖𝑖ℎ is weight between the ith input neuron and the hth hidden 
neuron. If the partial derivative is negative, which indicates 
negative impact, that is, as the input variable increases, the 
output variable will decrease. On the contrary, if the partial 
derivative is positive, which indicates a positive impact, that is, 
as the input variable increases, the output variable will increase. 
The relative contribution of an input to the NN output can be 
obtained via the sum of square derivatives (SSD) value as 
expressed in Eq. 11. The input variable that has the highest SSD 
value, has the highest impact on the output variable.  

      𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖 = ∑ �𝑑𝑑𝑗𝑗𝑖𝑖�
2𝑁𝑁

𝑗𝑗=1          (11) 

2) ‘Weights’ Method 
The ‘weights’ method [18], [19] is a technique for segregating 
the connection weights to accord relative importance to the 
inputs. The connection weights between the hidden node and 
the output node are associated with the connection weights of 
the input nodes to that hidden node. For example, in a NN with 
n input nodes, m hidden nodes and 1 output node, the ‘weights’ 
method is implemented using the following relationships in Eq. 
12,  

   𝑄𝑄𝑖𝑖ℎ = |𝑤𝑤𝑖𝑖ℎ.𝑤𝑤ℎ𝑐𝑐|
∑ |𝑤𝑤𝑖𝑖ℎ.𝑤𝑤ℎ𝑐𝑐|𝑖𝑖

      (for i=1,..,n; h=1,..,m)        (12) 

where, 𝑤𝑤𝑖𝑖ℎ is the connection weight between the input node i 
and the hidden node h, 𝑤𝑤ℎ𝑜𝑜 is the connection weight between 
the hidden node h and the output node o, and 𝑄𝑄𝑖𝑖ℎ is the weighted 
influence of individual hidden node h to the output given its 
association with all its inputs i, and in Eq. 13, 

        𝑅𝑅𝐼𝐼𝑖𝑖(%) = ∑ 𝑄𝑄𝑖𝑖ℎℎ
∑ ∑ 𝑄𝑄𝑖𝑖ℎ𝑖𝑖ℎ

x100    (for i=1,..,n; h=1,..,m)        (13) 

where, RIi is the relative importance of input node i in 
percentage term.  

IV. EXPERIMENTS AND RESULTS 
Though both the PaD method and the ‘weight’ method are 

able to provide ML with explanatory capability [10], the 
‘weight’ method is adopted in our implementation as it 
combines more readily with our GA chromosome matrix 
encoding. Table 3 illustrates, by means of the chromosome 
matrix described in Table 1, our GA with SA approach to 
determine the relative importance of the input features on the 
output. By applying Eq. 11 and Eq. 12, it can be seen that input 
node 1 has the highest relative importance at 42.4%, followed 
by input node 3 at 41.3% and input node 2 at 16.3%. 

TABLE 3 EXAMPLE CHROMOSOME MATRIX FOR SA USING ‘WEIGHTS’ 
METHOD 

 Hidden 
node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Sum impact of 
input node at 
output or RI(%) 

Input node 1 Q11=0 Q21=1.0 Q31=0 Q41=0.697 1.697 or 42.4% 

Input node 2 Q12=0 Q22=0 Q32=0.350 Q42=0.303 0.653 or 16.3% 

Input node 3 Q13=1.0 Q23=0 Q33=0.650 Q43=0 1.650 or 41.3% 

A. Actual Data 
Integrating the ‘weights’ method into our evolutionary NN 

approach, the RI of the input variables from the Hadoop dataset 
is plotted for further analysis. In the experiment, we set the GA 
population size to 100 chromosomes for 100 generations. At 
each generation, the chromosomes fight for survival by 
evolving towards an optimal solution through the process of 
selection, crossover and mutation. The fittest chromosome from 
each generation is selected to compute the inputs’ RI. The data 
is collected and averaged over 100 generations. The process is 
repeated for 20 runs and the result is shown in Fig. 3 and Table 
5. 

