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Abstract 

Fracking of the Preese Hall-1 well in 2011 induced microseismicity that was strong enough to be felt. 

This occurrence of ‘nuisance’ microearthquakes, unexpected at the time, was a major factor 

resulting in adverse public opinion against shale gas in the UK and was thus of significant political 

importance. Despite this, and notwithstanding the technical importance of this instance of induced 

seismicity for informing future shale gas projects, it has received little integrated study; 

contradictory results have indeed been reported in analyses that lack integration. This instance 

therefore provides a case study to illustrate how a small but significant multi-disciplinary geoscience 

dataset may be put to best use, including how best to quantify uncertainties in key parameters, 

which may themselves be relatively poorly quantified but whose values may significantly affect the 

ability to understand the occurrence of induced seismicity. The best-recorded event in this induced 

microearthquake sequence (at 08:12 on 2 August 2011) is thus assigned an epicentre circa British 

National Grid reference SD 377 358, south of the Preese Hall-1 wellhead, a focal depth of ~2.5 km, 

and a focal mechanism with strike 030°, dip 75°, and rake -20°, this NNE-striking nodal plane being 

the inferred fault plane. Like other parts of Britain, this locality exhibits high differential stress, with 

maximum and minimum principal stresses roughly north-south and east-west. This instance indeed 

fits an emerging trend of the occurrence of relatively large induced earthquakes in localities with 

high differential stress; such an association was predicted many years ago on the basis of 

experimental rock mechanics data, so observational confirmation might well have been anticipated 

and should thus not have been unexpected. Many steep faults, striking NNE-SSW or NE-SW, mostly 

Carboniferous-age normal faults, are present; the stress field is favourably oriented for their left-

lateral reactivation, southward leakage of fracking fluid into one such fault having presumably 

caused the induced seismicity. Given the pervasive presence of similarly-oriented faults, future 

occurrences of similar induced seismicity should be planned for; they pose a significant technical 

challenge to any future UK shale-gas industry.  
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Highlights: 

The location and focal mechanism of this induced seismicity are re-determined 

A probable Carboniferous-age normal fault experienced left-lateral reactivation 

Faulting with favourable orientation for reactivation is pervasive in N England 

Relatively large-magnitude induced activity correlates with high differential stress 

 

1.Introduction 

The first project to apply hydraulic fracturing for the development of shale gas in the UK, utilizing the 

Bowland Shale Formation and other Early Carboniferous shales (Table 1), took place in the spring of 

2011 from the Preese Hall-1 borehole (wellhead at British National Grid [BNG] reference 

SD 37525 36584) near Blackpool in northwest England (Fig. 1). The associated ‘fracking’ caused 

induced seismicity including microearthquakes with magnitude (ML) up to 2.3 (e.g., Galloway, 2012), 

two of which were large enough to have been felt. Such activity, within the usually relatively 

aseismic continental crust of Britain, resulted in intense public concern and led to the imposition of a 

UK government moratorium on fracking, which lasted more than a year. Shale gas and fracking 

remain controversial topics in the UK; for example, in January 2015 the Scottish government 

imposed a second moratorium, covering development in Scotland of unconventional energy 

technologies including shale gas (e.g., Freeman, 2015), citing in part the uncertainties involved. 

Characterization of any site involves investigating a complex 3-D rock volume, which is anisotropic 

and heterogeneous at multiple scales, primarily on the basis of 1-D wellbores and geophysical data 

with limited resolution. Conceptual geological models summarizing any such characterization 

attempt are inherently uncertain (Bond et al., 2007a; 2012; Lindsay et al., 2013). In areas of 

geoscience where the ‘social licence to operate’ requires a high level of public confidence in 

geological models (e.g., onshore oil and gas; onshore carbon capture and storage; and radioactive 

waste disposal), it is essential to identify the sources of potential uncertainty and to try to minimize 

these uncertainties, while being transparent about the sources and magnitude of the uncertainties.    

 

Table 1 here: 

Figure 1 here: Map of study locality 

 



Injection of fluid under high pressure, during fracking, alters the state of stress around a borehole, 

potentially bringing adjacent pre-existing planes of weakness to the condition for failure. To 

characterize the nuisance arising from this cause, as a result of fracking at a given site, the operator 

will have to evaluate many parameters, including the current stress state, the likely magnitude of the 

stress changes caused by the hydraulic fracturing, the location, size and orientation of any planes of 

weakness that might act as potential slip planes, how close they are to slipping, whether the 

imposed changes to the state of stress might bring them to the condition for failure, and what size 

(expressed as magnitude or seismic moment) of induced earthquake might result from this. The data 

available to establish the likelihood that a given frack job will cause induced seismicity strong 

enough to be felt are subject to inherent uncertainties. In onshore applications, geological models 

are usually based on geological mapping and on borehole and/or seismic reflection data. Geological 

maps are based in turn on interpretations of surface exposures (which in the UK may well be 

decades old, so may not include information from new exposures resulting, for example, from road-

building), and can therefore include biases (Bond et al., 2007b). Seismic reflection data may be 2-D 

or 3-D images of geological features with varying acoustic properties. Their vertical resolution limit is 

~10 m (estimated as 1/8 of the wavelength of the seismic waves used, which is ~100 m for waves of 

frequency ~40 Hz in rock with a seismic velocity of ~4000 m s-1; cf. Widess, 1973; Chopra et al., 

2006); features below this size cannot be imaged. A borehole is essentially a complete record of the 

rocks along a 1-D transect. However, because it is 1-D it can provide no information about lengths or 

areas of features, such as fractures and faults, which cut the borehole. Down-hole tools and any core 

that is returned to the surface can provide in-situ stress data (e.g., from borehole breakouts or 

drilling-induced tensile fractures), very detailed (cm to mm-scale) data on stratigraphy, and rock 

samples for mechanical testing. Background microseismic activity provides data on current local 

stress state (from focal mechanisms), and locations of faults (thus ‘illuminating’ geology; e.g., 

Pytharouli et al., 2011). The relatively sparse permanent seismograph network spanning the UK (Fig. 

1; inset), operated by the British Geological Survey (BGS), had, in 2011, a routine detection threshold 

for earthquakes of magnitude ~1.5, but due to variable levels of background noise could only offer 

‘complete’ detection circa magnitude 2.5 (e.g., Galloway, 2012); temporary local networks can 

detect events of lower magnitudes. 

 

The maximum magnitude of the induced microearthquakes that can be caused by any instance of 

fracking for shale gas is limited by the volume of fluid injected during each frack job (e.g., McGarr, 

2014; Westaway and Younger, 2014). In the UK, the environmental permit for each borehole where 

fracking for shale gas is to be undertaken, a regulatory requirement administered by the UK 



government Department of Energy and Climate Change, specifies the maximum volume of fluid 

permitted to be injected in any individual frack job. It thus effectively sets an upper limit to the 

magnitude of any induced earthquake that might result. The strength of any associated ground 

vibration depends on this upper bound to magnitude, on the orientation of the fault that provides 

this seismic source, and on distance from the seismic source (e.g., Westaway and Younger, 2014), 

which for nearby points on the Earth’s surface is determined primarily by the depth of the induced 

seismicity, which will itself approximate the depth at which the fracking has been undertaken. 

Regulation of injected fluid volume thus effectively limits the effects of induced seismicity, making it 

a nuisance rather than a hazard, with ground vibration strong enough to be felt but insufficiently 

strong for any injuries to people or damage to property to be likely.  Nonetheless, as already noted, 

even felt effects of induced earthquakes are considered a significant issue in the UK. I shall use the 

Preese Hall induced seismicity as a case study to discuss the uncertainties affecting estimation of the 

parameters (stress field orientation, location, seismic source orientation, etc.) that influence the 

nuisance caused by fracking. 

 

Following this occurrence of induced seismicity, a number of consultancy reports were 

commissioned (e.g., de Pater and Baisch, 2011; Eisner et al., 2011; Harper, 2011; Green et al., 2012; 

Seismik, 2012), which documented many details regarding the local stratigraphy (Fig. 2) and 

geological structure (Fig. 3), and academic publications have followed (O’Toole et al., 2013; Clarke et 

al., 2014). Multiple determinations have thus been made of a number of the essential parameters 

that describe this induced seismicity. However, many of these outputs are mutually inconsistent and 

there has been no engagement between the different authors aimed at achieving any resolution. As 

a result, no consensus currently exists regarding these parameters; it is thus not at all clear from 

these existing presentations which of the mutually inconsistent solutions are correct, nor where 

genuine uncertainties lie regarding the interpretation of this rather small and non-optimal dataset. 

 

Figure 2 here: stratigraphic column and stress field diagram 

Figure 3 here: legacy seismic section 

 

Accurate and transparent communication of uncertainties around geological models are essential to 

gain public trust in the ability of the geoscience community to ‘know what’s down there’. I have 

therefore revisited this dataset, attempting to resolve, where possible, the discrepancies between 

the different previous interpretations. I thus show that some of the differences relate to use of 



different subsets of the available data, and some to different choices of how to interpret individual 

items of data, but others are consequences of significant mistakes made during previous analyses.  

 

The present reassessment of the Preese Hall case study has indeed been prompted by the recent 

publication on it by Clarke et al. (2014). Preliminary versions of some of the data thus presented 

have already been made public, for example in the de Pater and Baisch (2011), Eisner et al. (2011), 

Galloway (2012) and Seismik (2012) reports. Clarke et al. (2014) note in their acknowledgements 

that these documents have featured in submissions to government (such as those by Mair et al., 

2012, and Masters et al., 2014), but do not make clear that in their publication they have changed 

aspects of the interpretation, so that some of the information previously placed in the public domain 

is not supported by their most recent analysis. This creates the potential for considerable confusion. 

Clarke et al. (2014) also give the impression that all the data underpinning their analysis has been 

placed in the public domain, when some of it has not been; the data sources from which some of 

their conclusions are drawn are inaccessible. Regulations now require geological data pertaining to 

shale gas exploration in the UK to be placed in the public domain after a six-month embargo (UK 

Parliament, 2014), but do not apply retrospectively to the activities in 2011. It has also become 

apparent that Clarke et al. (2014) have made a number of mistakes during their analysis, and that 

these are too complex to be covered by the publication of an erratum. 

 

The argument that uncertainties in geological knowledge make shale gas a relatively risky 

technology for the UK is often used by environmental activists. In this regard, the Clarke et al. (2014) 

paper raises several significant issues regarding the integrated portrayal of relevant geological data, 

pertaining to microseismicity, structural geology (from seismic reflection surveys), and 

geomechanics (pertaining to the state of stress in the Earth and how it is modified by the fracking 

process to enable slip on the seismogenic fault). Having outlined these issues, I will then discuss new 

hypocentre and focal mechanism determinations, which avoid some of the difficulties evident with 

existing solutions. Finally, I will consider some of the implications of this work for issues that arise 

when fracking for shale gas in a region, such as northern England, which is under relatively high 

differential stress. Although focused on UK-related topics, this study has wider implications, given 

the recent occurrence of the first microearthquake in the USA associated with fracking for shale gas 

and large enough to be felt (the ML 3.0 Poland Township, Ohio, event of 10 March 2014; Skoumal et 

al., 2015); this likewise occurred in a region of high differential stress (e.g., Bauer et al., 2005).  

