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Abstract A continuity equation is developed to model the evolution of a swarm of self-
propelled ‘smart dust’ devices in heliocentric orbit driven by solar radiation pressure. These
devices are assumed to be MEMs-scale (micro-electromechanical systems) with a large area-
to-mass ratio. For large numbers of devices it will be assumed that a continuum approximation
can be used to model their orbit evolution. The families of closed-form solutions to the
resulting swarm continuity equation then represent the evolution of the number density of
devices as a function of both position and time from a set of initial data. Forcing terms are
also considered which model swarm sources and sinks (device deposition and device failure).
The closed-form solutions presented for the swarm number density provide insights into the
behaviour of swarms of self-propelled ‘smart dust’ devices an can form the basis of more
complex mission design methodologies.

Keywords Swarm - Satellite constellation - Micro-satellite - Solar radiation pressure -
Continuity equation

1 Introduction

Astrodynamics has traditionally been concerned with the orbital motion of artificial satellites
described using sets of nonlinear ordinary differential equations (ODE). For example, the
inverse square force due to the potential of a uniform, spherical mass leads to the well-known
family of conic section orbits through the Kepler problem. Using the Kepler problem as the
unperturbed solution to the artificial satellite problem, the influence of perturbations can then
be investigated by constructing high order series solutions using a range of techniques. How-
ever, while nonlinear ODEs provide a set of powerful tools to investigate the rich behaviour
of the artificial satellite problem, new tools are now required to understand the behaviour of
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large ensembles of micro-satellites of diminishing length-scale. Rather than using the meth-
ods of ODE:s to propagate the motion of individual satellites, a continuum approach using
partial differential equations (PDE) can be used to provide an understanding of the behaviour
of these new systems.

While an understanding of the behaviour of swarms of micro-satellites provides the con-
temporary motivation for a continuum approach to Astrodynamics, prior work on continuum
dynamics for artificial satellites has been motivated by the need to understand the evolution
of orbital debris clouds and early passive systems such as the West Ford needles [e.g. Heard
(1976)]. In addition, prior literature on the orbit evolution of clouds of natural dust grains [e.g.
Gor’kavyi et al. (1997)] and galactic dynamics [e.g. Binney and Tremaine (1987)] provides
rich insights into the problem.

However, the need for new methodologies can be seen in the development of self-propelled
MEMs-scale (micro-electromechanical systems) technologies which can enable the deploy-
ment of large swarms of self-propelled ‘smart dust’ devices (Kahn et al. 1999) driven by solar
radiation pressure (Atchison and Peck 2008; Barker and Rodriguez-Salazar 2008; Atchison
and Peck 2010). Itis envisaged that swarms of such devices could be released from a dispenser
(Manchester et al. 2013) and then utilise solar radiation pressure to slowly spiral inwards or
outwards through the ecliptic plane (McInnes 1999). Distributed swarms could in principle
deliver massively parallel sensing for space science applications by providing, for example,
simultaneous multi-point measurements of magnetic field strength and direction (McInnes
1999; Barnhart et al. 2007; Atchison and Peck 2010).

In addition to the development of practical technologies for ‘smart dust’ devices
(Manchester et al. 2013), recent work has led to an initial understanding of their orbit evolu-
tion (Colombo and McInnes 2011a,b; Lucking et al. 2012). This is a particularly intriguing
problem given the impact of length-scaling (Atchison and Peck 2011); for a device of length-
scale L, its mass scales as L3 while its surface area scales of L2, resulting in its area-to-mass
ratio increasing with decreasing device size as L~!. Smart dust devices are therefore strongly
perturbed by surface forces such as aerodynamic drag and solar radiation pressure (Atchison
and Peck 2011; Mclnnes et al. 2011).

