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Abstract

Thin-walled conical and cylindrical shells subjected to axial compression often show a snap-back response in the
presence of buckling. Newton iterations based path-following methods cannot trace reliably the snap-back response
due to the extremely sharp turning angle near the limit point, and the original Koiter-Newton method also meets
difficulties to achieve a complete post-buckling response beyond the limit point. In this paper, the improved Koiter-
Newton method is proposed to trace the post-buckling path of cylinders and cones, in the framework of the reduced-
order modeling technique. The polynomial homotopy continuation (PHC) method is used to solve the lower-order
nonlinear reduced order model reliably and efficiently. The simplified Green-Lagrange (SGL) kinematics which
consider the stress redistribution after buckling are implemented into the construction of the reduced order model to
produce accurate results for curved shells. The numerical results presented reveal that the improved method is a robust
and efficient technology to achieve the entire nonlinear response for the snap-back case.
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1. Introduction

Thin-walled conical and cylindrical shells are commonly used as primary components in weight-critical structure
engineering, such as aircrafts and rockets, due to the high specific strength and stiffness [1, 2, 3]. Their load-carrying
capabilities are often determined by the buckling loads which may be much lower than the failure loads of materi-
als. These shell type structures, which exhibit an unstable post-buckling behavior, are highly sensitive to the initial
imperfections, especially to the geometric imperfection [4].

Nonlinear structural analysis based on a path-following technique is commonly used to trace the response curve
and to predict the load-carrying capacity of shell structures in the presence of buckling [2, 5]. Snap-through and
snap-back responses are two main phenomenons usually associated with the buckling of shell structures [6]. Some
variants of the classical Newton method, i.e. the arc-length method [7] and norm flow method [8], have been proved
to deal with the snap-through case very well. However, the above methods encounter difficulties with a snap-back
response of cylindrical shells [9], where extremely sharp turning angles are present [3, 5, 10]. A significant reduction
of the incremental step size is required to distinguish properly the two closely spaced path segments near the limit
point [5, 11]. When instabilities are localized, there will be a local transfer of strain energy from one part of the
model to neighboring parts which may prevent the success of global solution methods. This class of problems must
be solved either dynamically or with the aid of artificial damping. Thus, a combination of the displacement control
and a damping factor is commonly used to pass the limit point of a snap-back response [5, 10].

The Koiter-Newton (KN) method [12, 13] has been proposed based on the reduced-order modeling technique to
trace the nonlinear equilibrium path in a stepwise manner. In each step, the method combines a prediction phase using
a nonlinear reduced order model(ROM) based on Koiter asymptotic analysis [14, 15, 16] with a Newton iteration
based correction procedure, thus allowing the algorithm to use fairly large step sizes. In the original Koiter-Newton
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method, the classical arc-length method is used to solve the nonlinear system of equations associated with the reduced
order model. Instead of solving a large-scale nonlinear system generated from the full finite element model [17],
the lower-order reduced order model can provide a much more reliable solution to pass the extremely sharp turning
angle in the snap-back case. However, the path-following performance is still very sensitive to the solution parameters
related to the arc-length method and the method meets difficulties to trace the post-buckling path that is far beyond
the limit point. Actually, the nonlinear algebraic equations, that is the reduced order model, can be expressed as
polynomial equations. Thus, the polynomial homotopy continuation (PHC) method [18, 19] can be used as a reliable
and efficient tool to solve the lower-order reduced order model. The construction of the reduced order model requires
derivatives of the strain energy with respect to the degrees of freedom up to the fourth order, which is two orders more
than traditionally needed for a Newton based nonlinear finite element technique. The von Kármán kinematics have
been used in the finite element implementation of the original Koiter-Newton method [13]. The nonlinear in-plane
rotation terms are neglected to facilitate the high order derivatives of the strain energy. However, these terms might be
negligible for flat plate situations but they indeed play a major role in structures consisting of assembly of flat plates
or curved shells. A alternative way to alleviate the shortcoming is to use the simplified Green-Lagrange (SGL) strain
tensor which has been successfully implemented in the former Koiter reduction method [16].