  



2.The Preese Hall induced seismicity 

Before proceeding farther it is important to be clear as to terminology. The mechanisms whereby 

human activities can affect seismicity have been widely discussed in recent years (e.g., Seeber, 2002; 

Westaway, 2002, 2006, in press; Klose 2007a,b, 2013; Ellsworth 2013; Rubinstein and Mahani, 2015; 

see below). Following Klose (2013), an ‘anthropogenic earthquake’ can be defined as any seismic 

event for which a human activity can reasonably be shown to be the cause, or at least a major 

influence on timing. Anthropogenic earthquakes can in turn be subdivided into ‘triggered’ and 

‘induced’ events; a triggered event is one that would have occurred anyway, because the state of 

stress in the area was tending towards the condition for shear failure, or slip on an active fault, so 

that the human activity merely brought the earthquake forward in time or ‘advanced the clock’. An 

earthquake is ‘induced’ if there is no reason to consider that, in the absence of human activity, the 

state of stress in the area was heading towards the condition for shear failure: in other words, 

without the human activity the earthquake would never have occurred. Since the cause-and-effect 

connection between fracking and the Preese Hall seismicity is clear (e.g., Clarke et al., 2014; 

Westaway, in press), and no-one has demonstrated any mechanism whereby this instance of 

fracking merely ‘advanced the clock’ for seismicity that would otherwise have occurred anyway, it is 

evident that this instance is consistent with this definition of induced seismicity. 

 

However, other definitions of induced seismicity also exist, for example those by McGarr et al. 

(2002) and Rubinstein and Mahani (2015). As Westaway (in press) has discussed, these alternative 

suggestions can have problematic consequences; adherence to the standard definition is therefore 

recommended. Furthermore, one of the reviewers of this manuscript, Professor Terry Engelder, has 

made clear that he follows yet another definition, whereby induced (or ‘wet’) microseismic events 

are defined as those associated with opening of and slip on fractures, caused by the stimulation fluid 

flowing into the fault plane and reducing its effective normal stress (cf. Simpson and Negmatullaev, 

1981). On the other hand, triggered (or ‘dry’) microseismic events are defined as those that are 

driven by the change in the state of stress, associated with the strain surrounding the zone of 

induced fractures, resulting in a larger shear stress across the fault plane (cf. Pomeroy et al., 1976). 

In terms of the standard definition of induced seismicity that I have adopted, both these ‘wet’ and 

‘dry’ mechanisms count as ‘induced’. Nonetheless, this distinction between ‘wet’ and ‘dry’ 

mechanisms, and the different directions of approach of the state of stress to the failure envelope 

that they represent, is useful; they might indeed be adopted as distinct categories of induced 

seismicity, which can be resolved following detailed consideration of physical mechanisms.  

 



To facilitate later discussion, a brief summary of the activities at Preese Hall in 2011 is provided here, 

drawing upon the more detailed account by de Pater and Baisch (2011). The first frack job was on 28 

March 2011; it involved injection of 1969 m3 (12,385 barrels) of fluid into borehole perforations 

centred about a depth of 2723 m (8935 ft). No induced seismicity was detected, but at this stage no 

seismographs were deployed locally, so detection was entirely dependent on the BGS permanent 

seismograph network. The second frack job on 31 March 2011 involved injection of 2339 m3 (14,710 

barrels) of fluid into borehole perforations centred circa 2662 m (8735 ft). It resulted in multiple 

induced earthquakes including the largest of the sequence, of ML 2.3, which occurred at 02:34 on 

1 April (~10 hours after the end of fluid injection) and was felt by many people, its maximum effect 

being at intensity 4 on the EMS scale (Galloway, 2012). Detection still depended on the BGS 

network, but since their nearest seismograph station was ~80 km away, accurate location was 

impossible; BGS thus located this event at a depth of ~3.6 km beneath BNG reference SD 3577 3732, 

~2 km WNW of Preese Hall (Galloway, 2012; Fig. 1). Although Galloway (2012) has stated that this 

seismicity was ‘immediately suspected to be linked to hydraulic fracture injections at the Preese Hall 

well’, this was initially by no means clear, not least due to this and other inaccurate hypocentral 

determinations. Nonetheless, Keele University installed two seismographs near Preese Hall in early 

April, which were joined by two more (stations AVH and HHF) installed by BGS a few days later. 

However, initially no local earthquakes were recorded by any of these instruments. For the third 

frack job on 12 April, 800 m3 (5031 barrels) of fluid was injected into borehole perforations centred 

about a depth of 2577 m (8455 ft), but resulted in no immediate induced seismicity; as a result, the 

Keele University stations were removed later in the month although the BGS equipment continued 

operating and indeed recorded three local events in the ML -1 to -2 range during early May.  

 

The fourth frack job took place on 26 May, with 1684 m3 (10,590 barrels) of fluid injected into 

borehole perforations centred about a depth of 2477 m (8125 ft), resulting in the resumption of 

seismicity, including the second largest event of the sequence, at 00:48 on 27 May (again ~10 hours 

after the end of fluid injection). BGS reported that two people in the vicinity felt this event and 

determined its hypocentre at 2.3 km depth beneath BNG reference SD 3746 3619 (Galloway, 2012), 

although with no stated margins of uncertainty. This relatively accurate location (Fig. 1), facilitated 

by local stations AVH and HHF being operational, nonetheless made clear the causal connection 

between the fracking and the seismicity. The fifth frack job, later on 27 May, involved injection of 

1569 m3 (9870 barrels) of fluid into borehole perforations centred about 2409 m (7905 ft) depth, 

which resulted more induced earthquakes; at this point fracking operations were discontinued. 

Nonetheless, BGS installed two more temporary stations (EVW and PRH) nearby, which - along with 



AVH and HHF - recorded a final small (ML -0.2) induced microearthquake at 08:12 on 2 August 2011; 

Galloway (2012) provided hypocentral co-ordinates for this event, which were the same as for the 

27 May event and again have no stated margins of uncertainty, but did not disclose the arrival time 

data on which this location was based.   

 

The similarity in seismic waveforms for the events recorded by the local stations means that they 

indeed occurred in close proximity and had very similar focal mechanisms (e.g., de Pater and Baisch, 

2011; Clarke et al., 2014); this similarity can be confirmed by inspection of the seismograms in these 

publications. Analysis of the 2 August 2011 event thus helps to constrain the larger 

microearthquakes that were less well recorded. The hypocentral co-ordinates reported by Galloway 

(2012) are ~400 m south of the Preese Hall-1 wellhead (Fig. 1) and at roughly the depth at which the 

later frack jobs took place. Given the volume of fracking fluid injected during each frack job (1969, 

2339, 800, 1684, and 1569 m3, respectively, for frack stages 1-5 depicted in Fig. 2(a), according to de 

Pater and Baisch, 2011) it can be anticipated that – if equidimensional - each induced fracture 

network created had vertical and horizontal dimensions of maybe ~300 m (e.g., Fisher and 

Warpinski, 2012; Westaway and Younger, 2014). Given the state of stress in the area, with the 

vertical stress intermediate between the two principal horizontal stresses (see below; section 3.1), 

the induced fractures will have developed in vertical planes perpendicular to the minimum principal 

stress, which is locally roughly east-west (see below; section 3.1); in a homogenous rock mass, if the 

bottom hole pressure (BHP) of the fracking fluid was the minimum necessary for a given frack job to 

initiate fracturing, then the resulting fractures will have propagated upward and outward, whereas if 

the BHP exceeded this threshold they will have propagated in part upward and in part downward, as 

well as outward. Davies et al. (2013) have identified several candidate mechanisms for induced 

seismicity from fracking for shale gas. Given the local context, with vertical induced fractures 

oriented N-S expected in a locality with steep normal faults, inherited from crustal extension during 

the Early Carboniferous, which typically strike NNE-SSW or NE-SW (Fig. 3), a plausible candidate 

mechanism is for the induced fracture networks created by the second, fourth and fifth frack jobs to 

have intersected one of these ancient normal faults and to have each reactivated patches of it (see 

also below). The hypocentral co-ordinates from Galloway (2012) thus suggest that it was the 

southward component of fracture propagation that led to these fault intersections developing, a 

deduction that is supported by the present re-analysis of this dataset (Fig. 1; see below, section 4).  

 

Nonetheless, the potential importance of the aforementioned ‘dry’ mechanism for induced 

seismicity (i.e., as a result of changes to the state of stress resulting from the opening of fractures) 



also warrants attention, given that the Davies et al. (2013) analysis of scenarios whereby fluid 

injection might induce seismicity (which has had a significant influence on this topic, at least in the 

UK) only considered the ‘wet’ mechanism. Strain associated with induced fractures was first 

measured decades ago and can be modelled using a range of techniques (e.g., Evans et al., 1982; 

Davis, 1983; Vasco et al., 2002; Vasco and Ferretti, 2005) to help constrain underlying physical 

mechanisms. However, the lack of geodetic monitoring of the Preese Hall project means that this 

method of analysis cannot be used in this instance. For most of the duration of this project no 

microseismic monitoring was in place, either, but the aforementioned seismographs were belatedly 

installed, and produced the principal dataset that can bear upon analysis to link the observed 

microseismicity with the associated rock mechanics. It has become familiar in U.S. practice for such 

analyses to regard induced microseismicity caused by fracking as a consequence of propagation of 

fluid pressure pulses (which may not be accompanied by bulk movement of fluid) through the rock 

mass (e.g., Geiser et al., 2012; Lacazette et al., 2013; Geiser and Leary, 2014). McClure (2015) has 

indeed argued that this general mechanism can account for time delays between injection and the 

associated seismicity; in his view such a delay can be attributed to the time it takes for a fluid 

pressure pulse to travel along a fracture network, reflect off its end, and travel back again, to add to 

the existing pressure near the injection point. However, as used in industry, this technique combines 

proprietary elements with assumptions about rock mechanics that are not all generally accepted (cf. 

Lacazette et al., 2013). In addition, the velocity of the fluid pressure pulses was reported by Geiser 

and Leary (2014) as ‘tens of m s-1’, but seems to be lower, ~3 m s-1, for the McClure (2015) analysis. 

Even so, the latter study can only account for post-injection time delays of a few minutes, rather 

than the ten-hour delays evident at Preese Hall. Thus, although this physical mechanism may be 

applicable in some situations, it is not considered further here.  

 

3.Portrayal of geological data 

As already noted, several candidate physical mechanisms have been proposed whereby fracking for 

shale gas can cause induced seismicity (e.g., Davies et al., 2013). In order to understand the 

processes responsible for the Preese Hall occurrence, diverse geological information is required. This 

includes the local state of stress before fracking was begun, to what extent this state of stress was 

modified by the high-pressure injection of fracking fluid into the rocks, the structural geology, and 

the location and source orientation of the induced seismicity. It is apparent that only limited data 

are available for Preese Hall regarding some of these aspects, for example, because no seismographs 

were deployed locally during most of this induced microearthquake sequence. Conversely, for other 

forms of data, such as in situ stress measurements, different authors have reported contradictory 



results. Despite difficulties regarding the quality and quantity of the available data, the importance 

of the topic makes it worthwhile both to make best use of the available data and to identify any 

uncertainties that remain.   