In this paper a continuum model of a swarm of smart dust devices in heliocentric orbit
is developed where the devices are self-propelled by solar radiation pressure. Again, rather
than model the orbit evolution of a single device, a continuity equation is formed which
represents the number density of devices. Families of closed-form solutions to the continuity
equation are then found representing the orbit evolution of the swarm through its number
density as function of both position and time. The work presented builds on prior analysis
of the evolution of debris clouds (Mclnnes 1993; Letizia et al. 2015) and the evolution of
geocentric micro-satellite swarms perturbed by air drag (Mclnnes 2000; Manchester and
Peck 2011; Mclnnes and Colombo 2013). Importantly, since a continuum approach with a
PDE is used, initial data at a given boundary is required to represent the spatial distribution
of devices, with the characteristic curves of the PDE mapping the initial data onto the time
evolution of the swarm. This is a quite different procedure to classical Astrodynamics where
point initial conditions are required for a set of ODEs.

In order to develop solutions to the continuity equation, the dynamics of a single smart dust
device are considered in Sect. 2 and approximate quasi-circular spiral trajectories obtained
for a fixed device attitude. These trajectories later provide the characteristic curves of the
continuity equation. Then, in Sect. 3 an azimuthally symmetric continuity equation is used
to model the evolution of the number density of smart dust devices as a function of both
orbit radius and time for a range of scenarios. These include consideration of a source term,
representing the constant deposition of new devices, and a sink term representing the failure
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of devices during their lifetime, as presented in Sect. 4. Rarefaction and compression of the
flow of devices is found, as expected, since the radial flow speed of the swarm due to solar
radiation pressure is a strong function of orbit radius, while the swam either flows into a
smaller (inward spiral) or larger (outward spiral) volume.

Extending the radial flow problem, azimuthally asymmetric flows are considered in Sect. 5
to model the orbit evolution of a given two-dimensional spatial pattern of smart dust devices.
Here azimuthal shearing of the pattern is found, again as expected, since the azimuthal flow
speed of the swarm is also a strong function of orbit radius distance through Kepler’s third
law. Lastly, some conclusions are drawn in Sect. 6 where it is proposed that the closed-form
solutions obtained for both the radial flows and azimuthally asymmetric flows can provide
insights into the orbit evolution of swarms and form the basis of future mission design tools.

2 Single device orbit evolution

In order to proceed, a simple model of a single smart dust device will be considered which is
self-propelled by solar radiation pressure. It will be assumed that the device is a small, thin
flat panel (Atchison and Peck 2010) which has non-perfect specular reflectivity M and that the
front and rear emissivities are equal. The direct solar radiation pressure induced acceleration
acting on such devices is significantly larger than the Poynting—Robertson drag, which can
be neglected. Following McInnes (2014), the device acceleration @ induced by solar radiation
pressure can be written as

. PA . PA . -
a= —cos(a) (1 +MNcos2a))r+ —ncos (o) sin 2a) t (1)
m m

with unit radial vector 7 and unit transverse vector £. In addition P is the solar radiation
pressure, A is the device reference area, m is the device mass and « is the pitch angle of
the device relative to the Sun-line in the range —7/2 < o < m/2, as shown in Fig. 1. It
will be assumed that the device pitch angle is fixed, which can in principle be achieved by
passive means through etching of the device surface into a sawtooth pattern (Atchison and
Peck 2010). Again following Mclnnes (2014) the rate of change of (specific) orbit energy E
of the device is given by

dE

dt
The two-body orbit energy is defined by £ = —u (1 — B) /2r (¢) for orbit radius r (¢)
and gravitational parameter n. While the transverse component of acceleration a defined
by Eq. (1) delivers work and so changes the device orbit energy, the radial component of
acceleration can be incorporated into a reduced gravitational parameter (1 — ), as noted by
Klacka (2014).