The contribution of this paper distinguishes significantly from previous publications [6, 12, 13, 20] in the improve-
ment of the original Koiter-Newton method to be more applicable for the snap-back case. The lower-order reduced
order model is solved using the polynomial homotopy continuation method, to trace reliably the entire snap-back
response. The simplified Green-Lagrange kinematics are implemented into the Koiter-Newton method to obtain a
more accurate results for the curved shells. We carefully test the improved Koiter-Newton method for the snap-back
behaviour of thin-walled cylindrical and conical shells to reveal the performance of the method for extremely sharp
turning angles at the limit point. We demonstrate that the method is capable to handle these numerically severe test
cases reliably and accurate and thus outperforms most of the state-of-the-art solution methods.

The rest of the paper is organized as follows: a brief introduction of the shell theory and the SGL strain used in
this study is given in section 2. The Koiter-Newton method and the PHC method used to solve the reduced order
model are presented in section 3. Numerical examples of cylinders and cones used to demonstrate the success of the
method are provided in section 4. We summarize the paper and draw conclusions in section 5.

2. Shell theory based on simplified SGL strain

Based on the classical plate theory (Kirchhoff-Love hypothesis), the three displacement components (u, v,w) of a
thin plate are expressed as: 

u(x, y, z) = u0(x, y) − z
∂w
∂x

v(x, y, z) = v0(x, y) − z
∂w
∂y

w(x, y) = w0(x, y)

, (1)

where u0(x, y), v0(x, y) and w0(x, y) are the displacement components related to the mid-plane of the plate.
The total strain vector ε for the plate is:

ε = εm + zκ, (2)

where εm and κ are the in-plane strain vector of the mid-plane and the curvature vector of the plane.
To consider the geometrical nonlinearities of the plate, the simplified Green-Lagrange strain kinematics are used

for the mid-plane strain εm, as given by:

εm =
{
εx εy εxy

}
, (3)
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where 

εx =
∂u
∂x
+

1
2

(
∂v
∂x

2

+
∂w
∂x

2)

εy =
∂v
∂y
+

1
2

(
∂u
∂y

2

+
∂w
∂y

2)

εxy =
1
2

(
∂u
∂y
+
∂v
∂x

)
+

1
2

(
∂w
∂x
∂w
∂y

)
, (4)

The simplified Green-Lagrange strain kinematics include some nonlinear in-plane rotation terms, which consider
the stress redistribution in the post-buckling deformation.

The constitutive relationship of the plate is written as:{
N
M

}
=

[
A B
B D

] {
εm

κ

}
, (5)

where N and M are the membrane force vector and the bending moment vector, respectively, and matrices A, B and D
are the membrane stiffness, membrane-bending coupling stiffness and bending stiffness, respectively. For the isotropic
shell, the coupling stiffness B equals to be 0. For laminated composite plate, the material stiffness A, B and D can be
calculated using the classical lamination theory.

3. The improved Koiter-Newton method

In the following we briefly present the basic ideas and principles of the Koiter-Newton method. In particular,
we introduce the polynomial homotopy continuation method used to solve the reduced order model. For a detailed
description of the theory, we point the reader to work [12, 13, 18].

3.1. Construction of the reduced order model

The Koiter-Newton method is based on a step by step procedure to trace the equilibrium path of the deforming
structure, that is similar to classical path-following techniques [21]. The unique properties and algorithmic differences
compared to standard technologies are given in the following with the help of Figs. 1 and 2. In addition, the red
contents written in Fig. 1 are the main improvements made in this study, compared to the original KN method.

Starting from a known nominal equilibrium state (q0, λ0), usually the un-deformed configuration of a structure,
the equilibrium state is represented by a set of nonlinear algebraic equations:

fint(q) = λfext (6)

where fint and fext are the internal force vector and external force vector, respectively, and λ is the load parameter, and
q is the displacement vector.

The corresponding reduced order model at this known state is constructed within the framework of the Koiter-
Newton method, to be:

L̄(ξ) + Q̄(ξ, ξ) + C̄(ξ, ξ, ξ) = ϕ (7)

where L, Q and C are still to be determined linear, quadratic and cubic forms of the approximated load amplitudes
ϕ. These forms can also be represented by a two-dimensional tensor L, a three-dimensional tensor Q and a four-
dimensional tensor C of order (1 + m), respectively, where m is the number of the closely-spaced buckling modes of
the structure. ξ are generalized displacements or perturbation parameters.