 

3.1 State of stress 

It is well established that the maximum principal stress (σ1) is roughly north-south in northern 

England (e.g., Evans and Brereton, 1990; Cartwright, 1997; Baptie, 2010). It has long been known 

that the differential stress in Britain is relatively high; for example, its magnitude and orientation 

have influenced the design of coal mines (Cartwright, 1997). In situ measurements of the magnitude 

and orientation of the local stress were made in the Preese Hall-1 borehole before fracking took 

place, using borehole breakouts and drilling-induced tensile fractures (Baker Hughes, 2011; Harper, 

2011). Baker Hughes (2011) reported estimates for σ1 of 173±7° from the World Stress Map (WSM) 

and 173±10° from their analysis of the orientation of these drilling-induced tensile fractures in the 

depth range 1417-2094 m (Fig. 2(a)). These estimates have been reported as definitive in recent 

documentation to inform planning applications for future shale gas activities in the area (Cuadrilla, 

2014a, p. 46 and 50; Cuadrilla, 2014b, p. 45 and p. 51). Clarke et al. (2014) indeed reported σ1 locally 

as 173°, with no error margin, citing de Pater and Baisch (2011) as the source. However, this citation 

is in fact referring to Baker Hughes (2011), which is listed on Cuadrilla’s website as ‘Appendix 1’ of de 

Pater and Baisch (2011), and documents indicators of the state of stress at much shallower depths 

than those at which the fracking was subsequently carried out (Fig. 2(a)). On the other hand, Harper 

(2011) reported that the best estimate of σ1 is provided by drilling-induced tensile fractures 

documented deeper, in the depth range 2246-2751 m (i.e. around the depth where fracking was 

later undertaken; Fig. 2(a)), but stated this to be ~188°, not 173°. Harper (2011) indeed reported that 

both the borehole breakouts and drilling-induced tensile fractures in this depth range indicate σ1 

188±16°, whereas using only the latter data the mean value is slightly different, 187° (with no stated 

margin of uncertainty). It is important to reconcile these different estimates for σ1, because any 

future analysis of the geomechanics of this fracking process will require accurate knowledge of this 

quantity. 

 

Notwithstanding the report by Baker Hughes (2011) of a N7°W-S7°E σ1 at Preese Hall from WSM 

data, recent WSM outputs (e.g., Heidbach et al., 2010) in fact report σ1 as circa N35°W-S35°E in 

northwest England. The online gridded WSM dataset (GFZ, 2015) indeed lists best estimates of 

N34.7°W-S34.7°E at 53.75°N 2.75°W (i.e., circa SD 506 284, ~15 km ESE of Preese Hall) and N33.9°W-

S33.9°E at 53.75°N 3.25°W (i.e., circa SD 177 289, ~21 km WSW of Preese Hall). However, it is 



evident from the raw data (also available from GFZ, 2015) that these outputs are based on 

interpolation between sparse data of diverse orientations. Thus, for example, at Burton-in-Kendal in 

SE Cumbria (~54.20°N ~2.71°W; circa SD 538 785; ~46 km from Preese Hall to ~N21°E), GFZ (2015) 

notes a σ1 measurement of N13°E-S13°W. Conversely, at Sellafield in west Cumbria (~54.42°N 

~3.46°W; circa NY 054 037; ~75 km from Preese Hall to ~N35°W), GFZ (2015) lists nine 

measurements of σ1 (at azimuths of 146°, 149°, 151°, 155°, 155°, 158°, 158°, 161°, and 175°), which 

yield a mean value of 156° (±8° as ±1σ; ±6° as ±2s) or N24±6°W-S24±6°E (±2s). It is thus apparent 

that σ1 varies significantly across this region, making it preferable to rely on local measurements 

from the Preese Hall-1 borehole rather than inferences using data from more distant localities. 

 

Table 2: reanalysis 1 of stress data 

Table 3: reanalysis 2 of stress data 

 

Regarding the local measurements, there are the aforementioned analyses that yielded estimates 

for σ1 from drilling-induced tensile fractures of 173±10° (Baker Hughes, 2011) and ~187 or 188° 

(Harper, 2011), as well as the combined dataset of borehole breakouts and drilling-induced tensile 

fractures that yielded 188±16° (Harper, 2011). To try to understand the differences between these 

estimates I have looked again at the raw data (Tables 2 and 3). My reanalyses indicate a mean σ1 of 

176±5° (±2s) or N4±5°W-S4±5°E (±2s) for the Baker Hughes (2011) dataset (Table 2) and of 187±3° 

(±2s) or N7±3°E-S7±3°W (±2s) for the Harper (2011) dataset (Table 3). These two estimates 

therefore differ significantly (at a 95% confidence level). Others (e.g., Roche et al., 2015) have noted 

that the state of stress elsewhere shows significant vertical variations within stratigraphic sequences 

in which one formation undergoes fracking. In my view it is thus preferable to adopt, for the purpose 

of geomechanical analyses of the Preese Hall fracking, the result based on the Harper (2011) dataset, 

since these data originated from the depth range where the fracking was undertaken (Fig. 2). Since 

hydraulic fractures develop in the plane perpendicular to the minimum principal stress, it is 

therefore to be expected as a best estimate that these propagated away from the Preese Hall-1 

borehole in the direction N7±3°E-S7±3°W (±2s).  

 

As regards stress magnitudes, de Pater and Baisch (2011) first noted that, measured in the Preese 

Hall-1 well, |σ1| is ~60% larger than the minimum horizontal stress (σ3), with the vertical stress (σ2) 

taking intermediate values. Cuadrilla (2014a,b) confirmed this, reporting that at 2500 m depth, 

|σ1|≈70 MPa, |σ2|≈60 MPa, and |σ3|≈45 MPa (Fig. 2(b)). However, O’Toole et al. (2013) argued on 

the contrary that the very low seismic velocity anisotropy (~1%) in this vicinity indicates very low 



differential stress magnitudes. Given that the in situ stress measurements are what they are, their 

argument is evidently wrong, and so should not be used in future; nonetheless, from directions of 

fast shear-wave polarization O’Toole et al. (2013) measured σ1 as 193±8° (±2s) or N13±8°E-S13±8°W 

(±2s), consistent with the data from Harper (2011) (Table 3).  

 

3.2 Stress perturbation due to pressure of fracking fluid 

Hydraulic fracturing requires the pressure of fracking fluid to exceed the minimum principal stress at 

the depth of fracking (e.g., Fisher and Warpinski, 2012; Westaway and Younger, 2014). At a depth of 

~2500 m, it thus requires a BHP of at least ~45 MPa, tens of megapascals higher than the expected 

hydrostatic pressure at this depth. de Pater and Baisch (2011) have presented a series of graphs 

illustrating variations in measured well head pressure (WHP) and corresponding variations in BHP, 

indicating values of up to ~9000 psi or ~62 MPa, which they have derived from WHP by calculation, 

although they did not explain these calculations. I have attempted to replicate their analysis using 

the standard method for this type of calculation, but have been unable to replicate their results (I 

obtain values that differ from theirs for each of the fracking stages undertaken by up to ~10 MPa).  

 

Pending resolution of this issue, it is evident from the foregoing that the actual BHP values used in 

these instances of fracking must be considered subject to considerable uncertainty. Moreover, the 

precise values used determine the geometry of the network of hydraulic fractures that was induced; 

as already noted, if BHP was the minimum value required to initiate fracture propagation, then the 

fractures will have propagated upward as well as outward, whereas if it significantly exceeded this 

threshold then fracture propagation would also have occurred downward (e.g., Fisher and 

Warpinski, 2012; Westaway and Younger, 2014). In a homogenous rock mass, the vertical extent of 

the fracture network is determined by the volume of fracking fluid used in each fracking stage; for 

the volumes used in this instance (listed in section 2) it will amount to several hundred metres (say, 

~300 m) (e.g., Westaway and Younger, 2014). Uncertainty in BHP thus results in uncertainty in the 

location of the induced fracture network, thus impacting on uncertainty in any resulting 

geomechanical interpretation. The layered stratigraphy (Fig. 2(a) presents a further complicating 

factor, it having long been recognized both observationally and via numerical modelling (e.g., Evans 

et al., 1989; Warpinski, 1989; Brenner and Gudmundsson, 2004) that the different rheological 

properties of shales and other interbedded rocks such as sandstones and limestones can distribute 

stress differently, such that lithological boundaries can arrest fractures and thus act as ‘frack 

barriers’. It is indeed evident from Fig. 2(a)) that the vertical extent of the Hodder Mudstone is less 

than the aforementioned ~300 m fracture height that would be predicted for a homogenous rock 



mass. Since the underlying and overlying limestone formations are significantly stronger than this 

mudstone (de Pater and Baisch, 2011), induced fracture development might have been arrested at 

these inter-formational boundaries, in which case the induced fracture networks would have 

extended farther sideways (as schematically illustrated in Fig. 1) to accommodate the volume of 

fracking fluid. Alternatively, if these induced fractures instead propagated vertically into these 

permeable limestones, additional paths for fluid migration would have been created, potentially 

complicating analysis of the causal mechanism for the induced seismicity. 

 

I note in passing that Clarke et al. (2014) present a graph (their Fig. 3) labelled as BHP, for the 

fracking stage that caused the ML=2.3 Preese Hall earthquake, with no reference source provided. 

This graph is in fact taken from de Pater and Baisch (2011; their Fig. 22) but is presented there as a 

graph of WHP. Nonetheless, Clarke et al. (2014) did not use the pressure values thus illustrated in 

any quantitative calculations, so no additional errors have resulted from this mistake. This point is 

mentioned here, because the maximum pressure that Clarke et al. (2014) reported is ~7500 psi 

which corresponds to ~52 MPa; if this point were not mentioned, readers might be puzzled as to the 

mismatch between the earlier statements that the BHP is subject to considerable uncertainty and 

the portrayal of precise values for this parameter by Clarke et al. (2014). 

 

3.3.Seismic reflection evidence for the geometry of the seismogenic fault 

Leakage of fracking fluid into faults, causing a change in the state of stress on the fault in favour of 

slip, because this fluid is under higher pressure than any pre-existing groundwater within the fault, is 

a candidate mechanism for induced seismicity (e.g., Davies et al., 2013). As this mechanism had 

already been recognized long before the Preese Hall-1 project went ahead (e.g., Wohlhart et al., 

2006), the Carboniferous sediments in the region were already well known to be pervasively 

fractured and faulted (e.g., British Coal Corporation, 1997; Pharaoh et al., 2011), and the differential 

stress in the region was already known to be high from measurements in coal mines (Cartwright, 

1997), the possibility of its occurrence might have been investigated before any fracking took place, 

not least because faults had been identified in the vicinity on seismic sections (e.g., that in Fig. 3). 

The necessity for such analysis might indeed have become more strongly evident once the in situ 

stress measurements (mentioned in section 3.1) had revealed that the locality is indeed subject to 

high differential stress, confirming the assumption that might reasonably have been made from coal 

industry records.  