For a slow inward or outward spiral, and so a quasi-circular orbit, the device velocity
vector is approximated by the local Keplerian circular orbit velocity v(u (1 — B) /r (t))l/ 2{
(Prussing and Conway 2012), where again the radial component of acceleration can be
incorporated in a reduced gravitational parameter. Furthermore, the inverse square solar
radiation pressure P is defined by P = P(F/r (1)), where P is the solar radiation pressure
at some distance 7. The device lightness number is now defined as the ratio of the solar
radiation pressure induced acceleration to the solar gravitational acceleration experienced by
an ideal device with reflectivity n = 1. Since both solar gravity and solar radiation pressure
scale as the inverse square of the device orbit radius r (¢), the lightness number is found to be
B = 2PAF%/mu. A more sophisticated analysis for dust grains is given by Klatka (2014).
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Fig. 1 Orbit of a single ‘smart
dust’ device with
(non-dimensional) orbit radius &,
polar angle 6 and device

attitude o

Smart dust device

Sun

-~

Defining a new dimensionless dependant variable & (1) = r (¢) /r, and a new independent
variable T = wt, where @ = /i1 (1 — B) /i3 and substituting for the two-body orbit energy

E in Eq. (2) it can be shown that the device orbit radius evolves as

dé(v) 2

dr 3

where 1 = 387 cos? (@) sin () /(1 —pB)=~38n cos? (o) sin (e) if B « 1. If the device has

an initial orbit at heliocentric radius 7, such that & (0) = 1, the device orbit radius can then
be obtained by integrating Eq. (3) so that

£(1) = (1 +2r0)*3 4

AE (1)~ 12 3)

Again assuming a slow quasi-circular spiral, the polar angle 6 (t) can also be obtained from
Kepler’s third law such that

do (t) _
S =Em7 ®)
T
Integrating Eq. (5) it can then be seen that
1
0(r) = 5 log (1 4 A7) (6)

where the initial device location is such that 0 () = 0. From Eq. (3) it can be seen that the
rate of change of device orbit radius can be maximized by choosing the device pitch angle
such that

% (cos? () sin (@) = 0 = tan () = + L (7

V2

to maximize the transverse acceleration experienced by the device, with @™ ~ +35° and
o~ ~ —35°, representing the pitch attitude required for an outward and inward spiral respec-
tively. Now that the orbit evolution of a single device has been considered, the evolution of
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a swarm of such devices can be investigated through a continuity equation, the family of
solutions to which will provide the evolution of the swarm number density.

3 Swarm continuity equation

It will now be assumed that a swarm of identical devices is distributed in space within some
bound volume and that the spatial distribution of the swarm can be represented by the swarm
number density. At some initial time the swarm number density will therefore represent the
so-called initial data of this continuum problem. Solutions to the continuity equation will
propagate the initial data forward to describe the evolution of the swarm number density as
a function of both position and time.

First, an azimuthally symmetric swarm will be considered whose number density is a
function of orbit radius and time only. In order for this assumption to hold it can be noted that
if the timescale for the inward (or outward) flow of the devices is slow relative to the local
circular orbit period, the swarm can be approximated as being an azimuthally symmetric
disk. An asymmetric swarm whose number density is a function of orbit radius, polar angle
and time will be considered later in Sect. 5. In order to bound this approximation it can
be seen from Eq. (6) that an individual self-propelled device will drift azimuthally along
a quasi-circular spiral such that 6 (r) = log (1 + At) /XA, while a dispenser on a circular
Keplerian orbit at unit radius will move uniformly such that 8 (z) = 7. The difference in
the azimuthal position of the device and the dispenser can therefore be approximated by
80 = t —log (1 4+ A1) /A A~ At?/2. In order for the device to complete one revolution
relative to the dispenser, such that 66 = 2m requires a duration t ~ /47 /X. For a device
with lightness number 8 = 0.01 (Atchison and Peck 2010) and o = ™ this corresponds
to a duration equivalent to 6.5 orbits of the dispenser. As will be seen later in Sect. 4, for
B < 1 the evolution of the swarm over much longer timescales will be considered, so the
initial approximation of azimuthal symmetry is reasonable.