 
Fig. 3.  Relative Importance of Input Variable on the Energy Consumption 

From Fig. 3, it is observed that ‘Job duration’ ranks the highest 
with RI at 10.0%. The next three variables of importance are 
‘Reduce shuffle bytes’, ‘Reduce file byte write’ and ‘Number 
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of mapreduce instructions’, with RI at 9.2% each. The ‘Reduce 
shuffle bytes’ counter keeps track of the total bytes being 
shuffled which is an indicator of high presence of network-
intensive activities. At the shuffle stage of the MapReduce 
process, files are shuffled from mappers to reducers. Depending 
on the nature of the task, as in the case of the Sort tasks, shuffle 
activities could be intensive. The variables ‘Memory use’, 
‘System load’ and ‘CPU utilization’ are ranked 7th, 8th and 11th 
respectively. This may seem as a surprise at first, which shall 
be explained with Fig. 4 in the later section. Another 
observation in Fig. 3 is that the input variable ‘file size’ is 
ranked 5th. As MapReduce is a distributed and parallel 
processing framework where the Big Data files are split into 
chunks of HDFS blocks. The larger the files the more chunks to 
be distributed into HDFS blocks residing at various datanodes. 
The mapper and reducer daemons in the datanodes perform the 
MapReduce tasks on the data as assigned by the Job tracker. 
The input variable ‘file size’, in this case, has a fairly high RI 
as it is a key factor contributing to the energy consumption. The 
variable ‘Network bandwidth’ is the least in relative 
importance. This counter keeps track of the total number of 
bytes sent and received in the Hadoop cluster.   

In Fig. 4, the input variables are grouped by categories with 
the breakdown shown in Table 4. It is observed that the ‘I/O’ 
category has the most impact over energy consumption, 
followed by ‘Job profile’. The ‘System’ category, which 
includes utilization of CPU and memory, and OS processes, is 
ranked third. The least in relative importance is the ‘Network 
transfer’ category. Earlier in Fig. 3, it was noted that the input 
variables ‘Memory use’, ‘System load’ and ‘CPU utilization’ 
are ranked 7th, 8th and 11th respectively. However in the category 
chart in Fig. 4, ‘System’ taken as a whole, is ranked closely 
behind ‘Job profile’.  

 
Fig. 4.  Relative Importance of Input Features Grouped by Categories 

Fig. 5 shows the RI plots for each of the twelve input 
variables of the NN. The RI is calculated from the fittest 
chromosome structure of that generation and traced over 100 
generation or until convergence is reached, i.e. the optimal 
solution is found. 

TABLE 4: INPUT VARIABLES GROUPED BY CATEGORIES 

Category Input Variables 

System 
CPU Utilization 
Memory Use 
System Load 

I/O 

Map file byte Read 
Map file byte Write 
Reduce file byte Read 
Reduce file byte Write 

Network Transfer Network Bandwidth 
Reduce Shuffle Bytes 

Job Profile 

Job completion duration 
File size 
Number of MapReduce 
Instructions 
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TABLE 5: COMPUTATION OF RI (%) FOR 20 RUNS 
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1 7.6 16.4 4.4 7.5 13.9 4.0 6.1 9.1 5.9 10.2 8.4 6.4 
2 10.7 9.5 5.8 12.0 6.8 7.0 8.4 9.3 5.8 9.1 7.2 8.5 

3 7.9 4.5 7.7 11.3 7.6 7.0 10.3 7.4 6.2 7.9 8.8 13.5 
4 9.9 5.3 12.3 7.9 7.6 5.8 8.3 9.0 8.3 6.6 6.9 12.2 
5 8.5 7.1 7.2 5.3 5.9 12.1 6.6 6.5 9.8 4.1 12.4 14.5 
6 10.8 7.2 8.3 7.7 6.7 6.3 7.1 6.3 9.2 13.5 8.5 8.5 
7 8.0 8.0 7.1 10.5 7.5 6.9 11.0 12.1 7.3 9.5 5.5 6.5 
8 11.4 9.6 6.2 7.2 10.5 9.7 7.6 8.8 6.8 6.1 8.6 7.6 