 



Following the occurrence of the induced seismicity, de Pater and Baisch (2011) published part of a 

west-east seismic section, utilizing data collected in the 1980s, passing ~400 m north of the Preese 

Hall-1 well (Fig. 3). Several normal faults are thus depicted in the vicinity of the projection of this 

well into the section-line. One of these (labelled 1) has a component of downthrow to the west and 

plots ~1050 m east of the projected well (point 1 in Fig. 1). This fault has been inferred from other 

seismic lines (not depicted) to strike at ~220° (i.e., to dip northwest) and to pass (at the depth of the 

uppermost Carboniferous sediments; Table 1) ~700 m of east of the wellhead (see, e.g., Fig. 6 of de 

Pater and Baisch, 2011). A second, smaller, fault (labelled 2) is depicted as offsetting (at a two-way 

time of ~1.35 s, depicted roughly coincident with the bottom of the Preese Hall-1 well) the top of the 

Clitheroe Limestone Formation (CLL; Table 1) at a point ~300 m east of the projected wellhead (point 

2 in Fig. 1), with a component of downthrow to the east. If this fault has NE or NNE strike it must 

project somewhere very close to the well. The same seismic section was, however, interpreted 

differently by Harper (2011; his Fig. 2.2); in his view a steep east-dipping reverse fault transects the 

projected position of the Preese Hall-1 borehole into the section-line.  

 

Figure 4 here: Excerpt from Clarke et al. 3-D seismic dataset 

 

In contrast with these earlier interpretations, Fig. 1 of Clarke et al. (2014) shows a fault of 

unspecified polarity but with ~030° strike, dip to the SE, and along-strike length ~5 km, which 

projects upward to the NW from a depth of 2930 m at a position ~700 m east of the wellhead. In Fig. 

1 this has been tentatively (?) depicted as a normal fault with downthrow to the SE, consistent with 

the sense that the Clarke et al. (2014) explanation seems to be striving to convey. However, their Fig. 

4 (redrawn, in part, as Fig. 4), which shows an excerpt from a 3-D seismic survey shot in 2012, is 

different yet again. The horizontal seismic section in this Fig. 4 shows a fault with an apparent ~060° 

strike that, likewise, passes ~700 m east of the Preese Hall-1 wellhead. The annotation states that 

this horizontal section is not foreshortened, but if the true strike of this fault is ~030° to match their 

Fig. 1 then it must be foreshortened north-south by a factor of ~3, something that Clarke et al. 

(2014) might usefully have mentioned. Furthermore, although this fault is in roughly the same place 

as Fault 1 in Fig. 3, Clarke et al. (2014) state that it is a reverse fault dipping southeast, not a normal 

fault dipping northwest. It is difficult to understand precisely what is the basis of this 

reinterpretation as their Fig. 4 is unclear, much of its data content being obliterated by 

interpretations and labelling (cf. Fig. 4). Nonetheless, some seismic reflectors can be seen to be 

offset or warped with a component of downthrow to the east, suggesting that a normal fault with 

southeastward dip is in fact present (labelled ‘fault (this study)’ in Fig. 1; see, also, the discussion in 



the Figure caption). With a ~030° strike, this fault would project into the section line in Fig. 3 ~200 m 

east of Fault 2, where no fault with this polarity is evident. Assuming that the cross-section in Fig. 4 

has been correctly located (see the Figure caption), it would therefore appear that the fault 

identified in the 3-D seismic survey reported by Clarke et al. (2014) must die out before the section 

line in Fig. 3 is reached, rather than extending SW-NE to a total length of ~5 km as they inferred in 

their Fig. 1. Likewise, faults depicted in Fig. 3 might well die out within the ~400 m separation 

between this seismic section and the Preese Hall-1 well, such that the fault(s) responsible for the 

induced seismicity (such as that labelled ‘fault (this study)’ in Fig. 1) are not depicted in Fig. 3. 

Clearly, another alternative possibility is that Fig. 4 has not been located in the right place on Fig. 1; 

for example, if in reality its section line coincides with that of Fig. 3, then the co-ordinates of the 

candidate seismogenic fault recognized on Fig. 4 in the present study would coincide with those of 

Fault 2 on Fig. 3.  

 

These different possibilities raise the question which, if any, of these fault interpretations, by de 

Pater and Baisch (2011) (Fig. 3), Harper (2011), or Clarke et al. (2014), is correct. Other factors being 

equal, one would expect a modern 3-D seismic section, like that in Fig. 4 of Clarke et al. (2014), to be 

more reliable than 2-D seismic sections from the 1980s. However, given the evident lack of clarity of 

this particular 3-D seismic section (albeit a clearer version is now available as the present Fig. 4, 

although with some doubt over its precise location), one might reasonably revert to the older data 

source. The non-uniqueness of many interpretations of seismic sections, especially those that 

consider data near the limit of resolution, is widely recognized (e.g., Bond et al., 2007a,b, 2012).  

 

3.4 Hypocentral co-ordinates and focal mechanisms 

As already noted (Fig. 1), Galloway (2012) placed the hypocentres for both the 27 May and 2 August 

events some 400 m south of the Preese Hall-1 wellhead, with a focal depth of 2.3 km. O’Toole et al. 

(2013) deduced a similar location from their own analysis; Eisner et al. (2011) likewise deduced 

similar co-ordinates for the 27 May event. On the other hand, Seismik (2012) reported preferred 

hypocentral co-ordinates for the 2 August event ~500 m east of the Preese Hall-1 wellhead, at a 

depth of ~2930 m, with uncertainties of ~120 m in horizontal position and ~240 m in depth and 

Clarke et al. (2014) stated similar co-ordinates. Neither of these studies mentioned that the 

hypocentres that they determined differ from what others had previously determined. Induced 

seismicity east of this well would be puzzling, because there would be no clear causal mechanism, in 

contrast with induced seismicity south of the well that – as already noted – can be readily explained 

in terms of induced fracture development within the prevailing stress field. Although it was not 



mentioned in either of these studies, the rationale for epicentral co-ordinates to the east of the well 

was to account for the arrival time of seismic P-waves at station EVH that is to the east of the 

wellhead, subject to the assumption of no lateral variations in seismic velocity (see below, section 4, 

also the online supplement). As regards vertical variations in seismic velocity, it is apparent that 

Clarke et al. (2014) assumed seismic velocities representative of crustal basement around the depths 

of fracking, when it should be apparent that velocities representative of Bowland Shale should have 

been adopted. Their unexpectedly deep hypocentre is evidently a consequence of this assumption of 

a seismic velocity model that is too fast (see below, section 4, also the online supplement). The best 

fitting focal depth thus adjusts shallower when a more appropriate velocity model is used, avoiding 

any necessity to devise any conceptual model for the occurrence of induced seismicity at a depth 

hundreds of metres deeper than the fracking.   

 

Preliminary focal mechanisms for the 2 August 2011 event and other induced microearthquakes at 

Preese Hall were presented in the Eisner et al. (2011) and Seismik (2012) reports. Some variability 

was evident in these solutions due to different possible choices of picks of polarities of seismic 

phases and different choices of hypocentral locations, which determine where the nearby temporary 

seismograph stations plot on the focal sphere about each hypocentre. The differences between 

these preliminary solutions and that by Clarke et al. (2014) are discussed in detail in the online 

supplement. 

 

Clarke et al. (2014) concluded that the 2 August 2011 event has a focal mechanism with strike 040°, 

dip 70° and rake -150°. However, the depiction of this focal mechanism in their Fig. 4, reportedly 

using a standard lower focal hemisphere projection, does not match this set of angles (see Fig. S1 in 

the online supplement for more detail). Clarke et al. (2014) concluded that this nodal plane with 

040° strike and 70° dip towards 130° was the fault plane, but inferred that the source involved a 

component of left-lateral slip, when it should be evident that a rake of -150° indicates a component 

of right-lateral slip. In any case, as drawn, their diagram does not have a nodal plane that dips to the 

southeast; it has one that dips to the northwest, on which the component of strike-slip would be 

left-lateral if it were the fault plane. Similar mixups apply to the focal mechanisms for this and other 

events reported in the Eisner et al. (2011) and Seismik (2012) reports, and indeed in publications by 

the same team on microseismicity elsewhere, such as that by Eisner et al. (2010). I have investigated 

the possibility that they have drawn upper focal hemisphere projections although these are labelled 

as ‘lower focal hemisphere’ but, if so, they must also have defined rake using a left-handed sign 

convention, rather than the right-handed standard used in earthquake seismology; if this is indeed 



so then their focal mechanism in fact has strike 040°, dip 70° and rake -30°. However, if this is the 

case then other problems also exist with their solution, since the polarities of P- and S-phases that 

are predicted, for this interpretation, at some of the temporary seismograph stations, do not 

correspond to the polarities that Clarke et al. (2014) have stated are expected for their solution (see 

the online supplement). Since it has proved intractable to resolve precisely what has in fact ‘gone 

wrong’ with their solution, I have revisited the dataset to determine my own solution (see below; 

section 4).  

 

4.Revised hypocentre and focal mechanism determinations 

As has been noted above, there is currently no satisfactory solution for the hypocentre or focal 

mechanism for the 2 August 2011 event, and thus for the induced seismicity in general. I have 

therefore revisited the dataset, determining these over again. To avoid introducing further 

complexity into an already quite confused situation, I have made use of the filtered seismograms 

that Clarke et al. (2014) have provided, rather than re-examining the raw digital seismograms. The 

procedure that I have followed is explained in full in the online supplement, a summary of this 

reinterpretation procedure being provided here.  

 

Using the crustal velocity model in Table 1 I have obtained a revised location for the 2 August 2011 

event, with epicentre circa BNG reference SD 3772 3584 and focal depth ~2500 m. The solution fits 

the observed arrival times at AVH, HHF and PRH very closely but the predicted hypocentre predicts 

the P-wave arrival time at EVW >0.2 s too late. A possible solution to this mismatch would be to 

adjust the hypocentre northeastward, closer to EVW; indeed, epicentral co-ordinates near those 

suggested by Seismik (2012) and Clarke et al. (2014) would, formally, give a better overall fit to the 

data. However, the westward component of dip evident at localities to the northeast of the Preese 

Hall-1 borehole in Fig. 3 would result in the relatively high-velocity Upper Carboniferous sediments 

reaching to shallower depths than are predicted for the velocity model in Table 1. Numerical tests 

indicate that this effect on its own can result in P-wave travel times to EVW that are ~0.1 s faster. By 

changing the angles of refraction and thus the length of ray-paths, the introduction of westward 

dipping boundaries between layers of the part of the seismic velocity model between Preese Hall 

and EVW, to reflect the underlying structure (Fig. 3), would, on its own, likewise result in P-wave 

travel times to EVW that would be ~0.1 s faster. General adjustments to the depths of the layer 

boundaries adopted in the velocity model (Table 1) to better reflect the local geology (see Table 1 

caption) can also, on its own, readily result in travel times to each of the stations that differ from 

those currently calculated by ~0.1 s or more. Furthermore, the westward components of dip 



depicted in Figs. 3 and 4 result from WNW dip (e.g., de Pater and Baisch, 2011) and, thus, WNW 

thickening of the younger (post-Variscan; Fig. 2(b)) sediments with relatively slow seismic velocities. 

I suggest that each of these factors, in some combination, can account for the mismatch in the 

current solution between EVW and the other stations, via a combination of small adjustments to the 

hypocentral co-ordinates, slightly faster travel times to EVW and HHF, and slightly slower travel 

times to other stations. The variations in Poisson’s ratio between the different rock units (Table 1), 

causing S-waves to be refracted to a different extent than P-waves, result in further complications, 

and would ideally need to be handled appropriately by any 3-D velocity model, which would need to 

deal with refractions across dipping boundaries whose strike is oblique to the propagation paths. 

