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Abstract

In this paper the propagation of small amplitude surface waves guided by a
layer with a finite thickness on an incompressible half-space is studied. The layer
and half-space are both assumed to be initially stressed. The combined effect of
initial stress and finite deformation on the speed of Rayleigh waves is analyzed
and illustrated graphically. With a suitable simple choice of constitutive law that
includes initial stress, it is shown that in many cases, as is to be expected, the effect
of a finite deformation (with an associated pre-stress) is very similar to that of an
initial stress (without an accompanying finite deformation). However, by contrast,
when the finite deformation and initial stress are considered together independently
with a judicious choice of material parameters different features are found that don’t
appear in the separate finite deformation or initial stress situations on their own.
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1 Introduction

Guided wave propagation provides an important non-destructive method for assessing

material properties and weaknesses in many engineering structures. In the absence of

initial stress (residual stress or pre-stress) the classical theory of linear elasticity has been

applied successfully in the analysis of such structures. One problem of special interest is
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the propagation of surface waves in an isotropic linearly elastic layered half-space, and for

a treatment of this problem we refer to the classic text Ewing et al. (1957) for detailed

discussion and the papers by Achenbach and Keshava (1967), Achenbach and Epstein

(1967), Tiersten (1969) and Farnell and Adler (1972).

For a layered half-space of incompressible isotropic elastic material subject to a pure

homogeneous finite deformation and an accompanying stress (a so-called pre-stress) the

propagation of Rayleigh-type surface waves in a principal plane of the underlying de-

formation was examined in detail in Ogden and Sotiropoulos (1995) on the basis of the

linearized theory of incremental deformations superimposed on a finite deformation. In

the special case of the Murnaghan theory of second-order elasticity Akbarov and Ozisik

(2004) also examined the effect of pre-stress on the propagation of surface waves. Sur-

face waves for a half-space with an elastic material boundary without bending stiffness

were studied by Murdoch (1976) and generalized to include bending stiffness by Ogden

and Steigmann (2002) following the theory of intrinsic boundary elasticity developed by

Steigmann and Ogden (1997).

For a half-space without a layer subject to a pure homogeneous finite deformation the

propagation of Rayleigh surface waves was first studied by Hayes and Rivlin (1961), who,

with particular attention to the second-order theory of elasticity, obtained the secular

equation for the speed of surface waves first for compressible isotropic materials and

then, by specialization, for incompressible materials. Focussing on the incompressible

theory for an isotropic material Dowaikh and Ogden (1990) analyzed the propagation

of surface waves in a principal plane of a deformed half-space and the limiting case of

surface instability for which the wave speed is zero and obtained the secular equation

in respect of a general form of strain-energy function. The corresponding problem for a

compressible material was treated in Dowaikh and Ogden (1991a).

For references to the Barnett–Lothe–Stroh approach to the analysis of surface waves

in pre-stressed elastic materials we refer to Chadwick and Jarvis (1979a) and Chadwick

(1997) in which papers compressible and incompressible materials, respectively, were

considered. In contrast to the situation of a half-space subject to finite deformation

and a pre-stress associated with it through a constitutive law, for materials with an
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initial stress parallel to the half-space surface, surface waves were analyzed recently by

Shams and Ogden (2014) for an incompressible material, and it is an extension of this

development to the case of a layered half-space that is the subject of the present paper.

The layer is taken to have a uniform finite thickness and material properties different

from those of the half-space, and the initial stress is assumed to be different in the layer

and half-space. In the presence of the initial stress (in the reference configuration) the

strain-energy function depends on the initial stress as well as on the deformation from

the reference configuration.

The basic equations required for the study are presented in Section 2, including de-

velopment of the constitutive law for an initially stressed elastic material in terms of

invariants, as described in Shams and Ogden (2014), and its specialization to the case

of a plane strain deformation. Section 3 provides the incremental equations of motion

based on the theory of linearized incremental deformations superimposed on a finite de-

formation, and expressions for the elasticity tensor of an initially stressed material are

given in general form and then explicitly in the case of plane strain for a general form of

strain-energy function.

Section 4 applies general incremental equations to the expressions that govern two-

dimensional motions in the plane of a (pure homogeneous) plane strain, a principal plane

which is also a principal plane of the considered uniform initial stress. In Section 5,

these equations are applied to the analysis of surface waves in a homogeneously deformed

half-space covered by a layer with a uniform uniaxial initial stress that is parallel to the

direction of the wave to obtain the general dispersion equation. The complex form of

the dispersion equation derived in Section 5 for a general form of strain-energy function

is typical for problems involving pre-stressed media, and it is only by careful choice of

notation that it is possible to obtain meaningful information from the equation without

using an entirely numerical approach. In Section 6 the general dispersion equation is

solved numerically in respect of a simple form of strain-energy function which extends

the basic neo-Hookean material model to include the initial stress. The results are il-

lustrated graphically for several values of the parameters associated with the underlying

configuration (initial stress, stretches relative to the reference configuration in layer and
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half-space, and material parameters).

As a final illustration we exemplify results corresponding to vanishing of the surface

wave speed, which corresponds to the emergence of static incremental deformations at

critical values of the parameters involved and signals instability of the underlying ho-

mogeneous configuration, leading to undulations of layer/half-space structure that decay

with depth in the half-space. Such undulations are also referred to as wrinkles, and we

refer to the recent paper by Diab and Kim (2014) for a discussion of wrinkling stability

patterns in a graded stiffness half-space.

2 Basic equations

2.1 Kinematics and stress

Consider an elastic material occupying some configuration in which there is a known

initial (Cauchy) stress τ which is not specified by a constitutive law. Deformations of

the material are measured from this configuration, which is designated as the reference

configuration. This is denoted by Br and its boundary by ∂Br. The initial stress satisfies

the equilibrium equation Divτ = 0 in the absence of body forces, and is symmetric in

the absence of intrinsic couple stresses, Div being the divergence operator on Br. If the

initial stress is a residual stress, in the sense of Hoger (1985), then it also satisfies the

zero traction boundary condition τN = 0 on ∂Br, where N is the unit outward normal

to ∂Br. According to this definition residual stresses are necessarily inhomogeneous, and

they have a strong influence on the material response relative to Br. For references to the

literature on the inclusion of residual stress in the constitutive law we refer to Merodio

et al. (2013). In this paper, however, only initial stresses that are homogeneous will be

considered. These also have a significant effect on the material response relative to Br.

The material is deformed relative to Br so that it occupies the deformed configuration

B, with boundary ∂B. In standard notation the deformation is described in terms of the

vector function χ according to x = χ(X), X ∈ Br, where x is the position vector in B

of a material point that had position vector X in Br. The deformation gradient tensor

F is defined by F = Gradχ, where Grad is the gradient operator defined on Br. We

note, in particular, the polar decomposition F = VR which will be used subsequently,
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where the so-called stretch tensor V is symmetric and positive definite and R is a proper

orthogonal tensor. We shall also make use of the (symmetric) left and right Cauchy–Green

deformation tensors, which are given by B = FFT and C = FTF, respectively.