An individual device will now be located using (non-dimensional) cylindrical polar
coordinates (&, 6), as shown in Fig. 2, with velocity components (vg, Ug) defined through
Eq. (3) and Eq. (5). Due to the action of solar radiation pressure, its radial velocity ve will
induce a slow inward (or outward) drift. Following McInnes (2000) a control volume will be
defined as an annulus in the radial interval (¢, £ + A&) which will contain a total number of
devices 2 & Aén (€, T), for a given swarm number density n (&, 7). The rate of change of the
swarm number density can therefore be obtained by considering the flow of devices into and
out of the control volume, along with any source and sink terms representing the deposition
or removal of devices. To conserve the total number of devices it is required that

d
57 QEEAEN(E, D) = v () 2mEn (6, 7) — g (€ + A8 27 ( + AD N (§ + A&, T)
+2mEAE (T (€, 1) — R (5, 1)) ®)

where 717 (£, 7) is a sink term, representing the rate of removal of devices while 7" (&, )
is a source term, representing the rate of deposition new devices. The radial velocity term
ve (6 + A&) and number density term n (§ + A, 7) in Eq. (8) can be Taylor expanded to
first order. Taking the limit A§ — 0 it can be shown that

on (€, 1) 10 . .
T T @G ) =it e i @D ©
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Fig. 2 Flow of ‘smart dust’ Ve
devices through control volume /

Vo
A& at orbit radius & \
T Inflow
Ag
g
9 \
0=0

Sun

\/ Inflow

which represents a continuity equation for the number density of devices, describing the
evolution of the swarm as a function of both orbit radius and time. Again following Mclnnes
(2000), differentiating out the second term in Eq. (9) and noting that the radial velocity is a
function of orbit radius only, the continuity equation may be written as

an (&, 1) an (&, 1) @ 1 L -
N +Us(é‘)7a§ +n(§,r)(vé(§)+$ ve (§) =n" (5, 1) —n (& 1) (10)

where (') represents a differentiation with respect to &. It should be noted that the total number
of physical devices AN in an annulus of radius £ and width A& is27& Aén (&, T), so that the
swarm density n (£, 7) can be interpreted as AN /2w & A&, which is an areal density since a
disk is being considered. In addition, for a fixed number of physical devices AN and annulus
width A& the density will therefore scale as £~ as will be discussed in Sect. 4.3.

It should also be noted that the choice of an annulus as control volume is driven by the
symmetry of the problem and the representation of the continuity equation in polar coordinate
form. However, a global conservation law can be written in integral form which can then
be represented locally in any suitable coordinate system, as is common for other continuum
problems (Anderson 2001).

4 Solutions to the swarm continuity equation

The continuity equation representing the evolution of the number density of devices as a
function of orbit radius and time can now be solved using the method of characteristics
(Murphy 1993). Along the characteristic curve, the partial differential equation becomes
an ordinary differential equation amenable to solution by standard methods. This yields a
solution to the original partial differential equation when combined with suitable initial data
at a given boundary, for example the initial swarm density function n (£, 0). The method
therefore transforms the single partial differential equation defined by Eq. (10) into two
ordinary differential equations defined by
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d
S —n® (1)
WD (1B L e mien)  aw
dg T\E e ® ) @ ’ ’
Firstly, integrating Eq. (11a) yields the characteristic curves of the partial differential equation
[ = (12)
ve (6)

and substituting from Eq. (3) yields the family of characteristics G (&, t) defined by
GE =@ -t =C (13)

where C; = AC. Then, assuming for the present that the sink term 7~ (&, ) = 0 and the
source term 721 (£, 7) = 0 in Eq. (11b), the device number density can be obtained from

TR R N K2R (14)
dé§ ’ £ @)
which can be solved directly to obtain
In(n (€, 7)) =In (Eve (S))71+¢(G(E,f)) 15)