The essential adjustment required is to take account of the overall WNW-ESE development of a 

‘faster’ seismic velocity structure, which will have the effect of adjusting my revised hypocentre (Fig. 

1) away from EVW and HHF and towards AVH and PRH, i.e., adjusting it NW or NNW. In the absence 

of a 3-D seismic velocity model that takes all the above factors into account, I cannot assign any 

formal margins of uncertainty to my solution, although I recognize that the stated co-ordinates are 

likely to be uncertain by hundreds of metres. However, I note (Fig. 1) that the above-mentioned co-

ordinates adjoin the location reported by O’Toole et al. (2013) for the 27 May 2011 event (ML 1.5), at 

SD 37809 35606 (BNG easting ±28m; BNG northing ±85m) and depth 2343±2m (as well as the co-

ordinates for both events reported by Galloway, 2012), suggesting that these induced events 

occurred in close proximity, as others have previously inferred from the similarity of their seismic 

waveforms recorded by the temporary network of local seismograph stations. A hypocentre south of 

the borehole, rather than east of it as suggested by Seismik (2012) and Clarke et al. (2014), is also 

consistent with the geometry of induced fractures expected from the stress field, as already noted. 

 

Figure 5 here: focal mechanism 

 

As is discussed in more detail in the online supplement, I have determined the focal mechanism of 

the 2 August 2011 event in a conventional manner using polarities of P- and S-waves recorded at the 

temporary local stations. This differs from the approach adopted for this event by Seismik (2012) 

and Clarke et al. (2014), which utilized both polarities and relative amplitudes of P- and S-waves 

using a method that was not explained. Although some of the polarities are difficult to read, my 

preferred focal-mechanism orientation (with strike 030°, dip 75°, and rake -20°) is illustrated in Fig. 

5. I have also investigated the 27 May 2011 event, again using P- and S-wave polarities recorded at 

the temporary stations; no differences relative to the 2 August 2011 focal mechanism could be 

resolved, supporting the view that the focal mechanisms of both events were the same or very 



similar. This focal mechanism has a similar orientation to that reported by Clarke et al. (2014), 

assuming the projection and angular definition ambiguities affecting their solution, mentioned 

above, have indeed been correctly resolved. However, my method, my choice of hypocentral 

location, which determines the focal sphere projection, and some of my polarity picks, are different 

from theirs, so the logic underlying my solution is rather different. My solution is also internally 

consistent, in that my polarity picks can be seen to be consistent with it (Fig. 5) and their timings can 

be seen to be consistent with the hypocentral location (see the online supplement). My solution has 

also been presented as a standard projection with the supporting data included (Fig. 5), with all 

associated angles and polarities expressed in accordance with standard definitions.  

 

The validity of my focal mechanism solution (Fig. 5) of course depends on my hypocentral location 

being correct, because the latter determines where stations plot on the focal sphere. However, it is 

apparent from the foregoing discussion and the more detailed discussion in the online supplement 

that the principal cause of uncertainty in the hypocentre is its true north-south (or NNW-SSE) 

position along the line between the stations PRH and HHF. If the hypocentre were to be adjusted 

north of my reported ‘preferred’ location so it would be moved farther away from HHF and closer to 

PRH, then PRH would plot at a steeper angle to the vertical in Fig. 5, nearer the centre of this 

projection on its south side, and HHF would plot at a less steep angle to the vertical, farther away 

from the centre of this projection to the north. For both S-wave components the same polarity 

would still be expected, and the dilatational character of the P-waves at HHF would likewise remain 

expected. The focal mechanism orientation determined in Fig. 5 is thus stable with respect to this 

aspect of uncertainty in the hypocentral location.    

 

5.Discussion 

The UK shale gas industry issued guidelines in 2013 regarding the transparency of data for onshore 

exploration; these guidelines were recently updated (UKOOG, 2015). It is thus considered good 

practice to disclose technical data derived from any exploration project, as this will benefit future 

projects. Regulations requiring such disclosure after an initial six-month embargo were subsequently 

enacted (UK Parliament, 2014); the online platform for publically hosting seismicity data is currently 

under development (BGS, 2015). Proper documentation of data is also a standard requirement for 

academic publication, so that others may validate one’s conclusions. However, despite the 

proliferation of consultancy reports and other previous publications, a serious lack of clarity and 

transparency has prevailed. For example, in accordance with each of these principles, Clarke et al. 

(2014) should have published, in a standard format, their dataset in full, including digital 



seismograms (and associated metadata such as absolute timing information) and derived data such 

as arrival time picks, as well as the aforementioned analysis of BHP, plus the reasoning underlying 

why their own interpretations differed from others. Activist objectors to shale gas in the UK have 

persistently argued that developers have neither been open with information about their project 

plans nor have portrayed their activities accurately. In principle, the Clarke et al. (2014) publication, 

with authorship representing the company responsible for the 2011 Preese Hall project, was most 

welcome, and might usefully have served as a definitive work of record. Unfortunately, in addition to 

the evident mistakes and oversights, the unclear presentation of data, methods, and assumptions 

hampers and/or prevents independent verification of the authors’ conclusions, which is especially 

necessary where these differ from those of other workers who have investigated the same 

earthquake sequence, and where no explanation for these differences has been provided. This is 

neither consistent with data transparency nor an appropriate way of working within the scientific 

community. In the absence of full transparency, I have done my best to resolve the various issues.  

 

5.1 Physical mechanism of the induced seismicity 

The present reanalysis supports the aforementioned previous deductions that this induced 

seismicity occurred south of the Preese Hall-1 well. It also supports the view, suggested above, that 

a plausible candidate mechanism for the induced seismicity is that the fracture networks that 

developed during several of the fracking stages propagated southward and intersected an ESE-

dipping normal fault, as depicted schematically in Fig. 1. Following Davies et al. (2013), it might thus 

be envisaged that some of the fracking fluid leaked from this fracture network into this fault, 

thereby increasing the fluid pressure within the fault and thus reducing its effective normal stress, 

thus bringing it to the condition for shear failure. As Westaway (in press) has noted, after Davies et 

al. (2013), the ~10 hour delay between injection and each of the two largest induced events, on 1 

April 2011 (following fracking stage 2) and on 27 May 2011 (following stage 4) might in principle 

relate either to properties of the fault (e.g., storage and transmissibility characteristics) or to 

properties of the adjoining rock mass (e.g., poroelasticity, or the time required for the transmission 

of fluid pressure by pressure diffusion).  

 

However, as already noted, the state of stress will also change in the surroundings to these induced 

fracture networks, as a result of their component of dilatational strain. In this case, given the 

geometry envisaged in Fig. 1, with the fault and fracture network oblique and with the former 

approaching the end of the latter, based on previous experience (e.g., Westaway, 2002, 2006) it can 

be envisaged that the opening of the fracture network will increase the component of right-lateral 



shear stress across the fault (itself conducive to ‘unclamping’ the fault, but favouring the opposite 

sense of slip to that observed; Fig. 5) but will also increase the normal stress across the fault (itself 

conducive to ‘clamping’ the fault). The upward convergence between the fault and the fractures 

would also mean that the opening of the latter would induce a sense of vertical shear on the former 

that would be conducive to a component of reverse slip, the opposite to that observed (Fig. 5). It is 

concluded that the direct effect of fracture dilatation on the stress field cannot account for the 

observed seismicity; hence the need to consider candidate physical mechanisms involving fluid flow.  

 

As regards the geometry envisaged by Clarke et al. (2014), the same issues would preclude the direct 

effect of fracture opening as a cause of the observed seismicity. It is also difficult to see how any 

plausible geometry of fluid flow could cause an earthquake to nucleate at the hypocentre that they 

favour (Figs 1 and 4), east of and deeper than the Preese Hall-1 well. With this geometry, any fault-

fracture intersection would have to be above the well track (as viewed in cross-section in Fig. 4). The 

fluid would then have to flow upward to this point, then downward along the fault plane for many 

hundreds of metres to nucleate an earthquake at the required depth; the geometry, of induced 

seismicity east of the well track would indeed lend itself to hypocentres shallower than, rather than 

deeper than, the well perforations where the fractures initiated. The 2930 m nucleation depth 

envisaged by Clarke et al. (2014) indeed exceeds the perforation depth for fracking stage 2 (Figs 2(a), 

4) by >300 m, which would require the pressure of the fracking fluid during this stage to have 

exceeded the threshold to initiate fracture development at this perforation depth by ~3 MPa. 

However, as already discussed, the pressures used in this and other fracking stages are subject to 

considerable uncertainty. Thus, at this stage, however unlikely it may seem, the deep hypocentre 

envisaged by Clarke et al. (2014) cannot be formally excluded. This example indeed illustrates the 

value of reliable calculations of fracking fluid pressure (BHP) for understanding the geomechanics.  

 

5.2 Issues relating to differential stress 

The high differential stress and orientation of the principal stresses, already noted, mean that the 

resolved shear stress on any steep fault striking NE-SW in the present study locality will be high 

(conducive to left-lateral slip), such that increases in fluid pressure associated with fracking may well 

bring faults with this orientation to the condition for slip, involving reactivation in a left-lateral sense 

(Fig. 6). Conversely, any steep fault striking NW-SE would be favourably oriented for right-lateral 

reactivation. This situation is rather different from the innocuous consequences of induced fractures 

intersecting natural fractures in some U.S. shale gas provinces, such as in the Barnett Shale of Texas 

(e.g., Gale et al., 2007), where the horizontal stresses are similar in magnitude, and where induced 



earthquakes strong enough to be felt are unknown. As others (e.g., King et al., 2008; Wikel, 2011) 

have also noted, this similarity in horizontal stresses impacts on the geometry of induced 

microseismicity when wells are fracked: if the differential stress is high, hypocentres tend to align as 

discrete planar fractures open in the plane perpendicular to the minimum principal stress; whereas 

if it is low one tends to observe diffuse clouds of microearthquakes as some hypocentres align along 

fractures that open in the plane perpendicular to the present-day minimum principal stress, whereas 

others mark the opening of pre-existing fractures at other orientations (see, also, Gale et al., 2007). 

From the point of view of the shale developer, the response observed in the Barnett Shale, creating 

many interconnecting fractures of different orientations, is beneficial to production, a benefit that 

cannot be anticipated elsewhere. Wikel (2011) indeed noted that, as the Barnett Shale was the first 

shale gas play to be developed on a large scale, it has served as an analogue for other shale plays; 

however, in view of the radically different state of stress elsewhere, this analogy is not always 

appropriate. Wikel (2011) has indeed argued that other shale plays, including the Bakken (Williston 

Basin; Montana, North Dakota, Saskatchewan and Manitoba), Cardium (Alberta and British 

Columbia), Horn River (British Columbia), Marcellus (Appalachian Basin; New York, Pennsylvania, 

Ohio, Maryland and West Virginia, and surroundings), Monterey (California), and Montney (Alberta 

and British Columbia) are likewise subject to significant horizontal stress anisotropy, a list to which I 

would add the Bowland Shale (Fig. 2(b); see also below).  