We denote by σ the Cauchy stress tensor in the configuration B and by S the associ-

ated nominal stress tensor relative to Br, which is given by S = JF−1σ, where J = detF.

We assume that there are no couple stresses, so that σ is symmetric. In general, however,

the nominal stress tensor is not symmetric, but it follows from the symmetry of σ that

FS = STFT. Body forces are not considered in this paper, so the equilibrium equations

to be satisfied by σ and S are divσ = 0 and DivS = 0, respectively, div being the

divergence operator on B.

2.2 The strain-energy function

In the presence of an initial stress τ the material response relative to Br is strongly

influenced by τ , and this is reflected in inclusion of τ in the constitutive law. It can be

regarded as a form of structure tensor similar to, but more general than, the structure

tensor associated with a preferred direction in Br. In the present work we consider the

material properties to be characterized by a strain-energy function W , which is defined

per unit volume in Br. In the absence of initial stress W depends on the deformation

gradient F, but here it depends also on τ and we write W = W (F, τ ).

For incompressible materials, on which we focus in this paper, the constraint J ≡

detF = 1 must be satisfied for all deformations, and the nominal and Cauchy stress

tensors are given by

S =
∂W

∂F
(F, τ )− pF−1, σ = FS = F

∂W

∂F
(F, τ )− pI, (1)

where p is a Lagrange multiplier associated with the constraint and I is the identity tensor

in B.

2.3 Invariant formulation

For full details of the constitutive formulation based on invariants, we refer to Shams

et al. (2011) and Shams and Ogden (2014). Here we provide a summary of the equa-

tions that are needed in the following sections. Since the material is considered to be
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incompressible there are only two independent invariants of C. We take these to be the

standard invariants I1 and I2 defined by

I1 = tr(C), I2 =
1

2
(I21 − tr(C2)). (2)

For τ three invariants are required in general. These are independent of C and it is

convenient to collect these together as I4 according to

I4 ≡ {I41, I42, I43}, I41 = trτ , I42 = tr(τ 2), I43 = tr(τ 3). (3)

The set of invariants is completed by four independent invariants that depend on both

C and τ , which we define by

I5 = tr(Cτ ), I6 = tr(C2τ ), I7 = tr(Cτ 2), I8 = tr(C2τ 2). (4)

Note that in the reference configuration (2) and (4) reduce to

I1 = I2 = 3, I5 = I6 = trτ , I7 = I8 = tr(τ 2). (5)

With W regarded as a function of I1, I2, I4, I5, I6, I7, I8 the Cauchy stress tensor given

by (1)2 can be expanded out as

σ = 2W1B+ 2W2(I1B−B2) + 2W5Σ+ 2W6(ΣB+BΣ)

+ 2W7Ξ+ 2W8(ΞB+BΞ)− pI, (6)

where Wr = ∂W/∂Ir, r ∈ {1, 2, 5, 6, 7, 8}, Σ = FτFT = VRτRTV and Ξ = Fτ 2FT =

VRτ 2RTV.

In the reference configuration, equation (6) reduces to

τ = (2W1 + 4W2 − p(r))Ir + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ
2, (7)

where Ir is the identity tensor in Br, p
(r) is the value of p in Br, and all the derivatives

of W are evaluated in Br, where the invariants are given by (5). Following Shams et al.

(2011), but in a slightly different notation, we therefore deduce that

2W1 + 4W2 − p(r) = 0, 2(W5 + 2W6) = 1, 2(W7 + 2W8) = 0 in Br. (8)

Specializations of these restrictions will be used later.
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Suppose that F now corresponds to a pure homogeneous strain defined by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (9)

where (X1, X2, X3) and (x1, x2, x3) are Cartesian coordinates in Br and B, respectively,

and λ1, λ2, λ3 are the (uniform) principal stretches. By incompressibility, λ1λ2λ3 = 1. Let

τij, i, j ∈ {1, 2, 3}, denote the components of τ for the considered deformation. Then,

referred to the principal axes of the left Cauchy–Green tensor B, which coincide with

the Cartesian axes for the pure homogeneous strain, Σij = λiλjτij and Ξij = λiλj(λ
2
i +

λ2j)
∑3

k=1 τikτjk. The component form of equation (6) is then given by

σij = 2W1λ
2
i δij + 2W2(I1 − λ2i )λ

2
i δij + 2[W5 +W6(λ

2
i + λ2j)]λiλjτij

+ 2[W7 + (λ2i + λ2j)W8]λiλj

3∑
k=1

τikτjk − pδij. (10)

2.4 Plane strain specialization

Subsequently, we shall specialize to plane strain (in the 1, 2 plane with in-plane principal

stretches λ1, λ2 and λ3 = 1) and with the initial stress confined to this plane, i.e. with

τi3 = 0 for i = 1, 2, 3. Then, in addition to the standard plane-strain connection I2 = I1,

the connections

I6 = (I1 − 1)I5 − (τ11 + τ22), (11)

I7 = (τ11 + τ22)I5 − (τ11τ22 − τ 212)(I1 − 1), (12)

I8 = (I1 − 1)I7 − (τ 211 + τ 222 + 2τ 212) (13)

can be established. Thus, only two independent invariants that depend on the defor-

mation remain, and we take these to be I1 and I5. We now write the energy function

restricted to plane strain as Ŵ (I1, I5) and leave implicit the dependence on the invariants

of τ that do not depend on the deformation.

The in-plane Cauchy stress then takes on the simple form

σ = 2Ŵ1B+ 2Ŵ5Σ− p̂I, (14)

wherein all the tensors are two dimensional (in the 1, 2 plane) and B satisfies the two-

dimensional Cayley–Hamilton theorem B2 − (I1 − 1)B+ I = O, the zero tensor, remem-
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bering that we are considering incompressibility. Note that p̂ is different from the p in

(6).

The conditions (8) reduce to

2Ŵ1 − p̂(r) = 0, 2Ŵ5 = 1. (15)

3 Incremental equations

In terms of the nominal stress tensor S the equilibrium equation DivS = 0 is now written

in Cartesian component form as

Aαiβj
∂2xj

∂Xα∂Xβ

− ∂p

∂xi
= 0, (16)

where Aαiβj are the components of the elasticity tensor A = A(F, τ ). The tensor and

component forms are defined by

A =
∂2W

∂F∂F
, Aαiβj =

∂2W

∂Fiα∂Fjβ

, (17)

with Greek and Roman indices relating to Br and B, respectively.

We now consider a small incremental deformation superimposed on the finite deforma-

tion x = χ(X). Let this be denoted by ẋ = χ̇(X, t) and its gradient by Gradẋ ≡ Ḟ. Here

and in the following a superposed dot indicates an increment in the considered quantity.

Based on the nominal stress the linearized incremental constitutive equation and the

corresponding incremental incompressibility condition are

Ṡ = AḞ− ṗF−1 + pF−1ḞF−1, tr(ḞF−1) = 0. (18)

where ṗ is the linearized incremental form of p.