The construction of the reduced order model (7) is illustrated in Fig. 1. The basic idea involves a modification of
Koiter’s asymptotic theory to make it applicable already from the unloaded state. The unknowns L, Q and C in the
reduced order model (7) can be achieved by solving three sets of linear equations. The number of degrees of freedom
in the reduced order model is m + 1, where m ≪ N and where N is the total number of DOFs of the full discretized
model. In this study, the simplified Green-Lagrange strain kinematics introduced in section 2 are used to construct the
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reduced order model to properly consider the stress redistribution after buckling, which is an important improvement
compared to the original KN method.

The structural imperfection is introduced easily in the Koiter-Newton method. The construction of the reduced
order model remains unchanged when imperfections are introduced or changed during the analysis, which reduces the
computational cost significantly for buckling analyses when imperfection models are tested systematically.

    a known state

residual force 
satisfies accuracy
           ?

driving the residual force to be zero 

using Newton iterations

construction of the reduced order model

correction the prection

starting a new load  step

modified Koiter perturbation expansion

reduced order model

equilibrium 
equations of 

the full model

solving the reduced order model

 eigenvalue buckling analysis
              simplified 

Green-Lagrange kinematics

Polynomial Homotopy Continuation 

                       method

Figure 1: Flow chart of the improved Koiter-Newton method

3.2. Solution of the reduced order model, using the PHC method

The reduced order model (7) obtained in section 3.1 is a nonlinear system of equations with m + 1 degrees of
freedom, which could also be expressed as polynomial equations. The polynomial homotopy continuation method is
a robust solver to find all the roots of a polynomial system. The basic idea is to start with known solutions of a known
start system and then track those solutions as we deform the start system into the system that we wish to solve.

The PHC method operates in two stages. Firstly, homotopy methods exploit the structure of P to find a root count
and to construct a start system P0(x) = 0 that has exactly as many regular solutions as the root count. This start system
is embedded in the homotopy, as given by:

H(x, t) = γ(1 − t)P0(x) + tP(x), t ∈ [0, 1], (8)

where γ ∈ C is a random number.
In the second stage, as t moves from 0 to 1, numerical continuation methods trace the paths that originate at the

solutions of the start system towards the solutions of the target system.
Following the above procedures, the reduced order model is solved reliably by the polynomial homotopy continu-

ation method, which is another optimization compared to the original Koiter-Newton method. The numerical solution
is used as an initial nonlinear predictor for the response of the structure. Compared to traditional Newton methods
which use a linear predictor, a significantly larger step size is obtained using the Koiter-Newton approach due to a
better nonlinear predictor provided by the reduced order model, see the red, dashed curve plotted in Fig. 2. During the
simulation of the reduced order model, the unbalanced force residual fr (9) is calculated to judge whether the applied
reduced order model is sufficiently accurate, as given by:
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Newton method: linear predictions

One Newton step

one K-N step

In each load step nonlinear prediction

Path-following strategy of the Koiter-Newton method

correction

obtained from reduced order model based on Newton iterations

+

correction

nonlinear prediction

Figure 2: The path-following strategy

fr = λfext − fint, (9)

where fint is the internal force vector of the current iteration step, fext is the external force vector and λ is the current
load parameter. The internal force is calculated based on the full finite element model, thus its value is reliable. The
simulation of the reduced order model will be stopped for fr being below a given threshold. In a subsequent corrector
phase, the residual is driven to zero in a manner similar to the classical Newton methods, as indicated by the pink
lines of Fig. 2. Then, an updated reduced order model is constructed for further load steps, based on the new found
equilibrium state of the structure. At this point, one completely incremental step of the improved Koiter-Newton
method is finished.