 

Figure 6 here: Mohr Circle diagram 

 

Although many felt induced earthquakes have occurred in the USA, the largest above magnitude 5, 

they are associated with subsurface disposal of wastewater (which is illegal in the UK and 

throughout the European Union) or hydraulic fracturing of relatively permeable rocks to enhance 

recovery of conventional hydrocarbons (e.g., McGarr, 2014; Westaway, in press). Nonetheless, the 

first felt event associated with fracking (of the Ordovician Utica Shale beneath the more familiar 

Devonian Marcellus Shale) for shale gas and large enough to be felt, occurred recently, the ML 3.0 

Poland Township event of 10 March 2014 in NE Ohio (Skoumal et al., 2015). However, some months 

earlier, in Harrison County, eastern Ohio, a similar fracking project (in Ordovician shale of the Point 

Pleasant Formation) also resulted in a sequence of induced earthquakes, the largest of which (MW 

2.2; on 5 October 2013) might well have been felt, given its size (Westaway and Younger, 2014), but 

was not (Friberg et al., 2014). An indication of the state of stress in this part of the USA is provided 

by in situ measurements at Norton Mine, a former limestone mine at ~2200 ft or ~670 m depth, 

which is being assessed as a future compressed air energy storage facility. Bauer et al. (2005) 



reported recent measurements of σ1 (E-W) 5330 psi or 36.7 MPa, σ2 (N-S) 4100 psi or 28.2 MPa, and 

σ3 (vertical) 3270 psi or 22.5 MPa, as well as compilations of historical and recent measurements 

indicating σ1 6110 psi or 42.1 MPa, σ2 3630 psi or 25.0 MPa, and σ3 3030 psi or 20.9 MPa. High 

differential stress is thus indicated in this part of Ohio, which would be expected to increase further 

when extrapolated to the depths of the fracking (>2 km). This particular dataset might be regarded 

as problematic given that the vertical stress values are much larger than expected from the loading 

effect of the overburden; however, in this formerly glaciated region, the possibility exists that the 

vertical stress has not re-equilibrated following removal of the former ice load (cf. Evans et al, 1982, 

1989). Furthermore, the E-W orientation of the maximum principal stress determined in modern 

measurements is consistent with the design of this mine (Bauer et al., 2005), indicating that the 

mining activity has not perturbed the orientation of the stress field. 

 

Other measurements of high differential stress have also been made in the Appalachian region of 

the USA, as have been reported, for example, by Engelder (1993). Thus, for example, at Auburn, New 

York, Hickman et al. (1985) reported for a depth of 1482 m maximum and minimum horizontal 

stresses of 49.0±2.0 and 30.6±0.4 MPa and a vertical stress of 37.9 MPa. In this locality the 

maximum principal stress was reported as oriented N83±15°E-S83±15°W, the differential stress at 

the stated depth being ~18.6 MPa. At South Canisteo, New York, at 1000 m depth in the Wilkins 

Well, Evans et al. (1989) reported maximum and minimum horizontal stresses of ~38 and ~20 MPa 

and a vertical stress of ~26 MPa. In this locality the maximum principal stress was reported as 

oriented N68.5±24°E-S68.5±24°W, the differential stress at the stated depth being ~18 MPa. In each 

of these cases it can be expected that, extrapolated to a depth of ~2.5 km, the differential stress will 

be at least as high as the ~30 MPa value at Preese Hall (Fig. 2(b)); hence, from the point of view of 

exploring any cause-and-effect connection between high differential stress and felt induced 

seismicity, the Appalachian region of the USA is a suitable analogue for the Bowland Shale.  

 

As another example, the largest earthquake generally accepted as having been induced by fracking 

for shale gas occurred on 19 May 2011 in the Horn River Basin, near the town of Fort Nelson in NE 

British Columbia, Canada; this was recently assessed by Westaway and Younger (2014) as an 

indication of the ‘worst case scenario’ of an induced earthquake that might occur as a result of 

fracking in the UK. This event had ML 3.8 and was felt but caused no damage (BGOGC, 2012); it was 

considered equivalent to MW 3.6 by Ellsworth (2013). This event, and many others in the same 

locality, in the magnitude ~2 to ~3 range, likewise occurred in a formation at relatively high 

differential stress (Roche et al., 2015).  



 

Conversely, the differential stress is very low in the Barnett Shale shale gas province in Texas (e.g., 

Gale et al., 2007; Wikel, 2011), where – notwithstanding the >15000 shale gas wells that have been 

drilled and fracked – no instance of felt induced seismicity has occurred. Nonetheless, induced 

earthquakes, albeit unrelated to shale gas production, large enough to be felt have occurred in the 

vicinity. The largest of these to date, the ML 3.6 Azle, Texas, event of 8 December 2013, occurred in 

Precambrian basement beneath the local Palaeozoic sedimentary sequence (Hornbach et al., 2015). 

According to Hornbach et al. (2015), this population of induced earthquakes was caused by injection 

of industrial wastewater into the Ellenberger Formation, consisting of highly permeable, karstified, 

Ordovician limestone (e.g., Loucks, 2006); in the view of these authors, some of this water leaked 

from this sediment into the underlying basement, where it facilitated reactivation of an ancient 

normal fault to a depth of ~8 km. A potential difficulty with this interpretation concerns the 

geometry (illustrated in Fig. 2 of Hornbach et al., 2015), the water load arising from this instance of 

wastewater injection having been concentrated over the hanging-wall of the basement normal fault, 

which has slipped in the induced seismicity in a normal sense. Since this basement normal fault is 

very steep (dip ~70°), from previous experience (e.g., Westaway, 2002, 2006) the main effect of this 

load will be to increase the shear stress (in the sense conducive to normal faulting) across this fault, 

thus unclamping it. If this is the correct explanation for this instance of induced seismicity, a very 

simple mitigation measure is feasible, namely to switch the wastewater injection to the footwall 

and/or to balance it in future on both sides of the fault so no differential loading effect, which would 

act to unclamp the fault, can develop. Clearly, if, instead, Hornbach et al. (2015) have identified the 

correct explanation, then this would not work as a mitigation measure; however, the possibility 

seems worthy of consideration. Regardless of the correct explanation, it is evident that in this region 

the differential stress is much greater in the basement than at shallower (~2 km) depths in the 

Barnett Shale, as is to be expected from the increase in differential stress with depth that typifies 

most regions.  

 

The above-mentioned Azle example has a number of implications for the UK. The first is the clear 

need to uniquely identify the causal mechanism for the induced seismicity, since this bears upon 

potential mitigation strategies. Second, given the possibility that the Hornbach et al. (2015) 

explanation is correct, it highlights the importance, from the point of view of mitigating induced 

seismicity, of ensuring for any UK shale gas developments that fracking fluid is contained within the 

shale layers being ‘fracked’ and not allowed to leak into underlying more permeable sediments and 

thence into basement. Third, given the possibility that my alternative explanation is correct, the 



potential significance of this ‘dry’ causal mechanism warrants recognition (cf. Davies et al., 2013); 

just because this mechanism did not contribute to the Preese Hall induced seismicity in 2011 (see 

above; section 5.1) does not mean that in another locality in northern England, where the geometry 

of pre-existing faults and induced fractures is different, it can also be excluded as a causal factor. 

 

A further issue concerns the state of stress at Preese Hall. Following Zoback and Healy (1984), many 

U.S. analyses of induced seismicity have considered the concept of an idealized ‘Zoback-Healy stress 

state’ in relation to the standard Mohr-Coulomb criterion for fault slip. It is evident, however, that 

the Preese Hall induced seismicity does not represent such an idealized state. This is most clearly 

apparent because under this state of stress the intermediate principal stress σ2 would be oriented 

along the fault plane, which is clearly not so since σ2 is vertical (Fig. 2(b)) and the fault plane dips at 

75° (Fig. 5). Reasons why this idealized theoretical approach breaks down in this instance include, 

first, the fact that the present-day stress field, conducive to strike-slip (Figs. 2(b) and 5), is very 

different from the extensional stress field when the rocks were laid down during the Carboniferous 

period. Second, unlike more recent variants, such as those developed through my own work (e.g., 

Westaway, 2002, 2006), this theory does not take account of the fact that the rocks bounding a fault 

will have nonzero cohesion, making it mechanically easier for a fault that is not optimally aligned 

with respect to the stress field to slip, rather than for a new fault to form at an optimal orientation.  

 

As a final point pertaining to differential stress, Roche et al. (2015) have noted a correlation between 

the state of stress and the size distribution for the resulting earthquakes induced by fracking in 

different shale formations in the Horn River region. Size distributions of earthquakes are typically 

characterized by ‘b-values’, where –b is the gradient of a logarithmic plot of the cumulative 

frequency of occurrence, N, of the earthquakes in a given region, during a given span of time, which 

are above magnitude M (i.e., b = -dlog10(N)/dM). Populations of earthquakes induced by fracking 

often have high b-values, ~2-3, so their frequency of occurrence tails off abruptly above a particular 

size threshold that is often at quite a small magnitude; in contrast, naturally-occurring earthquake 

populations typically have b ~1. However, Roche et al. (2015) showed that b-values for different 

populations of induced earthquakes in NW Canada are inversely correlated with the local differential 

stress, with b ~1 in the localities with the highest differential stress. Decades earlier, Scholz (1968) 

showed that laboratory rock-mechanics experiments demonstrate a negative correlation between 

differential stress and b-values, and suggested that variability in differential stress is thus the main 

cause of variability in b-values between different earthquake populations. It now seems evident that 

this deduction is of the utmost significance for populations of earthquakes induced by fracking; in 



regions of high differential stress, including the examples just discussed, b-values can be expected to 

be low and populations of induced earthquakes can thus be expected to extend across more of the 

magnitude range, thus giving rise to a significantly higher probability of occurrence of events that 

are large enough to be felt. The Preese Hall induced population evidently fits this general pattern, 

given the evidence of high local differential stress, although the absence of systematic microseismic 

monitoring makes it impossible to confirm directly that the b-value for this earthquake population 

was indeed relatively low. It follows, however, that it will not be possible, as part of monitoring any 

future UK shale gas industry, to use b-values to discriminate between populations of ‘natural’ and 

induced earthquakes, since both can be expected to have b-values of ~1.  

 

5.3 Lessons learned 

It is worth considering how the induced seismicity nuisance arising from the Preese Hall fracking 

might have been mitigated and how the uncertainties in the resulting dataset might have been 

reduced. It goes without saying that microseismic monitoring should have been in place to record all 

induced seismicity resulting from the Preese Hall fracking. The same seismograph network should 

also have been in place to record all the explosive shots used to perforate the borehole casing (the 

first of which took place on 4 March 2011 according to de Pater and Baisch, 2011). This would have 

improved constraint on the local seismic velocity structure (identified above, in section 4, as a 

continuing source of uncertainty), and would also have meant that the subsequent induced 

earthquakes could have been located relative to these perforation shots, mitigating the location 

difficulties that have arisen due to the complex seismic velocity structure. However, this was not a 

UK regulatory requirement at the time, and in other instances (such as for the Horn River induced 

seismicity a few months later; BCOGC, 2012) local seismograph networks were likewise only installed 

after induced seismicity had occurred.  

 

Second, since it was already well known in 2011 that induced earthquakes associated with shearing 

on faults in a given locality all have very similar focal mechanisms, it should have been apparent 

once the induced seismicity started that the limited number of seismographs available could have 

been put to best use by re-siting them after intervals of time, so as to gradually build up coverage of 

the focal sphere to enable a composite focal mechanism to be constrained as well as possible, this 

being a standard strategy in earthquake seismology (e.g., Pytharouli et al., 2011).  