To obtain the general solution to the partial differential equation defined by Eq. (10), an
arbitrary function of the characteristic equation \ (G (&, 7)) is added in Eq. (15) which is
determined from the initial data of the problem n (£, 0) using standard methods. The general
solution can therefore be written as

n(, )=

1
@ (G (¢, 1) (16)
§vg (8)
where ® (G (£, 7)) = exp (Y (G (€, 1))). Then, at T = 0 it can be seen from Eq. (13)
that G (£,0) = £3/2 so defining z = G (£,0) and so £ (z) = z2/3 the functional form of
@ (G (&, 7)) can be obtained from

P (2) =n(2).0)§ (@) vg € () a7

which again is determined from the initial data of the problem n (¢, 0). Now that the general
solution to the continuity equation has been obtained a number of specific cases will be
considered with suitable initial data representing each scenario. While Eq. (16) represents
the solution to the continuity equation with 2~ (£, ) = 0 and 2 (£, 7) = O the addition of
source and sink terms will be considered later.

4.1 Evolution of an infinite sheet
First, for illustration, an infinite sheet of devices will be considered with initial datan (&, 0) =

1 in the range 0 < £ < oo. This represents an ensemble of smart dust devices uniformly
distributed throughout the entire domain of the continuity equation. Using this initial data
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Fig. 3 Family of characteristic 1.0
curves G (&, ) with lightness \
number = 0.01,n = 1 and
device attitude @ = o™ \
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the form of the arbitrary function can obtained from Eq. (16) as ® (z) = (2/3) Az!/3 and
SO

D (G (£ 1) = %x (£2 )" (18)

Then from Eq. (16) the particular solution to the continuity equation for this initial data can

be written as
AT 1/3
n,7)= (1 - @) (19)

In order to illustrate the form of the solution, the lightness number of each smart dust device
is now defined as p = 0.01 (Atchison and Peck 2010) and the device attitude is assumed to be
o = o, so that the devices flow inwards. First, the family of characteristic curves defined by
Eq. (13) are shown in Fig. 3. Again, the characteristics will map the initial data n (§,0) = 1
to form the solution surface of the continuity equation n (£, ). The solution surface itself
is shown in Fig. 4 for 0.1 < £ < 1, where dimensional units are used for illustration with
unit radius corresponding to 1 AU. It can be seen that the disk interior to the Earth’s orbit
is uniformly filled, but as the ensemble of smart dust devices flow inwards from outside
the Earth’s orbit the initially density grows, particularly at small orbit radii. The physical
interpretation of this scaling of the swarm density with orbit radius is again discussed later
in Sect. 4.3.

4.2 Evolution of a finite disk

A uniform disk of devices will now be considered with initial datan (¢, 0) = 1, butintherange
0 < & < 1. This represents an ensemble of smart dust devices uniformly distributed interior
to a circle of unit radius. Using this initial data the arbitrary function of the characteristic
equation in Eq. (16) can again be determined. Then, using the methods detailed above, it can
be shown that the resulting solution to the swarm continuity equation is given by
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Fig.4 Solution surface n (£, ) for an infinite sheet with the initial datan (¢, 0) = lintherange 0 < § < oo,
and with lightness number § = 0.01, n = 1 and device attitude « = a™~

1/3 2/3
n(s,r):(l—g%) (H[g(l—g%) —1]—1) (20)

where H is the Heaviside step function. The solution surface defined by Eq. (20) is shown in
Fig. 5 where it can be seen that the disk interior to the Earth’s orbit is again initially uniform,
but as the ensemble of smart dust devices flow inwards the disk contracts in radius while its
density grows. The contraction of the outer edge of the disk is captured by the step function
in Eq. (20), while the scaling of the density follows the same functional form as Eq. (19).