3.3. Computational cost
Three basic parts in each expansion step of the improved Koiter-Newton approach can be recognized: 1) con-

struction of the reduced order model, 2) iterative solution of the reduced order model, 3) correction of the predictor
produced by the reduced order model. In Fig. 3, the computational cost of each part is assessed using the number of
full linear FE systems that needs to be solved, assuming that the computational cost is dominated by a factorization
and not by a forward and back substitution. It can be observed in Fig. 3 that only 3∼4 linear FE systems need to be
solved in each incremental step with sufficient accuracy of the reduced order model which is controlled by a chosen
threshold. Then, the computational costs of the Koiter-Newton analysis and the full nonlinear analysis based on the
classical Newton method can be easily compared only using the number of the incremental steps, if the number of
iterations in each incremental step of the classical Newton method is also controlled to be 3∼4.

4. Numerical examples

The selected examples presented in this section are severe study cases for shell buckling due to their extremely
sharp snap-back turning angle of the response curve. We compare the results of our method with results obtained
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Number of linear FE systems  needs to be solved in each step: 3~4  

construction of ROM

1 FE system factorization

solving the ROM

negligible

corrections

2~3 FE system factorizations

Figure 3: Computational cost in each incremental step of the improved Koiter-Newton method

from a classical Newton iteration-based nonlinear path following method which is provided in ABAQUS [22]. The
ABAQUS solution uses the full set of equations of the finite element model. In addition, we also compare the results
of our method with those achieved using the original Koiter-Newton method. The original Koiter-Newton method
uses von Kármán kinematics to constitute the reduced order model, and adopts the classical arc-length method to
solve the model.

The discrete models used in different numerical methods are equal in terms of the number of nodes and the number
of elements used. As mentioned in section 3.3, the computational cost per step of the Newton method and the Koiter-
Newton method is of the same order, hence the number of steps needed to trace the equilibrium path are regarded
sufficient for a fair comparison.

In this study, we only compare our results with the existing numerical solutions. The comparison with experimen-
tal results is difficult, since current numerical model does not consider the material degenerations, realistic boundary
conditions and realistic imperfections.

4.1. Laminated composite cylinder, z15
A classical laminated composite cylinder, named z15 cylinder, has been analyzed by Degenhardt [23] using the

traditional Newton path-following method. The sketch of the cylinder is given in Fig. 4. A non-symmetric stack-
ing sequence [24o,−24o, 41o,−41o] is considered with orthotropic material properties E11 = 157362N/mm2; E22 =

10092N/mm2; G12 = 5321N/mm2; ν12 = 0.277; ρ = 1600Kg/mm3. The cylinder is fully clamped at the bottom and
fixed along the top rim but can move in axial direction in which a uniform compression load is applied.

L=500mm

R=250mm

t

inside

outside

+240

-240

+410
-410

Figure 4: The laminated composite cylinder

We start with a convergence study to derive a suitable mesh size providing sufficient accuracy for the later nonlinear
structural analysis. The first bifurcation load obtained from the eigenvalue analysis are used as a reference in the
convergence study. Results of the convergence study are depicted in Fig. 5. It can be concluded that the improved
Koiter-Newton method converges at a better rate since more accurate strain measure was used. A comparison of
the linear buckling mode with the analysis results obtained from ABAQUS and the original Koiter-Newton method
reveals a good match, as shown in Fig. 6, using a mesh size 10mm.

We perform a nonlinear structural analysis for the perfect cylinder geometry to obtain a reference result for a
plausibility check. There are, in total, 15 DOFs in the reduced order model, where the first degree of freedom is
related to the primary path, and the others are related to the 14 closely-spaced buckling modes. The response curves
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Figure 5: Convergence study of the cylinder

about the end-shortening are plotted in Fig. 7. The original Koiter-Newton method meets convergency difficulties to
trace response curve after the limit point. However, the response curve obtained using the improved Koiter-Newton
method reveals a better match with the ABAQUS result, not only near the limit point but also in the post-buckling
stage. The complete response can be obtained if more Koiter-Newton steps are carried out in the post-buckling path.
ABAQUS based on the Newton method adopts 69 steps to trace the response curve shown in Fig. 7, while the
improved Koiter-Newton method only uses 3 steps. As mentioned in sec. 3.3, the computational cost in one step of
the Newton method and the Koiter-Newton method is roughly the same.