 

Third, the subdivision of the analysis among multiple consultancy organizations led to data being 

analysed in a fragmentary manner, with no overall integration nor, indeed, checking of results for 



obvious mistakes (such incorrect plotting of focal mechanisms) evident. Analysis should include 

checking for consistency between datasets, since different datasets sample different aspects of the 

geology. For example, careful (re)analysis of high-resolution background microseismicity data might 

reveal locations of potential planes of weakness (especially in a locality where the state of stress is 

so close to criticality even before fracking takes place; cf. Fig. 6), which can then be avoided when 

fracking subsequently takes place. If datasets are seen to be inconsistent (e.g., stress field 

orientation data from a borehole appear inconsistent with microseismicity data; or determinations 

of the maximum principal stress direction by different consultants are inconsistent with one 

another; or a newly-acquired 3-D seismic reflection dataset is inconsistent with older 2-D seismic 

sections), there may well be significant features in the local geology that are not being accounted 

for. Rather than reporting data in isolation, it should be considered as regards consistency in relation 

to potential conceptual models. However, multiple conceptual models should be considered, rather 

than over-analyzing a single model built from sparse data; it is ‘better to be approximately right than 

precisely wrong’ (Bond et al., 2012).  

 

Finally, the inherent variability of fault and fracture systems means that data pooling from multiple 

sites may well be beneficial to the objective of reducing geological uncertainty (e.g., Lunn et al., 

2008). For instance, data from multiple sites can place bounds on the uncertainty in bulk fault 

parameters, such as fault length and thickness. The example of this principle, whereby experience of 

induced seismicity from fracking in other regions of high differential stress, such as Ohio and British 

Columbia, may guide expectations in the UK, has already been discussed, although it should be 

noted that from other points of view (such as rheological properties of the shale) other localities 

might serve as better UK analogues (cf. Westaway and Younger, 2014).  

 

The fact that the Carboniferous sediments in northern England are pervasively faulted and fractured 

(e.g., British Coal Corporation, 1997; Kirby et al., 2000; Pharaoh et al., 2011) and many of these faults 

are favourably oriented relative to the present-day stress field to slip in induced earthquakes 

associated with fracking (cf. Fig. 6) warrants wider recognition as an aspect of UK shale gas plays that 

falls outside the scope of much U.S. experience. I therefore disagree with the conclusion of de Pater 

and Baisch (2011) that the 2011 occurrence of ‘nuisance’ (i.e., felt) induced seismicity was the result 

of such a unique combination of conditions that the probability of recurrence is very low (they 

estimated this probability as ~0.0001 for each future shale gas well) and consider that this possibility 

must be planned for by any future UK shale gas industry. Avoidance of routine occurrence of 

‘nuisance’ induced seismicity will require the avoidance of all faults with dimensions of hundreds of 



metres (Westaway and Younger, 2014). The aforementioned discrepancies between interpretations 

of seismic sections cast doubt on whether this is currently feasible (cf. Bond et al., 2007a,b, 2012), 

whereas consideration of the many faults already known would mean excluding much of the volume 

of the shale resource. Conversely, mitigation of this nuisance by suspending fluid injection when the 

fluid reaches any fault will require the development of real-time control systems, which currently do 

not exist, possibly by integrating real-time monitoring of smaller-scale induced seismicity with real-

time monitoring of fluid pressure. In the absence of such technology, the choice would seem to be 

between tolerating occasional occurrences of this form of nuisance or not developing shale gas in 

the UK. 

 

6.Conclusions 

The best-recorded microearthquake in the 2011 Preese Hall sequence, at 08:12 on 2 August 2011, 

had a focal depth of ~2.5 km, beneath a preferred epicentre at BNG reference SD 377 358, some 

hundreds of metres south of the Preese Hall-1 wellhead. My preferred focal mechanism for this 

event has strike 030°, dip 75°, and rake -20°; this NNE-striking nodal plane, apparently formed by a 

normal fault of Early Carboniferous age, is inferred to have been the fault plane, reactivated in a 

mainly left-lateral sense. The other induced earthquakes in the sequence are inferred to have 

occurred in close proximity and to have had similar focal mechanisms. This locality exhibits high 

differential stress, with maximum and minimum principal stresses roughly north-south and east-

west. This stress field is favourably oriented to reactivate steep faults striking NNE-SSW or NE-SW in 

a left-lateral sense; southward leakage of fracking fluid into one such fault evidently caused the 

induced seismicity. This instance of induced seismicity is consistent with an emerging pattern of 

occurrences of induced earthquakes large enough to be felt (sometimes with M>3), when fracking 

for shale gas in regions of high differential stress. Such occurrences, involving earthquake 

populations that tail off gradually towards such magnitudes (with relatively low b-values) are indeed 

consistent with expectations in regions of high differential stress. The combination of pervasive 

faulting, which is difficult to resolve using seismic reflection, and high differential stress, facilitating 

reactivation of these faults large enough to cause felt earthquakes when they slip, poses a significant 

technical challenge for any future UK shale gas industry. 
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Figure captions 

Figure 1. Map of the Preese Hall-1 well and its surroundings, modified after Fig. 1 of Clarke et al. 

(2014), showing the planform of this deviated well, the temporary seismograph stations used to 

investigate the 2 August 2011 microearthquake, the resulting epicentral locations, and the positions 

of the adjacent Thistleton-1 (BGS inventory code SD33NE17; co-ordinates SD 39760 37000) and 

Elswick-1 (BGS inventory code SD43NW15; co-ordinates SD 42380 36965) wells and of the cross-

sections in Figs 3 and 4. The epicentral locations determined by BGS (Galloway, 2012) for the 1 April 

2011 and 27 May 2011 events and by O’Toole et al. (2013) for the latter event are also shown. My 

revised epicentral co-ordinates for the 2 August 2011 event have been drawn with nominal error 

bars indicating uncertainties of 100 m, except that pointing north has been extended in recognition 

of the fact (evident for reasons discussed in the text) that this location is subject to significant 

systematic error and probably lies well north or NNW of the co-ordinates marked. Crosses labelled 1, 

2 and 3 mark the points where faults 1-3 in Fig. 3 intersect the line of this seismic section at the top 

of the Clitheroe Limestone Formation (the dual symbols for faults 1 and 2 mark the footwall and 

hanging-wall cutoffs). The geometry of the seismogenic fault inferred by Clarke et al. (2014) (Fig. 4) is 

depicted at a depth of 2930 m; that inferred in the present study is depicted at a depth of 2740 m 

(Fig. 4), projected SSW for ~500 m assuming a N30°E-S30°W strike, and ornamented to indicate both 

the polarity of the overall fault offset and the inferred sense of coseismic slip in 2011. The induced 

fractures are depicted as emanating at a N7°E-S7°W azimuth (see the main text) from a notional 

point near the bottom of the Preese Hall-1 well. Their length depicted is ~300 m, which is 

appropriate for the volume of fracking fluid used if they are equidimensional (Westaway and 

Younger, 2014); they are shown dashed for a further ~300 m, which is plausible if their vertical 

growth was inhibited by variations in rock-mechanical properties, so they developed longer in the 

sideways direction instead (see the main text). It is suggested that the probable true location of the 

induced seismicity is at the intersection of this induced fracture trend with the fault line (from this 

study), most likely several hundred metres south or SSE of the Preese Hall-1 wellhead. Inset shows 

location, along with a selection of the permanent seismograph stations (none closer than ~80 km; 

see Galloway, 2012, for further details) that recorded the largest Preese Hall microearthquake on 1 

April 2011 and the sites from which in situ stress measurements are discussed (B, Burton-in-Kendal; 

S, Sellafield). 

 

Figure 2. (a) Summary stratigraphic column for the Preese Hall-1 well, modified from Fig. 3 of de 

Pater and Baisch (2011), along with the depths of the perforations for the five frack stages, from Fig. 

11 of de Pater and Baisch (2011). Each tick symbol represents a perforated zone across a depth 



range of 9 ft or ~3 m, with a total of 81 perforation shots per frack stage; for further details of the 

well design, see de Pater and Baisch (2011). Lithological boundaries are depicted at True Vertical 

Depth (TVD); because the borehole is deviated (Figs. 1 and 4) these depths do not all lie beneath the 

same point on the Earth’s surface. The contact between the Pennine Lower Coal Measures 

Formation and the base of the Collyhurst Sandstone Formation marks the Variscan Unconformity. 

Note that the Hodder Mudstone Formation is identified by old names such as the ‘Worston Group’ 

or ‘Worston unit’ in much of the recent literature on this locality. (b) In situ stress measurements as 

a function of depth in the Preese Hall-1 well. The data depicted are the maximum and minimum 

horizontal stresses, σ1 and σ3, and the intermediate vertical stress σ2. Modified from Younger and 

Westaway (2014), based originally on documentation submitted in support of applications for 

planning permission to develop future shale gas wells in Lancashire (Cuadrilla, 2014a, 2014b). de 

Pater and Baisch (2011) inferred that pore water pressure is hydrostatic in this vicinity; it thus 

increases linearly to ~25 MPa at 2500 m depth. Vertical bars labelled B and H denote the depth 

ranges of the in situ stress measurements (discussed in the text) by Baker Hughes (2011) and Harper 

(2011), respectively.  

 

Figure 3. Excerpt from an east-west seismic section from seismic line GC83‐352, with shot points of 

standard 12.5 m spacing, passing ~400 m north of the Preese Hall-1 well, modified from Fig. 7 of de 

Pater and Baisch (2011). Projected to this section-line, the Thistleton-1 well is 2134 m east of the 

Preese Hall-1 well and 2503 m west of the Elswick-1 well. Symbols identifying stratigraphic 

boundaries are keyed to Table 1. Interpreted faults labelled ‘Type A’ only occur within the 

Carboniferous sedimentary section whereas the less numerous ‘Type B’ faults pass upwards across 

the Variscan Unconformity (at the base of the Collyhurst Sandstone Formation – CS; see Table 1). 

Two of the ‘Type A’ faults are labelled 1 and 2 to facilitate discussion in the text.  

 

Figure 4. Excerpt from Figure 4 of Clarke et al. (2014) showing a subset (rendered here as a vertical 

seismic section oriented west-east) of the results of the 3-D seismic reflection survey that was 

undertaken in 2012 in the vicinity of the Preese Hall-1 well. See Fig. 1 for presumed location (I have 

assumed that this section projects through the wellhead, which is implied but not clearly stated by 

Clarke et al., 2014); see Clarke et al. (2014) for a summary of the data processing methodology. The 

section has been ornamented consistent with Fig. 2(a), using data from de Pater and Baisch (2011). 

The labelling is from the original Figure by Clarke et al. (2014), so cannot be removed; it evidently 

obscures much detail. Depths of well perforations for fracking stage 2 are quoted both as Measured 

Depth (MD) and as True Vertical Depth (TVD), and are consistent with the schematic depiction in Fig. 