4.3 Constant device density at one boundary

Rather than a uniform disk, an ensemble of smart dust devices will now be considered with
the device density held constant at unit radius. The initial data for this modified problem
is therefore n (1,7) = 1 in the range 0 < & < 1. Again, the arbitrary function of the
characteristic equation in Eq. (16) can be determined from this initial data and it can be
shown that the solution to the swarm continuity equation is now given simply by

n(, =12 Q1)

Here, the solution surface is time independent since the initial data on the boundary is such
that n (1, 7) = 1 for all time, while it can be seen that the growth in density with decreasing
orbit radius scales as & ~!/2. To understand this scaling law, if the swarm density is time

independent Eq. (9) yields
d
g(évg nE)=0 (22)
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Fig. 5 Solution surface n (&, 7) for a uniform disk with initial data n (§,0) = 1 in the range 0 < & < 1, and
with lightness number § = 0.01, n = | and device attitude « = o™

so that §ve (§)n (§) = C, for some constant C. However, it is then clear that

N (&) = 27&vs (§) n (§) (23)

is also constant, where N (&) is the total flux of smart dust devices crossing an annulus of
radius &. Therefore, due to the requirement for continuity to conserve the total number of
devices

Evg (§)n(§) =ve (Dn (1) 24)

and so from Eq. (24) and Eq. (3) it can be seen that

M _p
n (&) Fus 6) 3 (25)
which is equivalent to the result obtained by the method of characteristics presented in Eq.
(20). The resulting solution surface defined by Eq. (21) is shown in Fig. 6 which displays
growing density with decreasing orbit radius as expected.

The continuity argument resulting in Eq. (25) also arises due to the geometry of the
problem, since the circumference 27£ of any annular boundary of radius £ shrinks faster
than the inflow speed v¢ (§) increases with diminishing orbit radius. Indeed for the general
solution defined by Eq. (16) the radial inflow of devices is faster at smaller orbit radii which
acts to reduce the swarm density since the density n (£, 7) scales as vg &)~ However, ve (§)
scales as £ ~1/2 while the compression due to the geometric term in Eq. (16) discussed in
Sect. 3 scales as £ ! so that there is an overall density scaling of £ ~1/2.
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time(yrs)
10

1.0

Fig. 6 Solution surface n (¢, 7) for a swarm with density fixed at one boundary with initial datan (1, 7) = 1
in the range 0 < & < 1, and with lightness number = 0.01, » = 1 and device attitude « = o™~

4.4 Constant device deposition rate at one boundary

While the uniform disk provides useful insights into the solution to the continuity equation it
is clearly a rather unrealistic scenario. A more realistic scenario will now be considered with
a dispenser in orbit at unit radius £ = 1 which forms a source term in Eq. (11b). Although
a single dispenser will form a point source, an azimuthally symmetric swarm will again be
considered such that the timescale for the inward (or outward) flow of the devices is slow
relative to the local circular orbit period, as discussed in Sect. 3. Therefore, adding a source
term 2t (£, 7) = C8 (€ — 1) in Eq. (9) the swarm continuity equation is now given by

oné,r)y 190 =
e Taag Bu®nEn)=CoE -1 (26)

where C is the magnitude of the source term, to be determined later, and § (§) is the Dirac
delta function. In order to obtain a solution to the continuity equation with a source term, Eq.
(11b) must firstly be solved with the non-homogeneous forcing term such that

dn (€, 7) 1 v® 1 -
anis.t) ol = = Cs(E—1 27
G Tne r)(g tom )T wef e @7

Since the equation is non-homogeneous, and integrating factor / is required such that

1 v )
,:exp/(_+”s )ds=5vg<s> (8)

& v (§)
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and so Eq. (27) reduces to

d -
E(H(S,t)%‘vs &) =£C8 (¢~ 1) 29

which then yields

1 N
n (1) = —/sca & — 1ds + (G (¢ 1) (30)
o (©)

§ve (§)
Then, with initial data n (§,0) = O in the range 0 < & < 1 the arbitrary function of the
characteristic equation in Eq. (30) can be determined so that