The incremental equation of motion for an initial homogeneous deformation (with A

and p constants) is then

DivṠ = Div(AḞ)− F−TGrad ṗ = ρẋ,tt, (19)

where a subscript t following a comma indicates the material time derivative and ρ is the

mass density of the material. In components this becomes

Aαiβj
∂2ẋj

∂Xα∂Xβ

− ∂ṗ

∂xi
= ρẋi,tt. (20)
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Also required is the incremental form of the symmetry condition FS = STFT, i.e.

FṠ+ ḞS = ṠTFT + STḞT. (21)

Following Shams et al. (2011) and Shams and Ogden (2014) it is convenient to update

the reference configuration so that it coincides with the configuration corresponding to

the finite homogeneous deformation with all incremental quantities treated as functions

of x and t instead of X and t. The incremental deformation (displacement) is denoted u

and defined by u(x, t) = χ̇(χ−1(x), t), and all other updated incremental quantities are

identified by a zero subscript. In particular, we have Ḟ0 = ḞF−1 = gradu and Ṡ0 = FṠ,

where grad is the gradient operator in B, while A0 denotes the updated form of A. In

component form we have the connection A0piqj = FpαFqβAαiβj (Ogden, 1984).

The updated forms of the incremental equation of motion and incompressibility con-

dition are then, in component form,

A0piqjuj,pq − ṗ,i = ρui,tt, up,p = 0, (22)

in which the notations ui,j = ∂ui/∂xj, ui,jk = ∂2ui/∂xj∂xk have been adopted.

The updated form of equation (21) yields

A0ijkl + δil(σjk + pδjk) = A0jikl + δjl(σik + pδik), (23)

as given in Shams et al. (2011).

At this point we record the strong ellipticity condition on the coefficients A0piqj, which

states that

A0piqjnpnqmimj > 0 (24)

for all non-zero m,n such that m ·n = 0 (this orthogonality follows from incompressibil-

ity), mi and ni, i = 1, 2, 3, being the components ofm and n, respectively. In terms of the

acoustic tensor Q(n) defined in component form by Qij = A0piqjnpnq, strong ellipticity

ensures that [Q(n)m] ·m > 0 subject to the stated restrictions on m and n.

The updated elasticity tensor can be expanded in its component form as

A0piqj =
∑
r∈I

WrFpαFqβ
∂2Ir

∂Fiα∂Fjβ

+
∑
r,s∈I

WrsFpαFqβ
∂Ir
∂Fiα

∂Is
∂Fjβ

, (25)
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where Wrs = ∂2W/∂Ir∂Is and I is the index set {1, 2, 5, 6, 7, 8}. Expressions for the

derivatives of the invariants which appear in (25) and the resulting lengthy expression

for A0piqj are given in Shams et al. (2011) and are not repeated here. We need only their

plane strain specializations, which will be provided in the following.

3.1 Plane strain case

Considerable simplification arises in the plane strain specialization considered in Section

2.4, for then equation (25) applies with the reduced index set I = {1, 5}. Then the only

derivatives of the invariants required are simply

∂I1
∂Fiα

= 2Fiα,
∂I5
∂Fiα

= 2ταβFiβ,
∂2I1

∂Fiα∂Fjβ

= 2δαβδij,
∂2I5

∂Fiα∂Fjβ

= 2ταβδij. (26)

From (25) we then obtain

A0piqj = 2Ŵ1Bpqδij + 2Ŵ5Σpqδij + 4Ŵ11BpiBqj

+ 4Ŵ15(BpiΣqj +BqjΣpi) + 4Ŵ55ΣpiΣqj, (27)

with p, i, q, j taking values 1 and 2.

When specialized to the reference configuration A0piqj is denoted Cpiqj, which is given

by

Cpiqj = 2Ŵ1δpqδij + τpqδij + 4Ŵ11δpiδqj + 4Ŵ15(δpiτqj + τpiδqj) + 4Ŵ55τpiτqj, (28)

wherein Ŵ1, Ŵ11, Ŵ15 and Ŵ55 are evaluated for I1 = 3 and I5 = τ11 + τ22 and we have

used (15)2.
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4 Plane incremental motions

We now illustrate the general theory by specializing the underlying configuration to one

consisting of a pure homogeneous strain and focus attention on incremental motions in

the (x1, x2) principal plane, so that the incremental displacement u has components

u1(x1, x2, t), u2(x1, x2, t), u3 = 0. (29)

We also take the initial stress to be uniform and confined to the (x1, x2) plane, so that

τi3 = 0, i = 1, 2, 3. Moreover, the incremental incompressibility condition (22)2 allows

the components u1 and u2 to be expressed in the form

u1 = ψ,2, u2 = −ψ,1, (30)

where ψ = ψ(x1, x2, t) is a scalar function. Elimination of ṗ from the two resulting non-

trivial components of the incremental equation of motion (22)1, as detailed in Shams and

Ogden (2014), leads to an equation for ψ, namely

αψ,1111 + 2δψ,1112 + 2βψ,1122 + 2εψ,1222 + γψ,2222 = ρ(ψ,11tt + ψ,22tt), (31)

in which the (constant) coefficients are defined by

α = A01212, 2β = A01111 +A02222 − 2A01122 − 2A02112, γ = A02121,

δ = A01222 −A01112, ε = A01121 −A02122. (32)

Given that τi3 = 0, i = 1, 2, 3, we now assume additionally that τ12 = 0. It follows

that Σ12 = 0 and δ = ε = 0, and from (27) that the coefficients α, β and γ are given by

α = 2Ŵ1λ
2
1 + 2Ŵ5Σ11, γ = 2Ŵ1λ

2
2 + 2Ŵ5Σ22, (33)

2β = α+ γ + 4Ŵ11(λ
2
1 − λ22)

2 + 8Ŵ15(λ
2
1 − λ22)(Σ11 − Σ22) + 4Ŵ55(Σ11 − Σ22)

2. (34)

In the reference configuration these reduce to

α = 2Ŵ1+2Ŵ5τ11, γ = 2Ŵ1+2Ŵ5τ22, β = 2Ŵ1+Ŵ5(τ11+τ22)+2Ŵ55(τ11−τ22)2 (35)

with 2Ŵ5 = 1.
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For the considered plane strain the strong ellipticity condition (24) specializes to

αn4
1 + 2βn2

1n
2
2 + γn4

2 > 0, (n1, n2) ̸= (0, 0), (36)

where m = (−n2, n1, 0), n = (n1, n2, 0). With different values of α, β and γ necessary

and sufficient conditions for (36) to hold were given by Dowaikh and Ogden (1990) as

α > 0, γ > 0, β > −√
αγ. (37)

5 Surface waves in a layered half-space

In this section we consider Rayleigh-type elastic surface waves guided by a layer bonded

to the surface of a half-space, the layer being of a different material than that of the

half-space. Let us consider an initially stressed half-space that is subjected to a pure

homogeneous strain with principal stretches λ1, λ2, λ3 so that the deformed half-space is

defined by x2 < 0 with boundary x2 = 0 and we focus attention on the (x1, x2) principal

plane. The initial stress is also taken to be uniform, and we have already assumed that

τij = 0, i ̸= j. The layer has uniform thickness h in the deformed configuration and is

defined by 0 ≤ x2 ≤ h. The (planar) invariants for the material of half space are I1, I5,

while the notations I∗1 and I∗5 are used for the layer. The (plane strain) elasticity tensor

for the half-space is given by (27) and the corresponding elasticity tensor for the layer

has a similar form but with Ŵ , B and Σ replaced by Ŵ ∗, B∗ and Σ∗.

