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The combination of unique characteristics in superconducting materials and the 

extremely low thermal noise conditions available in cryogenic environments have led to 

the demonstration of various types of superconducting detectors with unmatched 

performance. In this editorial, we briefly introduce these detectors, which are the topic 

of this special issue. 

A Josephson junction (JJ) consists of a thin insulator sandwiched by two 

superconducting layers. JJs have unique features, such as the Josephson tunnelling 

effect, flux quantization, and photon assisted tunnelling, which are at the core of the 

operation of superconducting tunnel junction (STJ) detectors, superconductor-insulator-

superconductor (SIS) mixers, and superconducting quantum interference device 

(SQUID) sensors. Non-equilibrium states induced in thin superconducting films or strip 

lines have also been utilized in various sensitive and ultra-fast detectors such as the 

transition edge sensor (TES), the hot electron bolometer (HEB), the superconducting 

nanowire single photon detector (SNSPD or SSPD), the superconducting strip line 

detector (SSLD, SNSPD, or SSPD), and the microwave kinetic inductance detector 

(MKID).  

 

Superconducting Tunnel Junction (STJ) detectors 

An STJ detector consists of a JJ designed to efficiently detect incident radiation (with 

wavelength varying in the range from X ray to THz) by measuring the induced tunnelling 

current of excited quasi particles through the insulating thin layer. In this issue, Du et 

al. report on a cryogen-free STJ detector system for terahertz radiation based on a 

high-critical-temperature superconductor (HTS) [1]. The use of an HTS and user-friendly 

cryogenics is a crucial step for the success in commercialization of such sophisticated 

high-performances detectors. Furthermore, in this issue, Fujii et al. report on the 

development of a new fabrication process for three-dimensional STJs for X-ray 



 

 

absorption fine structure (XAFS) spectrometry. Fujii’s process enables high operational 

yield and high mean energy resolution [2]. 

 

Superconductor-Insulator-Superconductor (SIS) mixers 

Applying an external magnetic field to a JJ irradiated by electromagnetic radiation 

causes a strong non-linearity in the I-V characteristic of the JJ (this effect is known as 

the photon-assisted tunnelling effect), making quantum mixing possible. The SIS mixer 

has already been utilized as the heart of the heterodyne receiver system for THz 

electromagnetic waves. The Atacama Large Millimeter/submillimeter Array (ALMA) 

project is one of largest international projects to develop a ground-based radio telescope 

in the Atacama Desert in the Republic of Chile [3]. ALMA allows sensitive observations 

over the frequency range from 31 GHz to 0.95 THz – divided into 10 bands. Several 

groups within the ALMA project have carried out development and production of the 

receivers for each band. In this issue, Kojima et al. report the design and development 

of SIS mixers for ALMA band 4, over the frequency range of 125–163 GHz [4]. 

 

Superconducting Quantum Interference Device (SQUID) sensors 

A SQUID is a highly sensitive magnetic sensor, which relies on the combination of flux 

quantization and Josephson tunnelling. SQUID-based sensors have been widely applied 

in commercial products such as magnetocardiography (MCG) and magnetic resonance 

imaging (MRI). Recently, there has been a requirement for very small SQUID devices, 

able to observe nanoscale targets. Gallop et al. report a new approach using Dayem 

bridge SQUIDs for energy-resolved single photon detection [9]. 

 

Transition Edge Sensors (TESs) 

A TES is a calorimeter that utilizes the steep superconducting to normal transition of a 

superconducting film close to the critical temperature (TC) to measure the energy of 

incident particles or radiation with high resolution [10]. Depending on its design, a TES 

can be used to efficiently detect X-rays, gamma rays, THz waves, or single photons from 

visible to near infrared wavelengths. In this issue, Ullom et al. report a detailed review 

of TES sensors for X-ray and gamma-ray spectroscopy [11]. Posada et al. report the 

fabrication of multi-chroic TES bolometer arrays for the observation of the cosmic 

microwave background [12]. 

 

Hot Electron Bolometers (HEBs) 

A HEB utilizes non-equilibrium superconductivity in an ultra-thin film and can act as 



 

 

either a mixer or a direct detector. Since the energy relaxation of the excited quasi-

particles in a HEB can happen trough phonon cooling (phonon-cooled HEB [13]) or 

diffusion cooling (diffusion-cooled HEB [14]), fast recovery times (< 30 ps) can be 

obtained. HEBs have been successfully used as mixers at frequencies above 1 THz, at 

which the SIS mixer is difficult to operate due to the limit set by of the energy gap 

frequency. In this special issue, Shurakov et al. report an historical, theoretical, and 

experimental review of HEBs [16]. Guruswamy et al. report the theoretical calculation 

of non-equilibrium quasi-particle and phonon distribution, which are crucial phenomena 

for understanding the operation mechanism of HEBs, as well as other superconducting 

detectors [17] 

 

 

Superconducting Nanowire Single Photon Detectors (SNSPD or SSPD) 

An SNSPD consists of a thin and narrow superconducting nanowire [18] and is sensitive 

to single photons from X-ray [19] to mid-infrared wavelengths [20]. SNSPDs have 

attracted a lot of attention as promising single photon detectors, since they offer high 

sensitivity, low dark count rate, high counting rate, and short timing jitter. Since the 

successful demonstration of a QKD experiment over 200 km with SNSPD [21], they have 

risen to fame outside of the superconducting community. Intensive experimental and 

theoretical studies are performed in many institutes over the world [22-23].  

In this issue, Engel et al. review recent theoretical studies of the detection mechanism 

of SNSPDs [24]. Mattioli et al. report the development of a new type of SNSPD, which 

can resolve the number of detected photons by means of a new device architecture [25]. 

 

Superconducting Strip Line Detectors (SSLD, SNSPD, or SSPD) 

SSLDs have a similar geometry to SNSPDs, however SSLDs use thicker and wider strip-

lines to efficiently detect particles having energy of about 20 keV (much higher than the 

energy of optical photons, which is as low as a few eV). An SSLD was successfully used 

for the first time in 2008 to detect biological molecules in time-of-flight mass 

spectrometers (TOF-MSs) [26]. Since then, intensive investigation on the detection 

mechanism and on design optimization to improve the performances in the detection of 

high-energy ions [27-29] and low-energy neutral particles / light ions were carried out 

[30-31]. 

In this issue, Cristiano et al. review all progress in the development and investigation 

on the underpinning detection mechanism for this class of detectors [32]. Sano et al. also 

report the demonstration of single-flux-quantum (SFQ) readout circuits for TOF-MSs 



 

 

with SSLD, which would be a crucial technology for intelligent processing from 

large-scale SSLD array systems [33]. 
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