3E 1 ar \23
0 T) = 2A[(H[E(l—s3/2) —1]—H[s—1]) 31)

where again H is the Heaviside step function.
In order to understand the physical significance of the magnitude of the source term C the
total deposition rate of devices N can be determined from

N = 2716/0055 (£ — 1) de (32)
0

sothat C = N /2m. Alternatively, from Eq. (31) the swarm density can be defined at the
boundary & = 1 such thatn (1, 7) = 1 for T # 0 and so C =2 /3. The solution surface
corresponding to Eq. (31) withn (1, ) = 1is shown in Fig. 7. It can be seen thatn (§,0) = 0
so that the swarm density initially vanishes everywhere while the deposition term introduces
devices at £ = 1 which then flow inwards eventually filling the space interior to the unit disk
0 < & < 1. From Eq. (4) it can be seen that the disk is filled after a time t = 1/A. Again, the
density of the swarm scales spatially as £ ~'/2 as expected. It can be seen from Eq. (31) that
for C = 21/3 the evolution of the swarm density has an asymptotic form

lim ( [s (1 - “)2/3 - 1] —H[E - 1]) =¢'2 (33)
T—00 f 53/2

which represents the steady-state condition with equilibrium between the source term at
& = 1 and an effective sink at § = 0.

4.5 Swarm evolution with on-orbit failures

In addition to a source term representing the deposition of new devices, a sink term
n~(§,7) = —en (&, v) can be added to the swarm continuity equation to represent fail-
ure of devices within the swarm (McInnes 2000). From Eq. (26) the new continuity equation
is therefore given by

on (£, 1) .
== +§£(5vg En@E ) =C8E—1)—en( 1) (34)

where 1/¢ represents the mean device failure rate. With initial data n (§, 0) = 0 in the range
0 < & < 1 it can then be shown that swarm density is given by

nE =" fexp ( £ ~(1- 53/2)) ((H [E—11—-H [s (1 - ;;2)2/3 - 1]))
(35)
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02 20

r (AU) 04 15

1.0

Fig. 7 Solution surface n (¢, t) for a swarm with deposition rate fixed at one boundary with initial data
n (&§,0) = Ointherange 0 < & < 1, and with lightness number § = 0.01, n = 1 and device attitude &« = o~

Selecting C such that n (1, ) = 1 and selecting ¢ such that the mean device failure rate is 10
years, the solution surface corresponding to Eq. (35) is shown in Fig. 8. It can be seen that
the swarm density falls due to device failures, but that this is offset by the geometric scaling
(the devices are flowing into annuli of diminishing circumference) leading to a growth in
density at small orbit radii.

5 Extension to two-dimensional system

The analysis of an azimuthally symmetric swarm presented in Sect. 4 can now be extended to
a two-dimensional planar system using polar coordinates. Here the swarm of devices flows
in the radial direction, but the transverse motion of the swarm is also captured. Given that
the azimuthal flow speed of the swarm is a function of orbit radius through Kepler’s third
law, this implies that a swarm of devices will be sheared in the transverse direction, as will
be seen later. It can be shown by extending the continuity argument of Sect. 3 to include flow
in the azimuthal direction that the new continuity equation is given by

n( 0,t) 10 19
a—r+§¥(gv§ (5)n(§,9,f))+§8—9(ve &)n (. 0,1)

=nT(£,0,1)—n" (£,0,7) (36)

where n (€, 6, 7) is again the device density and vg () is the local transverse speed at radius
&. Again, the method of characteristics transforms the single partial differential equation
defined by Eq. (36) into coupled ordinary differential equations defined by
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Fig. 8 Solution surface n (&, t) for a swarm with deposition rate fixed at one boundary and on-orbit failures
with initial data n (&£, 0) = 0 in the range 0 < & < 1 and with lightness number f = 0.01, n = 1 and device
attitude « = o™

d
S ew® (37a)
o 1
E = EUQ &) (37b)
dn (£,0,7) 1 o®Yy 1 .
—E +n(g,0,r)($+v$(s) =% ® (AT (&0, 1) —n" (£,0,1))  (3Tc)