On specializing equation (14) we then obtain the only non-zero Cauchy stress com-

ponents as

σii = 2Ŵ1λ
2
i + 2Ŵ5λ

2
i τii − p, i = 1, 2, 3 (no summation) (38)

for the half-space, and similarly for the layer:

σ∗
ii = 2Ŵ ∗

1 λ
∗
i
2 + 2Ŵ ∗

5 λ
∗
i
2τ ∗ii − p∗, i = 1, 2, 3 (no summation). (39)

Now consider plane incremental motions within the half-space and layer with incre-

mental displacements u and u∗, respectively, having components

u1(x1, x2, t), u2(x1, x2, t), u∗1(x1, x2, t), u∗2(x1, x2, t), (40)
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with u3 = u∗3 = 0.

We assume that the boundary x2 = h of the layer is free of incremental traction, so

that

Ṡ∗
021 = 0, Ṡ∗

022 = 0 on x2 = h. (41)

We also consider both the displacement and the incremental traction to be continuous at

the interface x2 = 0, so that

u1 = u∗1, u2 = u∗2, Ṡ∗
021 = Ṡ021, Ṡ∗

022 = Ṡ022 on x2 = 0. (42)

The non-trivial components of the incremental traction per unit area of the surface

and layer, respectively, are Ṡ02i and Ṡ
∗
02i, i = 1, 2, which are given by

Ṡ02i = A02ilkuk,l + pu2,i − ṗδ2i, i = 1, 2, (43)

Ṡ∗
02i = A∗

02ilku
∗
k,l + p∗u∗2,i − ṗ∗δ2i, i = 1, 2. (44)

By differentiating (43) and (44) for i = 2 with respect to x1 and eliminating ṗ,1 using

the first component of the equation of motion (as in Shams and Ogden, 2014 for the

half-space problem), and similarly for ṗ∗,1, the incremental traction continuity conditions

(42)3,4 are expressed in terms of ψ and its counterpart ψ∗ for the layer as

(σ22 − γ)ψ,11 + γψ,22 = (σ∗
22 − γ∗)ψ∗

,11 + γ∗ψ∗
,22, (45)

ρψ,2tt − (2β + γ − σ22)ψ,112 − γψ,222 = ρ∗ψ∗
,2tt − (2β∗ + γ∗ − σ∗

22)ψ
∗
,112 − γ∗ψ∗

,222, (46)

on x2 = 0, the latter corresponding to Ṡ022,1 = Ṡ∗
022,1. Note that by continuity of the

underlying configuration σ∗
22 = σ22. The zero incremental traction boundary conditions

on x2 = h are

Ṡ∗
021 = (σ∗

22 − γ∗)ψ∗
,11 + γ∗ψ∗

,22 = 0, (47)

Ṡ∗
022,1 = ρ∗ψ∗

,2tt − (2β∗ + γ∗ − σ∗
22)ψ

∗
,112 − γ∗ψ∗

,222 = 0. (48)

Here we have used the connection

A0ijij −A0ijji = σii + p, i ̸= j, (49)
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which can be obtained from (23), and the corresponding one for the layer.

We now specialize the initial stress so that it has just one non-zero component, namely

τ11, τ
∗
11, in the half-space and layer, respectively. We also assume that there is no traction

on the boundary x2 = 0 associated with the underlying configuration, so that σ22 = 0

and σ∗
22 = 0.

We consider surface waves propagating along the x1 axis, which forms with x2 a pair

of principal axes of the underlying deformation so that the displacement components are

given by (40). We take the surface wave to have the form

ψ = A exp[skx2 − ik(x1 − ct)], ψ∗ = A∗ exp[s∗kx2 − ik(x1 − ct)], (50)

in the half-space and layer, respectively, where A,A∗ are constants, k is the wave number,

c is the wave speed, and s, s∗ are to be determined. Using equation (50) in the equation

of motion (31), we obtain

γs4 − (2β − ρc2)s2 + (α− ρc2) = 0 (51)

and

γ∗s∗4 − (2β∗ − ρ∗c2)s∗2 + (α∗ − ρ∗c2) = 0 (52)

for the half-space and layer, respectively.

For the half-space the solutions have to decay as x2 → −∞, which requires that the

relevant solutions of (51) for s should have positive real parts. Let s1 and s2 be those

solutions. Since −s∗ is a solution of (52) whenever s∗ is, let s∗1, s
∗
2, −s∗1 and −s∗2 denote

the roots. The general solutions for ψ and ψ∗ of the considered type may then be written

in the form

ψ = (A1e
s1kx2 + A2e

s2kx2) exp[ik(ct− x1)], (53)

and

ψ∗ = (A∗
1e

s∗1kx2 + A∗
2e

s∗2kx2 + A∗
3e

−s∗1kx2 + A∗
4e

−s∗2kx2) exp[ik(ct− x1)], (54)

where Ai, i = 1, 2, and A∗
i , i = 1, ..., 4, are constants.
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Following the arguments in Dowaikh and Ogden (1990) and Ogden and Sotiropoulos

(1995) we may deduce that there is an upper bound on the wave speed according to

0 ≤ ρc2 ≤ ρc2L =

{
α if 2β ≥ α

2β − 2γ + 2
√
γ
√
α + γ − 2β if 2β ≤ α,

(55)

where cL (> 0) is the limiting speed. The limiting value cL for the case when 2β ≥ α is

the speed of a plane shear wave propagating in the x1-direction with displacement in the

x2-direction in an unbounded body subjected to the same homogeneous pure strain and

initial stress. It does not correspond to a surface wave, and it is straightforward to show

that 2β − 2γ + 2
√
γ
√
α + γ − 2β ≤ α, with equality if 2β = α.

At this point it is convenient to define the notation

η = [(α− ρc2)/γ]1/2, η2 = s21s
2
2 = (α− ρc2)/γ. (56)

In order to qualify as a surface wave in the half-space s21s
2
2 must be positive and hence,

without loss of generality, we may take η = s1s2 > 0, so that s1 and s2 must either both

be real and positive or be complex conjugates. If they are real

(s1 + s2)
2 = η2 + 2η + 2β̄ − ᾱ > 0, (s1 − s2)

2 = η2 − 2η + 2β̄ − ᾱ > 0, (57)

while if they are complex conjugates

(s1 + s2)
2 = η2 + 2η + 2β̄ − ᾱ > 0, (s1 − s2)

2 = η2 − 2η + 2β̄ − ᾱ < 0, (58)

within which we have defined the notation

ᾱ = α/γ, β̄ = β/γ. (59)

The counterpart of (55) in respect of η is then

√
ᾱ ≥ η ≥ ηL =

{
0 if 2β ≥ α

(1 + ᾱ− 2β̄)1/2 − 1 if 2β ≤ α,
(60)

wherein ηL, the lower limiting value of η, is defined.