ABAQUS original KN method improved KN method

Figure 6: Comparison of the first buckling modes obtained using different methods

One laterally centralized load is applied in the middle (1/2L) of the cylinder surface to model the geometric dimple
imperfection. There are, in total, 16 degrees of freedom in the reduced order model for imperfection analysis. The
first degree of freedom is related to the primary path, the second degree of freedom to the lateral load, and the others
are related to the 14 closely-spaced buckling modes. The nonlinear buckling analyses for different values of the lateral
load are carried out using the improved Koiter-Newton method. In Fig. 8, the limit loads of the various perturbation
loads are plotted as a knock-down factor curve and compared to the results obtained from ABAQUS and the original
Koiter-Newton method. It can be seen that when the lateral load is not very large, smaller than 2.5N, the values of
buckling loads match very well with the results produced using ABAQUS, while the error becomes large in the descent
range of the knock-down factor curve and seems to be small again when the lateral load is large enough. The reason
is that the Koiter asymptotic analysis is only numerically valid under a small imperfection amplitude. However, it
can be concluded in Fig. 8 that the improved Koiter-Newton method reveals a better performance compared to the
original method.

The computational cost of the imperfection analyses using the Koiter-Newton approach is compared with results
obtained using ABAQUS. To obtain the knock-down factor curve shown in Fig. 8, ABAQUS needs to recalculate the
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Figure 7: Response curves of the perfect cylinder

entire FE model 9 times and each time it needs approximate 57 incremental steps in average, that is ABAQUS needs in
total 57× 9 incremental steps. However, since the reduced order model does not need to be reconstructed for different
lateral loads, the Koiter-Newton approach only needs 1 incremental step to construct the reduced order model once for
the perfect cylinder. This demonstrates again that the Koiter-Newton approach is much more computational efficient
if used for imperfection analyses.
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Figure 8: Knock-down curves obtained from imperfection-sensitivity analyses

4.2. Isotropic cone

An isotropic conical shell under axial compression in Fig. 9 has been analyzed before by Rahman and Jansen [16],
with material properties E = 56950N/mm2 and ν = 0.3. The ”MSS4” boundary condition [16] is applied. One end
of the conical shell is fixed and an axial load was applied at the other end. All the displacement degrees of freedoms
are restrained at the edge of the fixed end while the rotational degrees of freedoms remain free. At the loaded end the
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displacements are fixed in radial direction. We constrain those axial displacements such that they remain the same at
all nodes of the edge and thereby eliminating the possibility of warping at the edge.

L=937mm

R=2138mm

t=6.5mm

r=1489.5mm

Figure 9: The isotropic cone

In Table 1, the first bifurcation load achieved using the proposed method is compared with those obtained using
the original KN method, the finite element method in DIANA study [16] and the semi-analytical tools BAAC [24],
respectively. The number ‘N’ in Table 1 denotes the number of circumferential full waves. In Fig. 10 we show the first
buckling mode and the first and second order displacement fields provided by the improved Koiter-Newton method. It
can be seen that the first order displacement field indicates the deformations of the axial compression, and the second
order displacement field is similar to the first buckling mode.

Table 1: Comparison of the first bifurcation load [N].
N Elements Improved KN method Original KN method DIANA BAAC
10 120 × 36 9.0147 × 106 9.0223 × 106 9.1071 × 106 9.0142 × 106

First buckling mode First order field Second order field

Figure 10: Deformations obtained using the improved Koiter-Newton method

A geometric imperfection of the shape of the first buckling mode with an amplitude of 10% of the shell thickness
has been used for the analysis of the imperfect structure. Here, the buckling modes are scaled such that the maximum
out of plane displacement corresponds to the shell thickness. The Koiter-Newton method requires only the first
buckling mode to construct the reduced order model. In general, clustered buckling modes are a common case for
cylindrical and conical shells and the construction of a corresponding reduced order model which accurately captures
the post-buckling response requires several modes as demonstrated in the previous example. However, the use of
the first buckling mode as a suitable imperfection shape triggers the post-buckling deformation and thus a single
mode analysis is possible. The end-shortening curves of the imperfect cone are compared in Fig. 11. The original
Koiter-Newton method dose not converge in the post-buckling stage, thus it can obtain response of the structure only
satisfactorily up to the buckling load. However, the response curve obtained using the improved method matches very
well with that calculated by the full nonlinear analysis. The complete response can be obtained if more Koiter-Newton
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steps are carried out in the post-buckling path. The improved Koiter-Newton analysis requires three KN steps whereas
the full Newton iteration-based nonlinear reference analysis needs 63 steps.
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Figure 11: Response curves of the imperfect cone