The new continuity equation therefore possess an additional characteristic curve which can
now be obtained from

/évg &)dr =/d9+C (38)

and so substituting from Eq. (4) and Eq. (5) yields the family of characteristics H (0, 7)
defined by

H@®,7t)=0(r) — %log(l + A7) =Co 39)

The additional family of characteristic curves are shown in Fig. 9, where again the lightness
number of each device is defined as B = 0.01 and the device attitude is « = a~, so that
the devices flow inwards. Neglecting the source and sink terms it can then be shown that the
general solution to the new continuity equation is given by

1
n($,9,f)=%Q(G(S,T),H(G,T)) (40)
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Fig. 9 Family of characteristic 2
curves H (6, t) with lightness

number = 0.01,n = 1 and

device attitude @ = o™
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where Q (G (§,7), H (0, 7)) is a function of the two characteristics defined by Eq. (13)
and Eq. (39) which can again be determined from the initial data. In order to proceed, for
illustration the initial data n (&, 6, 0) will now be represented by the unit step function

— 0 —6
o0 =u (i F 00 “1
NN
where the step functionU (z1, z2) is defined as
|1 if—1/2<z1<1/2and —1/2<2, <1/2
Uz 22) = [0 otherwise @

The initial data defined by Eq. (41) therefore represents a region of unit density centred
on (&,,6,) and of side (A&, Af) which can be used to determine the function form of
QG (&, 1), HO,1)).

Again for illustration, a swarm of unit density centred on &, = 1 and 6, = 0 with width
A& = 1/4 and A8 = /4 will now be propagated using the solution to the two-dimensional
continuity equation. Figure 10a shows inward flow (¢ = « ™) while Fig. 10b shows outward
flow (o« = a™). For ease of illustration a lightness number g = 0.1 is assumed in order to
clearly visualise the evolution of the swarm. For inward flow it can be seen that the initial
region of unit density shears in the azimuthal direction while its radial extent is stretched
resulting in a thin filament which wraps around itself, since the azimuthal and radial flow
speeds are functions of orbit radius. It can also be seen that the density increases at the inner
edge of the filament since the density of the swarm scales radially as £ ~'/2. For outward
flow it can be seen that the azimuthal shearing is less pronounced while the radial extent of
the swarm compresses. Since the radial flow speed is an inverse function of orbit radius the
inner edge of the swarm begins to catch up with the outer edge, resulting in increased number
density.
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Fig. 10 Solution surface

n (&, 6, t) for a region of unit
density with initial

datan (¢,60,0) =

U (582, %50 ) and with
lightness number p = 0.1, =1
at time steps 0, 0.25, 0.5, 0.75
and 2 years with a device attitude
a = a, b device attitude

a=a
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6 Conclusions

Using a continuum approximation, a continuity equation has been developed to represent the
evolution of a swarm of self-propelled ‘smart dust” devices in heliocentric orbit under the
action of solar radiation pressure. The family of solutions to the continuity equation describe
the evolution of the swarm from a set of initial data at some boundary. By considering both
radial and transverse motion, the spatial evolution of the swarm can be obtained and azimuthal
shearing observed since the local transverse speed is a function of orbit radius. The addition
of source and sinks terms to the continuity equation allows the deposition of new devices
and on-orbit failures to be considered. It is proposed that the closed-form solutions presented
for both the radial flows and azimuthally asymmetric flows of devices can provide useful
insights into the orbit evolution of swarms of self-propelled ‘smart dust’ devices which can
form the basis of future mission design tools.
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