Similarly, we define

η∗ = [(α∗ − ρ∗c2)/γ∗]1/2, η∗2 = s∗21 s
∗2
2 = (α∗ − ρ∗c2)/γ∗, (61)
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but we note that in contrast to η2, η∗2 may be either positive or negative, and hence η∗

may be real or pure imaginary. We now consider these two possibilities separately, with

the notation

ᾱ∗ = α∗/γ∗, β̄∗ = β∗/γ∗. (62)

Case (a): η∗2 < 0.

In this case s∗21 and s∗22 cannot be complex conjugates and so must be real and have

opposite signs. If

s∗21 + s∗22 < 0 then ρ∗c2/γ∗ > max{ᾱ∗, 2β̄∗}, (63)

while if

s∗21 + s∗22 > 0 then ᾱ∗ < ρ∗c2/γ∗ < 2β̄∗. (64)

On setting s∗1s
∗
2 = η∗ we also note that

(s∗1 + s∗2)
2 = η∗2 + 2η∗ + 2β̄∗ − ᾱ∗ and (s∗1 − s∗2)

2 = η∗2 − 2η∗ + 2β̄∗ − ᾱ∗ (65)

are complex conjugates.

Case (b): η∗2 > 0.

Without loss of generality we take s∗1s
∗
2 = η∗ > 0. Let us first consider the situation

in which s∗21 and s∗22 are real. Then, we have either

s∗21 > 0 and s∗22 > 0 with ρ∗c2/γ∗ < min{ᾱ∗, 2β̄∗} (66)

and

η∗2 ± 2η∗ + 2β̄∗ − ᾱ∗ > 0, (67)

or

s∗21 < 0 and s∗22 < 0 with 2β̄∗ < ρ∗c2/γ∗ < ᾱ∗ (68)

and

η∗2 ± 2η∗ + 2β̄∗ − ᾱ∗ < 0. (69)

On the other hand, if s∗21 and s∗22 are complex conjugates

η∗2 + 2η∗ + 2β̄∗ − ᾱ∗ > 0 > η∗2 − 2η∗ + 2β̄∗ − ᾱ∗, (70)
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with 2β̄∗ − ρ∗c2/γ∗ having either sign:

2β̄∗ < ρ∗c2/γ∗ < ᾱ∗ or ρ∗c2/γ∗ < min{ᾱ∗, 2β̄∗}. (71)

Each of the possibilities in Case (a) and Case (b) arises within the numerical examples

illustrated in the following section.

Substituting (53) and (54) into the boundary conditions (41) and (42), expressed

through (45)–(48), with use of (51) and (52) we obtain

(A∗
1e

s∗1kh + A∗
3e

−s∗1kh)(1 + s∗21 ) + (A∗
2e

s∗2kh + A∗
4e

−s∗2kh)(1 + s∗22 ) = 0, (72)

(A∗
1e

s∗1kh − A∗
3e

−s∗1kh)s∗1(1 + s∗22 ) + (A∗
2e

s∗2kh − A∗
4e

−s∗2kh)s∗2(1 + s∗21 ) = 0, (73)

A1 + A2 − A∗
1 − A∗

2 − A∗
3 − A∗

4 = 0, (74)

A1s1 + A2s2 − (A∗
1 − A∗

3)s
∗
1 − (A∗

2 − A∗
4)s

∗
2 = 0, (75)

[A1(s
2
1 + 1) + A2(s

2
2 + 1)]γ − [(A∗

1 + A∗
3)(s

∗2
1 + 1) + (A∗

2 + A∗
4)(s

∗2
2 + 1)]γ∗ = 0, (76)

[A1s1(1 + s22) + A2s2(1 + s21)]γ − [(A∗
1 − A∗

3)s
∗
1(1 + s∗22 )− (A∗

2 − A∗
4)s

∗
2(1 + s∗21 )]γ∗ = 0.

(77)

The set of equations (72)–(77) can be written in the matrix form

MA = 0, (78)

where A = (A1, A2, A
∗
1, A

∗
2, A

∗
3, A

∗
4) and M is the 6× 6 matrix

M =


1 1 −1 −1 −1 −1
s1 s2 −s∗1 −s∗2 s∗1 s∗2

γs1S2 γs2S1 −γ∗s∗1S∗
2 −γ∗s∗2S∗

1 γ∗s∗1S
∗
2 γ∗s∗2S

∗
1

γS1 γS2 −γ∗S∗
1 −γ∗S∗

2 −γ∗S∗
1 −γ∗S∗

2

0 0 S∗
1e

s∗1kh S∗
2e

s∗2kh S∗
1e

−s∗1kh S∗
2e

−s∗2kh

0 0 s∗1S
∗
2e

s∗1kh s∗2S
∗
1e

s∗2kh −s∗1S∗
2e

−s∗1kh −s∗2S∗
1e

−s∗2kh

 (79)

within which we have used the notation Si = 1 + s2i , S
∗
i = 1 + s∗2i , i = 1, 2.
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For a nontrivial solution, the determinant of M must vanish. After considerable

manipulation it can be shown that detM can be written

detM = −2(s1 − s2)(s
∗
1 − s∗2)

2(s∗1 + s∗2)
2N ,

where N has the form

N = A(η, η∗)
sinh2[1

2
kh(s∗1 + s∗2)]

(s∗1 + s∗2)
2

− A(η,−η∗)
sinh2[1

2
kh(s∗1 − s∗2)]

(s∗1 − s∗2)
2

+ B(η, η∗)
sinh[kh(s∗1 + s∗2)]

(s∗1 + s∗2)
−B(η,−η∗)sinh[kh(s

∗
1 − s∗2)]

(s∗1 − s∗2)
+ C(η, η∗), (80)

in which, following Ogden and Sotiropoulos (1995), we have introduced the definitions

A(η, η∗) = 2f ∗(η∗)[γ2f(η) + γ∗2f ∗(η∗) + 2γγ∗(η − 1)(η∗ − 1)], (81)

B(η, η∗) = f ∗(η∗)γγ∗(η + η∗)η−1/2[f(η) + (η − 1)2]1/2, (82)

C(η, η∗) = 2γ2η∗f(η), (83)

with

f(η) = η3 + η2 + dη − 1, f(η∗) = η∗3 + η∗2 + d∗η∗ − 1. (84)

We have also defined

d = 2β̄ + 2− ᾱ, d∗ = 2β̄∗ + 2− ᾱ∗. (85)

Note that

(s1 + s2)
2 = η2 + 2η + 2β̄ − ᾱ = η−1[f(η) + (η − 1)2] > 0

and

(s∗1 + s∗2)
2 = η∗2 + 2η∗ + 2β̄∗ − ᾱ∗ = η∗−1[f ∗(η∗) + (η∗ − 1)2], (86)

the latter being complex in Case (a).

It is straightforward to show that N is real if η∗2 > 0 and pure imaginary if η∗2 < 0.

The formula (80) is the same as one derived in Ogden and Sotiropoulos (1995) [equation

(3.6) therein] apart from slight differences in notation. However, the content is different

since the values of the material parameters α, β, γ and their starred counterparts are

different. We focus first on some special cases of N = 0 and then consider briefly the

other factors in the expression for detM.
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First, the limiting case kh → 0 corresponds to a half-space for which the secular

equation

f(η) = η3 + η2 + dη − 1 = 0 (87)

has been analyzed in detail in Shams and Ogden (2014).