2. Also depicted are the Clarke et al. (2014) hypocentre (open semicircle) and what they described as 

a ‘simplified’ depiction of their inferred seismogenic fault plane, although it is unclear why this has a 

~45° dip when their text reported the fault plane as much steeper. It is also noteworthy that some 

seismic reflectors are continuous across this interpreted fault, calling into question whether a fault is 

indeed present throughout the localities depicted. Furthermore, it is apparent from this ornamented 

version of this diagram that the Hodder Mudstone Formation thins abruptly towards the Preese-

Hall-1 well from the east. Weak zones sub-parallel to the bedding of the Hodder Mudstone were 

recognized in the Preese Hall-1 dataset by de Pater and Baisch (2011) and Harper (2011) and might 

well have accommodated the observed local thinning of this formation by bedding plane slip. Harper 

(2011) indeed noted that these weak zones make the mechanical properties of this formation 

anisotropic. The Preese Hall-1 wellbore also experienced deformation within the Hodder Mudstone; 

caliper tool measurements reported by de Pater and Baisch (2011) indicate that this deformation 

was concentrated between depths (MD) of 8502 and 8626 ft or 2590-2636 m, which correspond to 

~2555-2591 m TVD. This deformed interval is identified here as a white band on the well track. The 

effect of these details on the mechanics of the induced seismicity is a worthy target of future 

research, but beyond the scope of the present study. It is unfortunate that the excessive ornament 

applied by Clarke et al. (2014) obliterates illustration of the Hodder Mudstone Formation west of the 

Preese Hall-1 well, preventing further detail from being established at this stage. In my view a case 

can be made that a fault, steeper than that drawn by Clarke et al. (2014), is present in the vicinity of 

their giant arrowhead symbol, where a reflector in the Clitheroe Limestone appears offset and 

warped. A pointer has been added in the margin of the figure to help identify this position (located 

~100 m east of the deepest part of the Preese Hall-1 well, centred circa 2740 m depth) without 

obliterating even more of the diagram with ornament. The possibility that this fault is steep in the 

Clitheroe Limestone, flattens upward in the Hodder Mudstone (its past low-angle displacement 

causing the fabric within this shale and its coseismic slip in 2011 causing the wellbore deformation 

that were mentioned above) in accordance with standard theory for ‘stress refraction’ (e.g., 

Bradshaw and Zoback, 1988), then steepens upward in the overlying Pendleside Limestone (possibly 

coinciding in this formation with ‘fault 3’ in Fig. 3), is indeed worth more detailed consideration in 

future analysis, but this will require as a starting point a version of this diagram without the present 

obliteration by unnecessary labelling and with no uncertainty regarding precise location.  

 



Figure 5. Preferred focal mechanism for the 2 August 2011 earthquake (strike 030°, dip 75°, 

rake -20°, P-axis azimuth 347° with plunge 25°, and T-axis azimuth 087° with plunge 3°). All diagrams 

are equal area projections of the lower focal hemisphere, with compressional quadrants (for P-

waves) and positive-polarity quadrants (for S-waves) shaded. Ray paths to local stations, which pass 

upwards through the focal sphere, have been projected in the opposite direction into the lower focal 

hemisphere. (a) P-wave radiation pattern showing stations marked to indicate no clear polarity 

picks, although the first motions appear dilatational at HHF and AVH and compressional at PRH (see 

the online supplement). (b) Corresponding SH-wave radiation pattern. (c) Corresponding SV-wave 

radiation pattern. Solid and open symbols in (b) and (c) denote signals of positive and negative 

polarity; cross in (b) denotes an unclear (? nodal) signal.  

 



Figure 6. Simple conceptual model for the state of stress in relation to Preese Hall induced 

seismicity. This modified Mohr circle construction plots shear stress τ against normal stress σn to 

illustrate the state of stress at 2440 m depth in the Preese Hall-1 borehole (using data from 

Cuadrilla, 2014a,b; Fig. 2(b)) relative to the condition for shear failure on an optimally-oriented 

vertical strike-slip fault. σH max, σH min and σV denote the measured maximum and minimum 

horizontal stresses and vertical stress, measured as 73.4, 43.6 and 62.2 MPa, respectively. σmean is 

the mean of σH max and σH min, which is 58.5 MPa; pL is the lithostatic pressure, calculated from the 

definition as (σH max + σH min + σV)/3, which is 59.7 MPa; and pH is the hydrostatic pressure, calculated 

as the density of water (1000 kg m-3) × the acceleration due to gravity (9.81 m s-2) × the depth, which 

is 23.9 MPa. Dashed sloping line illustrates the frictional condition for fault slip, for a fault with a 

coefficient of friction of 0.6. This line does not intersect the Mohr circle, indicating that under 

hydrostatic conditions the fault is stable. The minimum value of the bottom-hole pressure of 

fracking fluid, pB, that can initiate development of induced fractures will equal σH min (e.g., Fisher and 

Warpinski, 2012). The bold sloping line is constructed assuming the same coefficient of friction but 

that leakage of fracking fluid raises its pressure within a fault above pH by 15% of the difference 

between pH and pL, or to pF=29.3 MPa, This line now touches the Mohr circle, indicating that the 

fault is now frictionally unstable and can thus slip in an induced earthquake. The optimum fault 

orientation to which this calculation applies would involve strike at 45° to both horizontal principal 

stresses, i.e., at azimuth 052° for left-lateral slip or 322° for right-lateral slip on vertical faults (cf. 

Table 3). Corresponding calculations for non-optimally-oriented faults (such as for reactivation of a 

fault striking at 030° and dipping at 75°, for slip at a rake of -20°) are beyond the scope of the 

present study, but will evidently require overpressures slightly more than 15% over hydrostatic for 

the assumed conditions, the excess depending on the precise difference in orientation between the 

stress field and the fault. It is likewise apparent that variations in other parameters, such as a smaller 

value for the coefficient of friction or the occurrence within the fault of 15% of a higher 

overpressure, caused by pB exceeding pL, would facilitate frictional instability on the fault; hence the 

importance of being able to constrain as accurately as possible each of these parameters.   
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Table 1: Seismic velocity model 
----------------------------------------------------------------------------------------------------------------------------------------------- 
H VP VP / VS VS ν Stratigraphy  
(m) (m s-1)  (m s-1) 
----------------------------------------------------------------------------------------------------------------------------------------------- 
647 3452 1.99 1735 0.331 MMG to 207 m; SSG to 423 m; SBS to 647 m 
1394 4384 1.99 2203 0.331 SBS to 1030 m; MM to 1170 m; CS to 1247 m; PLCM to 1279 m; MG to 1394 m 
2065 4812 1.81 2659 0.280 MG to 1993 m; BSG to 2065 m  
∞ 4000 1.68 2381 0.226 BSG to 2507 m; PDL to 2576 m; HOM to 2744 m; CLL to 2773 m (not bottomed) 
----------------------------------------------------------------------------------------------------------------------------------------------- 
H is the depth of the base of each layer; VP and VS are the P- and S-wave velocities, and ν is Poisson’s ratio, which 
relates to VP / VS in accordance with standard theory [e.g., Westaway and Younger, 2014]. This seismic velocity model, 
used for earthquake location using the local seismograph stations (see the online supplement for details), is based on 
that from Clarke et al. [2014], except that layer 4 has been continued downward indefinitely rather than being 
superseded by a layer representing Lower Palaeozoic metamorphic basement at 2520 m. Stratigraphic information is 
from de Pater and Baisch [2011]. Stratigraphic codes denote the following: MMG, Mercia Mudstone Group (Late 
Triassic); SSG, Sherwood Sandstone Group (Early Triassic);  SBS, St Bees Sandstone Formation (Early Triassic); MM, 
Manchester Marls Formation (Late Permian); CS, Collyhurst Sandstone Formation (Early Permian), with base at the 
Variscan Unconformity; PLCM, Pennine Lower Coal Measures Formation (Late Carboniferous [Silesian]; Westphalian); 
MG, Millstone Grit Group (Late Carboniferous [Silesian]; Namurian); BSG, Bowland Shale Formation (late Early 
Carboniferous [Dinantian]; Viséan to Late Carboniferous [Silesian]; Namurian); PDL, Pendleside Limestone Formation 
(Early Carboniferous [Dinantian]; Viséan); HOM, Hodder Mudstone Formation (Early Carboniferous [Dinantian]; 
Viséan); and CLL, Clitheroe Limestone Formation (Early Carboniferous [Dinantian]; latest Tournaisian to earliest 
Viséan). These codes are searchable (at http://www.bgs.ac.uk/lexicon/lexicon.cfm) to provide additional detail. 

http://www.bgs.ac.uk/lexicon/lexicon.cfm


Table 2: Drilling induced tensile fracture data, 1  
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
α1-α2 (°) w (ft) αM (°) w × αM  D 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
155-160 0.765 157.5 120.536 252.837 
160-165 2.602 162.5 422.832 451.745 
165-170 9.643 167.5 1615.179 644.624 
170-175 11.480 172.5 1980.230 115.807 
175-180 28.776 177.5 5107.653 95.717 
180-185 2.755 182.5 502.806 128.290 
185-190 2.143 187.5 401.786 299.577 
190-195 2.755 192.5 530.357 779.807 
200-205 0.765 202.5 154.974 550.651 
 −−−−−−  −−−−−−−− −−−−−−− 
Sum 61.684  10836.352 3319.055 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
This table presents an analysis of the dataset of drilling-induced tensile fractures depicted in Fig. 6 of 
Baker Hughes (2011). The data thus depicted consist of lengths (w) of drilling induced tensile 
fractures, grouped by 5° ranges of azimuth (α1-α2), observed in the Preese Hall-1 borehole between 
depths of 4650 and 6869 ft or 1417 and 2094 m. The mid-point of each of these ranges of azimuth is 
denoted by αM. The mean azimuth of this sample of drilling induced tensile fractures is determined, 
as standard, as the sum of (w × αM) divided by the sum of w and is 175.7°. D is the weighted squared 
deviation for the data in each azimuth range, calculated as standard from the mean value and the 
values of w and αM. The sample variance is determined, as standard, from the sum of D and the sum 
of w and is 60.53°2, making the sample standard deviation 7.8° and thus giving 5.2° as twice the 
standard error in the mean value. These values are similar to those obtained by Baker Hughes 
(2011), who reported the mean as 173.6° and the sample standard deviation as 7.6°, which they 
rounded for some reason as 173±10°; the difference between my results and theirs may be because 
they used the raw (ungrouped) dataset to which I have not had access. 
 



Table 3: Drilling induced tensile fracture data, 2  
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Depth 
−−−−−−−−−−−−−−  
(ft) (m) α (°) D 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
8553 2607 186.8 0.18 
8572 2613 195.6 70.42 
8612 2625 179.5 58.73 
8638 2633 185.2 4.04 
8642 2634 186.8 0.18 
8646 2635 188.1 0.86 
8650 2637 191.3 16.77 
8656 2638 189.0 3.36 
8788 2679 182.5 22.31 
  −−−−− −−−−−  
Sum  1684.9 176.87 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
This table presents an analysis of the dataset of drilling-induced tensile fractures depicted in Fig. 4.2 
of Harper (2011). The data thus depicted consist of measurements of the azimuth (α) of individual 
fractures, observed in the Preese Hall-1 borehole between depths of 8450 and 8800 ft or 2576 and 
2682 m. The mean azimuth of this sample of fractures is determined, as standard, as the sum of α 
divided by the number of measurements, and is 187.2°. D denotes the squared deviation of each 
measurement from this mean value. The sample variance is determined, as standard, from the sum 
of D and the number of measurements, and is 22.11°2, making the sample standard deviation 4.7° 
and thus giving 3.1° for twice the standard error in the mean value.  
 
   