9 7.3 9.2 6.5 8.4 9.7 6.3 10.2 5.8 10.1 6.3 12.4 7.7 
10 11.4 8.5 4.1 7.1 7.9 2.6 6.8 10.1 6.5 15.5 12.3 7.3 
11 7.0 12.0 7.6 3.1 8.9 12.8 6.4 6.4 10.9 8.5 7.5 8.9 
12 7.9 8.3 7.9 7.2 7.9 8.1 8.4 5.6 6.7 11.0 13.6 7.4 
13 5.4 10.3 5.4 9.5 11.3 6.1 4.3 7.8 7.8 9.9 15.4 6.8 
14 4.1 10.3 6.8 7.7 6.9 7.8 8.5 3.5 8.6 12.9 10.9 12.2 

15 8.6 14.7 6.5 12.9 10.9 5.1 8.7 5.5 8.2 7.3 4.6 7.1 
16 6.9 12.2 7.1 9.4 6.7 8.3 6.7 8.7 9.2 9.0 8.3 7.5 
17 8.1 10.6 8.3 10.4 5.8 7.7 7.7 7.2 10.6 9.2 5.9 8.6 
18 8.6 12.3 7.7 8.5 6.2 9.2 5.6 3.0 9.7 8.7 9.6 11.0 
19 10.5 13.1 7.1 3.8 6.1 5.3 6.6 4.8 9.6 9.3 9.7 14.1 
20 9.2 10.1 10.9 6.3 7.7 4.5 8.1 8.6 8.6 9.7 8.3 8.0 

Ave 8.5 10.0 7.2 8.2 8.1 7.1 7.7 7.3 8.3 9.2 9.2 9.2 
Stdev 1.8 1.7 1.7 1.6 1.5 1.8 1.6 1.6 1.7 1.7 2.0 1.7 

V. CONCLUSION AND FUTURE WORK 
The ability to give meaningful insights to black-box NN 

models can provide explanation on how the various system 
parameters affect its output. This benefit is of interest as useful 
and novel information can be derived to improve system 
characteristics and performance. In this paper, we have 
presented an approach combining evolutionary NN with 
sensitivity analysis. It was shown that the ‘weights’ method is 
able to seamlessly integrate with our GA to determine key 
factors contributing to energy consumption in cloud data 
centers. The results show that IO activities contribute most 
significantly to energy consumption. Armed with this insight, 
data centers can reduce energy consumption by minimizing 
access to storage or utilizing more efficient storage 
infrastructures and components. The other aspect revealed in 
our experiment is that the job profile such as file size, time taken 
to complete a task and the resources assigned to the job have 
relatively high impact on the energy consumption. As jobs may 
be bounded by service-level-agreement (SLA), adequate 
resources are usually assigned to complete the tasks within a 
certain time. Hence, this knowledge provides an opportunity for 
software analyst to design and develop energy-aware 
applications that optimizes resource allocation. Another 
potential energy savings that could be realized is to partition the 
Big Data into bigger chunks and place them closest to the 
mappers and reducers in the Hadoop HDFS. By doing so would 
shorten the time to complete the MapReduce jobs and thus 
saving energy.  

Although our experiment combining GA and SA has 
managed to shed light on key factors contributing to energy 
consumption, further investigations are still needed. For future 
developments, we plan to take advantage of ML black-box 
approach with SA to develop a ‘grey box’ that will preserve the 
physical significance of the system parameters while at the 
same time model the nonlinear complexities of the cloud data 
center to  allow for greater energy savings and better 
understanding of the system. 
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