Second, kh → ∞ corresponds to the secular equation for interfacial (Stoneley-type)

waves along the boundary between two half-spaces, having the equation

γ∗2f ∗(η∗) + γγ∗(η + η∗)η−1/2η∗−1/2[f(η) + (η − 1)2]1/2[f ∗(η∗) + (η∗ − 1)2]1/2

+ 2γγ∗(η − 1)(η∗ − 1) + γ2f(η) = 0. (88)

For the case in which the initial stress is a pre-stress associated with a finite deformation

this equation was derived by Dowaikh and Ogden (1991b), but expressed in different

notation.

The third special case corresponds to the absence of the half-space (γ → 0), and the

dispersion equation reduces to

[f ∗(η∗)]2
sinh2[1

2
kh(s∗1 + s∗2)]

(s∗1 + s∗2)
2

= [f ∗(−η∗)]2
sinh2[1

2
kh(s∗2 − s∗1)]

(s∗2 − s∗1)
2

. (89)

This provides the dispersion equation for Lamb-type waves in a plate with uniform thick-

ness h and of infinite extent in the lateral directions.

The final special case corresponds to c = 0 (η =
√
ᾱ, η∗ =

√
ᾱ∗), in which case

equation (80) specializes accordingly and provides a criterion for the existence of quasi-

static incremental deformations.

Vanishing of either of the other factors s1 − s2, s
∗
1 − s∗2 or s∗1 + s∗2 may also lead to

solutions of the secular equation, but each such solution that exists is independent of kh

and arises as a special case of N = 0 for specific ranges of values of ᾱ, β̄, ᾱ∗ and β̄∗.

6 Numerical illustrations

In order to illustrate the solutions of the secular equation N = 0 we now select the simple

prototype form of strain-energy function that was used in Shams et al. (2011) and given

(in slightly different notation) by

W =
1

2
µ(I1 − 3) +

1

4
µ1[I5 − tr(τ )]2 +

1

2
[I5 − tr(τ )], (90)
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where µ > 0 is a material constant with the dimension of stress and µ1 is a material

constant with dimension of stress−1. We allow µ1 to be either positive or negative. The

first term is the classical neo-Hookean model of rubber elasticity, while the second and

third terms introduce the residual stress in a very simple form involving just the invariant

I5 (and its specialization to the reference configuration) and ensuring that the condition

(8)2 is satisfied. For the plane strain problem considered in the previous section we write

(90) as Ŵ (I1, I5), the underlying deformation corresponding to λ1 = λ, λ2 = λ−1 and

λ3 = 1. In the layer quantities are distinguished by an asterisk.

As we have already assumed the boundary x2 = h is free of traction in the underlying

configuration. Thus, σ22 = 0 and correspondingly τ22 = 0. The Cauchy stress components

are then obtained by specializing (14) as

σ11 = µλ2 + λ2τ + µ1(λ
2 − 1)λ2τ 2 − p, 0 = σ22 = µλ−2 − p, σ33 = µ− p, (91)

where τ11 has been written simply as τ . Hence, on elimination of p,

σ11 = µ(λ2 − λ−2) + λ2τ + µ1(λ
2 − 1)λ2τ 2, σ33 = µ(1− λ−2), (92)

the latter component being required to maintain the plane strain condition. Similarly,

for the layer we have

σ∗
11 = µ∗(λ∗2 − λ∗−2) + λ∗2τ ∗ + µ∗

1(λ
∗2 − 1)λ∗2τ ∗2, σ∗

33 = µ∗(1− λ∗−2). (93)

At this point a comment on the effect of the term in µ1 on the material response in the

half-space is called for. In plane strain tension (λ > 1), for example, positive µ1 increases

the stiffness of the response, while negative µ1 decreases the stiffness, the material softens

on extension and the Cauchy stress reaches a maximum. Similarly for the layer.

For the model (90), the material coefficients are given by

ᾱ = λ4[1 + τ̄ + µ̄(λ2 − 1)τ̄ 2], d = 2β̄ − ᾱ + 2 = 3 + 2µ̄λ6τ̄ 2, (94)

ᾱ∗ = λ∗4[1 + τ̄ ∗ + µ̄∗(λ∗2 − 1)τ̄ ∗2], d∗ = 2β̄∗ − ᾱ∗ + 2 = 3 + 2µ̄∗λ∗6τ̄ ∗2, (95)

where we have used Σ11 = λ2τ , Σ∗
11 = λ∗2τ ∗ and introduced the dimensionless parameters

τ̄ = τ/µ, τ̄ ∗ = τ ∗/µ∗, µ̄ = µµ1 and µ̄∗ = µ∗µ∗
1.
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We next consider the important special case kh = 0 corresponding to a half-space

without a layer that was treated by Shams and Ogden (2014). For kh = 0 the secular

equation reduces to f(η) = 0, where f(η) is given by (87), which is the result obtained

in Shams and Ogden (2014). Clearly f(0) = −1. Also, it is straightforward to show that

f(ηL) < 0. Hence, the requirement for the existence of a surface wave is f(ᾱ1/2) > 0, and

this gives

0 ≤ ηL < η <
√
ᾱ = λ2

√
ϵ, (96)

and

ξ ≡ λ6ϵ3/2 + λ4ϵ+ (3 + 2µ̄λ6τ̄ 2)λ2ϵ1/2 − 1 > 0, (97)

wherein we have defined ξ and introduced the notation

ϵ = 1 + τ̄ + µ̄(λ2 − 1)τ̄ 2 > 0. (98)

Note, with reference to (37), that f(ᾱ1/2) > 0 ensures that strong ellipticity holds

since

f(ᾱ1/2) = ᾱ + 2(β̄ + 1)ᾱ1/2 − 1 > 0

implies

(2β̄ + 2ᾱ1/2)ᾱ1/2 > (ᾱ1/2 − 1)2 ≥ 0.

As shown in Shams and Ogden (2014) for a half-space, when a surface wave exists it

is unique. For the existence of a surface wave when kh = 0 we require both ϵ > λ−4η2L

and ξ > 0. If µ̄ > 0 then ηL = 0, but if µ̄ < 0 then ηL is only zero for certain ranges of

values of λ and τ̄ , as discussed in Shams and Ogden (2014). [Note that there is a typo

in equation (6.26) of Shams and Ogden (2014) (1/8 should be 1/4).]

Examples of the region of (λ, τ̄) space for which ϵ > λ−4η2L and ξ > 0 are shown

in Fig. 1 for both µ̄ > 0 and µ̄ < 0. The left-hand column of plots is for µ̄ > 0

while the right-hand column is for µ̄ < 0, in which case it is necessary to ensure that

ηL =
√
1 + ᾱ− 2β̄−1 ≥ 0. In each case the region of (λ, τ̄) space in which a surface wave

exists is marked with the + sign. In the left-hand column, Fig. 1 (a), (c), (e), the curves

ϵ = 0 (continuous) and ξ = 0 (dashed) are shown, and in Fig. 1 (b), (d), (f) the relevant

curves are ηL = 0 (dashed) and ξ = 0 (continuous). In the latter case ηL is positive only

to the right of the curves ηL = 0. In (b) ξ is positive between the two upper continuous
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curves and within the lower loop, while in (d) and (f) it is positive in between the three

continuous curves.