4.3. Stiffened cylinder

An isotropic stiffened cylinder specified in Table 2, which has been studied by Liang [3] using ABAQUS, are
reanalyzed using the improved Koiter-Newton method. In work [3], it was found that the results obtained from the
stringer shell model correspond well with results of an alternative smeared stiffener model. For the stringer shell
model, all the stiffeners inside the cylindrical shell are modeled using shell elements. In this study we use a smeared
stiffener concept. The stiffeners were not modeled explicitly but taken into account with a general shell stiffness
contribution (10) which was assigned to the cylinder in the constitutive equations [25].

Table 2: Configuration of the stiffened cylinder, [MPa, mm]
Material Cylinder dimensions Stiffener dimensions

E: 70000 Radius: 400 Height: 5.2

ν: 0.34 Length: 1000 Thickness: 0.55
Thickness: 0.55 Number of stiffeners: 90

Ksmeared =



53569.1 14801 0 28855.8 0 0

14801 43532.3 0 0 0 0

0 0 14365.7 0 0 0

28855.8 0 0 106673.9 373.1 0

0 0 0 373.1 1097.4 0

0 0 0 0 0 456.5



. (10)
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The results of the four different analysis models are listed in Table 3. The first buckling modes obtained from the
smeared stiffener models using ABAQUS and the Koiter-Newton methods, respectively, are shown in Fig. 12. The
mode has 11 full waves in circumferential direction and one full wave in axial direction.

Table 3: Comparison of the first buckling load

Methods & models ABAQUS ABAQUS Original KN Improved KN
(stringer model) (smeared model) (smeared model) (smeared model)

First buckling load, [N] 1.018 × 105 1.133 × 105 1.113 × 105 1.095 × 105

Relative error, [%] None 11.3 9.3 7.5

ABAQUS original KN method improved KN method

Figure 12: Comparison of the first buckling modes, using the smeared stiffener model

One laterally centralized load 2N is applied in the middle (1/2L) of the cylinder surface to model the geometric
imperfection. There are, in total, 20 degrees of freedom in the reduced order model for imperfection analysis. The first
degree of freedom is related to the primary path, the second degree of freedom to the lateral load, and the others are
related to the 18 closely-spaced buckling modes. The end-shortening curves are plotted in Fig. 13. ABAQUS uses the
displacement control and the damping factor in the Newton method to directly jump through the sharp turning angle
near the limit point, hence the snap-back segment is lost. However, the improved Koiter-Newton method achieves the
entire snap-back path of the structure, and the re-stiffness path in the post-buckling stage matches very well with the
ABAQUS solution. ABAQUS based on the Newton method adopts 53 steps to trace the response curve, while the
improved Koiter-Newton method only use 2 steps.

5. Conclusions

The conical and cylindrical shells perform an extremely sharp snap-back-turning near the limit point. Although
the original Koiter-Newton method provides a more reliable path-tracing analysis near the initial post-buckling stage,
compared to the traditional Newton based path-following technique, this method also meets difficulties to achieve the
entire snap-back response that is far beyond the limit point. Hence, the improved Koiter-Newton method is proposed
in this paper to overcome the above problem. The simplified Green-Lagrange kinematics are implemented to consider
the stress redistribution properly after buckling. The polynomial homotopy continuation method is used to solve the
lower-order nonlinear reduced order model reliably and efficiently. A composite cylinder, a metal cone and a stiffened
cylinder are used to evaluate the path-following performance of the improved Koiter-Newton method for the snap-
back case. The geometric imperfections are modeled using either the linear buckling mode or the lateral load. The
numerical results show that the improved method is a numerically robust, accurate and efficient path-follow technique
to obtain the entire snap-back response of the structure.
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