We now provide a range of plots based on the solution of N = 0 from equation (80)

in respect of the energy function (90) in dimensionless form to obtain ζ = ρc2/µ as a

function of kh. These are based on a representative, but by no means exhaustive, set of

values of µ̄, µ̄∗, τ̄ , τ̄ ∗, λ, λ∗ and the ratios R = ρ∗µ/ρµ∗ and r = µ∗/µ that illustrate the

main features that can arise.

First, in Figs. 2 and 3, for the classical incompressible linearly elastic case with no

initial stress, we show how ζ changes with R and r. In Fig. 2 results for R ≤ 1 are

shown. In this case η∗2 = 1−Rζ is positive since ζ = 1 is the upper limit for ζ. In each

of the subfigures in Figs. 2(a)–(d) each of the curves passes through the classical limiting

value ζ ≈ 0.9126 when kh = 0 (see Dowaikh and Ogden, 1990 for detailed discussion and

references to the incompressible classical theory) and there is only one propagation mode.

Except for r < 1 there is a cut-off value of kh above which waves do not propagate, while

for r < 1 the wave speed is constant over a wide range of values of kh and tends to the

interfacial wave speed between two half-spaces as kh→ ∞.

In Figs. 2(e) there are two modes for r = 0.2 and for only the first mode ζ ≈ 0.9126

when kh = 0, and the second mode emerges at a positive value of kh, a mode that has

a cut off value of kh for low values of kh. For each of r = 1 and r = 5 there is only one

mode. Finally, in Fig. 2(f), where R = 1, there are two modes for each r ̸= 1, but there

is no dependence on kh for r = 1 because the half-space and layer materials are then

identical, and the result is that for a half-space (non-dispersive). The results for r = 1,

r < 1 and r > 1 shown in Fig. 2 correspond to the continuous, thick continuous and

dashed curves, respectively. No modes other than those shown appear at larger values of

kh, and the general trend is the same for values of r other than those for which results

are shown here.

In Fig. 3 corresponding results are illustrated for R = 1 and three values of R > 1.

In this case η∗ = 0 for ζ = 1/R and the dependence of ζ on kh when R > 1 separates

into the regions ζ < 1/R (η∗2 > 0) and ζ > 1/R (η∗2 < 0). In each case the lower branch

passes through ζ ≈ 0.9126 at kh = 0 for each value of r but multiple other branches
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Figure 1: Plots of the curves ϵ = 0 (dashed curves) and ξ = 0 (continuous curves) in
(λ, τ̄) space for µ̄ = (a) 0.5, (c) 1, (e) 5. The + sign indicates the regions of values of λ
and τ̄ for which surface waves exist and where ξ > 0. Plots of the curves ηL = 0 (dashed)
and ξ = 0 (continuous) for µ̄ = (b) −0.5, (d) −1, (f) −5. The + sign indicates the regions
of values of λ and τ̄ for which surface waves exist and where ηL > 0 and ξ > 0.
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Figure 2: Plots of ζ = ρc2/µ against kh with λ = λ∗ = 1, τ̄ = τ̄ ∗ = 0 and r = 0.2 (thick
continuous curves), r = 1 (continuous curves), r = 5 (dashed curves): (a) R = 0.1; (b)
R = 0.4; (c) R = 0.6; (d) R = 0.9; (e) R = 0.95; (f) R = 1.

(modes) emerge at finite values of kh except for R = 1 in Fig. 3(a), which is the same as

Fig. 2(f). Similar results are found for larger values of R.

Figure 4 serves to confirm that for the considered range of values used the effect of
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Figure 3: Plots of ζ = ρc2/µ against kh with λ = λ∗ = 1, τ̄ = τ̄ ∗ = 0 and r = 0.2 (thick
continuous curves), r = 1 (continuous curves), r = 5 (dashed curves): (a) R = 1; (b)
R = 1.25; (c) R = 1.6; (d) R = 2.

an initial stress is very similar to the effect of an initial stretch. Indeed, if the initial

stress was calculated from a constitutive law for the same stretch then the effect would

be identical. In each panel curves for three values of r, with R = 1, µ̄ = µ̄∗ = 0 are shown

to illustrate the comparative effect of the relative stiffnesses of the layer and half-space.

In Fig. 4(a) the stretches in the layer and half-space are set at unity (λ = λ∗ = 1),

the initial stress τ̄ ∗ = 0 in the layer and that in the half-space negative (τ̄ = −0.2),

while Fig. 4(c) has λ∗ = 1, τ̄ = τ̄ ∗ = 0 and λ = 0.9. Thus, the results show that the

qualitative features of compressive initial stress and compressive stretch in the half-space

are the same. Similarly, by comparing Figs. 4(b) and 4(d) the same applies when the

compressive stretch and initial stress are in the layer instead. In particular, when there

is a compressive stretch or initial stress in the half-space only one surface wave branch
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Figure 4: In each panel ζ = ρc2/µ is plotted against kh for R = 1 and r = 0.2 (thick
continuous curves), r = 1 (continuous curves), r = 5 (dashed curves): (a) λ = λ∗ =
1, τ̄ = −0.2, τ̄ ∗ = 0; (b) λ = λ∗ = 1, τ̄ = 0, τ̄ ∗ = −0.2; (c) λ = 0.9, λ∗ = 1, τ̄ = 0, τ̄ ∗ = 0;
(d) λ = 1, λ∗ = 0.9, τ̄ = 0, τ̄ ∗ = 0.

exists, but if there is a compressive stretch or initial stress in the layer multiple modes

are possible.

Figure 5 shows examples of corresponding results for tensile stretches and initial

stresses. If these are in the half-space then multiple modes exist while for the layer

only one mode arises.

These comparisons are limited to separate consideration of the stretches and the initial

stresses, but when both stretches and initial stresses are included independently then the

results can be significantly different. First, we note that if the material constants µ̄ and

µ̄∗ are positive then their roles in (94) and (95) can be captured by varying τ̄ 2 and τ̄ ∗2,

respectively. Indeed, a range of plots for µ̄ = 1 and µ̄∗ = 1 does not reveal qualitative

differences from those shown in Figs. 4 and 5, and we therefore focus on negative values of
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Figure 5: In each panel ζ = ρc2/µ is plotted against kh for R = 1 and r = 0.2 (thick
continuous curves), r = 1 (continuous curves), r = 5 (dashed curves):(a) λ = λ∗ =
1, τ̄ = 1, τ̄ ∗ = 0; (b) λ = λ∗ = 1, τ̄ = 0, τ̄ ∗ = 1; (c) λ = 1.2, λ∗ = 1, τ̄ = 0, τ̄ ∗ = 0; (d)
λ = 1, λ∗ = 1.4, τ̄ = 0, τ̄ ∗ = 0.
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µ̄ and/or µ̄∗, which can have a significant influence. To illustrate the effect of a negative

µ̄∗, Fig. 6 shows results for µ̄∗ = −1.5 with µ̄ = 0, τ̄ = τ̄ ∗ = 1, λ = λ∗ = 1 and R = 1,

with r = 0.1 and r = 10 in the left and right figures, respectively. In this case multiple

modes appear, the first corresponding to the half-space value at kh = 0, but they are

different from the multiple modes seen in Figs. 3–5. Although, for each r, the secondary

modes appear to meet, when seen on a larger scale they are clearly completely separate.
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Figure 6: Plots of ζ against kh for λ = λ∗ = 1, R = 1, µ̄ = 0, τ̄ = 1, µ̄∗ = −1.5, τ̄ ∗ = 1:
(a) r = 0.1; (b) r = 10.

Figure 7 shows two further examples, which are quite different from those in Fig. 6.

First, in Fig. 7(a) with λ = 1, λ∗ = 0.8, R = 1, µ̄ = −1.5, τ̄ = −0.5, µ̄∗ = 0, τ̄ ∗ = −0.5,

ζ is plotted against kh for three values of r: 0.2, 1, 2. In this case there are multiple

branches for each r, the first passing through the relevant half-space surface wave value

at kh = 0 and the subsequent ones emerging at a non-zero value of kh. The new feature

exemplified here is that as r increases (i.e. the layer becomes stiffer relative to the half-

space) ζ becomes zero at two values of kh between which surface waves do not exist.

A zero value of ζ is associated with the appearance of a static incremental mode of

deformation arising at a point when the underlying configuration of the half-space/layer

combination becomes unstable, resulting in surface undulations. The second example is

shown in Fig. 7(b) with λ = 1.2, λ∗ = 0.8, R = 0.8, µ̄ = −1, τ̄ = 1, µ̄∗ = 0, τ̄ ∗ = −0.5

and for r = 0.2, 0.5, 2 and again ζ is plotted against kh.

This leads, finally, to separate consideration of some situations in which ζ = 0. Since

the roles of λ and λ∗ are in many cases similar to those of τ̄ and τ̄ ∗, in Fig. 8 we fix
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Figure 7: Plots of ζ against kh: (a) λ = 1, λ∗ = 0.8, R = 1, µ̄ = −1.5, τ̄ = −0.5,
µ̄∗ = 0, τ̄ ∗ = −0.5, and r = 0.2, 1, 2 corresponding to the thick continuous, continuous
and dashed curves, respectively; (b) λ = 1.2, λ∗ = 0.8, R = 0.8, µ̄ = −1, τ̄ = 1, µ̄∗ = 0,
τ̄ ∗ = −0.5, and r = 0.2, 0.5, 2 corresponding to the thick continuous, continuous and
dashed curves, respectively.

λ = λ∗ = 1 and µ̄ = µ̄∗ = 0, R = 1 and plot τ̄ ∗ against kh for a series of values of r

with a negative and a positive τ̄ in the two panels. The curves in the two cases are very

similar, with relatively small numerical differences. As the value of τ̄ ∗ is reduced from

zero the uniform configuration remains stable until, for a given value of r, the appropriate

curve is met, at which point surface undulations can appear that depend on kh. This

occurs first for the larger values of r, i.e. for the stiffest layers.

On the other hand, in Fig. 9, instead of fixing λ = λ∗ = 1, we fix τ̄ = τ̄ ∗ = 0 and

plot λ against kh for four separate values of λ∗ and, in each panel, several values of r.

For the stiffest layers the results are very sensitive to values of compressive stretch, as

Figs. 9(b), 9(c) and 9(d) demonstrate. In particular, a closed loop emerges for a small

range of values of kh and as the compression advances this loop merges with the rest

of the curve for r = 6 and expands upwards as the compression increases (not shown).

Thus, for any given layer thickness the structure becomes very unstable for a range of

wave numbers, and to prevent instability the stretch λ in half-space should therefore be

sufficiently large.

Note that the value of λ at kh = 0 corresponds to the classical instability value for a

compressed neo-Hookean half-space under plane strain (≈ 0.544) due to Biot and detailed

in his book (Biot, 1965); see also Dowaikh and Ogden (1990) for further discussion.
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Figure 9: Plots of λ vs kh for µ̄ = µ̄∗ = 0, τ̄ = τ̄ ∗ = 0, ζ = 0, R = 1, r =
µ∗/µ = 0.2, 1, 3.8, 6 in each plot. The panels (a), (b), (c), (d) correspond to λ∗ =
1.4, 0.854, 0.85, 0.8, respectively.
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In this section we have selected particular values of the various stretch, initial stress

and material parameters in order to illustrate the different features that can arise when

considering the propagation of surface waves and loss of stability of a layered half-space.

Clearly, many other possible combinations of these parameters could be adopted, but

those we have chosen for illustration provide a representative range of possible results.

7 Concluding remarks

In the preceding sections we have analyzed the combined effect of a uniform initial stress

and finite deformation on the propagation of harmonic waves of infinitesimal amplitude in

a half-space of elastic material with an overlying layer of uniform thickness and different

material which is also subject to a uniform initial stress and/or finite deformation. In

particular, we have confirmed that when considered separately, not unexpectedly, the

finite deformation and initial stress have similar consequences, but when they are both

included independently the character of the waves is somewhat different.

We have also considered the special circumstances in which the wave speed vanishes,

which corresponds to the emergence of small amplitude undulations of the layer and sur-

face at critical values of the initial stress, deformation and material parameters. The

analysis conducted here determines the point of bifurcation (or buckling) initiation, and

we have not considered the post-bifurcation regime, which has also attracted recent at-

tention but is more difficult to analyze in the general nonlinearly elastic context.

However, several authors have examined post-buckling using a perturbation approach,

mainly by considering the bonding of an unstretched stiff thin film to a stretched com-

pliant substrate, which is then relaxed so that the film buckles. For example, Song et

al. (2008) adopted a beam model for the film and a compressible neo-Hookean model

for the substrate. Beyond the initiation of these so-called wrinkling deformations, in the

post-bifurcation regime, the wrinkles can develop into different structures, including pe-

riod doubling, folding, and crease and ridge formation, as exemplified in the work of Sun

et al. (2012), Cao and Hutchinson (2012), Jin et al. (2015) and references therein which

involved combinations of theoretical analysis and finite element calculations supported

by experimental observations of these characteristics.
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A different aspect of the effect of pre-stress was examined by Bigoni et al. (2008) who

studied waves that arise when a stiff periodic layer is bonded to a half-space of com-

pressible elastic material. Using long-wave asymptotic methods their analysis revealed

the existence of band gaps and found that the pre-stress can be used to tune the filtering

properties of the structure.

Clearly, finite deformation, initial stress and material properties have a strong influ-

ence on the mechanical characteristics of different types of structure, as exemplified by

the layer/half-space substrate structure considered here. Detailed fully nonlinear anal-

ysis for other structures is therefore desirable in order to determine critical conditions

corresponding to the onset of bifurcation and the post-bifurcation continuation into the

fascinating patterns illustrated in the papers cited above.
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