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ABSTRACT
Music consists of several structures and patterns evolving through
time which greatly influences the human decoding of higher-level
cognitive aspects of music like the emotions expressed in music. For
tasks, such as genre, tag and emotion recognition, these structures
have often been identified and used as individual and non-temporal
features and representations. In this work, we address the hypothesis
whether using multiple temporal and non-temporal representations
of different features is beneficial for modeling music structure with
the aim to predict the emotions expressed in music. We test this
hypothesis by representing temporal and non-temporal structures
using generative models of multiple audio features. The representa-
tions are used in a discriminative setting via the Product Probability
Kernel and the Gaussian Process model enabling Multiple Ker-
nel Learning, finding optimized combinations of both features and
temporal/ non-temporal representations. We show the increased
predictive performance using the combination of different features
and representations along with the great interpretive prospects of
this approach.

Keywords
Music emotion prediction; expressed emotions; pairwise compar-
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1. INTRODUCTION
Music is ubiquitous and the use of music by individuals varies

from introvert reflection to extrovert expression. As pointed out by
studies in social [25] and music psychology [13], one of the main
reasons why people listen to music is to regulate their emotional
state. Whether it concerns the change, intensification or release of
the emotions people experience. This insight and opportunity has
led the Music Information Retrieval (MIR) community to focus on
emotion, to both navigate in large music archives and as the core
aspect in recommendation.

In order to integrate emotion as a viable, robust and scalable
element in modern services, three research areas are of interest
within MIR, namely 1) the elicitation of the emotions expressed
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in music, 2) the representation of the audio, and 3) the creation
of a model that uses the representation and predicts the human
annotations; hence, allowing us to model the emotions expressed in
large scale music archives.

In this work we focus on the representation of the audio. Previ-
ously the focus on audio representation has been on 1) handcrafted
audio features [28, 15], often derived from a mixture between sig-
nal processing and musicology using an agnostic approach, and 2)
using (sparse) representation directly from tempo-spectral represen-
tations [26] such as spectrograms. In previous work, we showed
how a times-series of frame-based features can be represented prob-
abilistically in mathematical models and is beneficial for modeling
emotions expressed in music [16]. We introduced the use of gen-
erative models as feature representation, both coding temporal and
non-temporal aspects, showing an improved predictive performance.
However, explaining higher-order cognitive aspects using single fea-
tures and feature representations is a simplified view of the complex
structures found in music. The temporal patterns found in tonal
features like chroma are likely to be different from the temporal
loudness patterns, as shown in [17]. Likewise, several temporal
patterns could potentially be found in a single feature. Hence, there
is a need to investigate the combination of both features and rep-
resentations, e.g. capturing different temporal and non-temporal
patterns for each feature, which is the focus of this work.

Previous work in combining multiple features for modeling high-
level cognitive aspects has often been performed by stacking [3, 14]
standard features in a vector space representation. Some work has
been done in kernel representations for genre classification, where
[5] compared different ways of learning representations of features
using simple Gaussian kernels computed on each feature separately,
using an Support Vector Machine (SVM) based Multiple Kernel
Learning (MKL) approach to find the optimal combination of each
feature. In [2] different modalities were combined, consisting of
acoustic content and social context features, using MKL for semantic
tag prediction. They showed that combining kernels improved the
predictive performance using a kernel for social context features
as well as a Probability Product Kernel (PPK) between Gaussian
Mixture models (GMMs) which was used to summarize MFCC and
Chroma features.

In this work, we test the hypothesis whether combining features
and feature representations through a discriminative model is bene-
ficial for capturing emotions expressed in music. We use generative
models as feature representation in the form of probability densities
capturing multiple temporal as well as non-temporal structures in
music. Through the PPK [10] we define correlations between ex-
cerpts, but contrary to previous work in the music field, we deploy a
hierarchical, non-parametric Bayesian model with Gaussian process
prior in a MKL setting. We further use a weakly informative prior
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on each kernel weight allowing us to find sparse combination of
kernels each representing features and feature representations.

We test our hypothesis on a dataset with pairwise comparisons
on the dimensions of valence and arousal using three different au-
dio features (MFCC, Chroma and Loudness) and a multitude of
temporal/non-temporal feature representations of each, resulting in
83 different feature/feature representation combinations.

2. FEATURE REPRESENTATION
In order to automatically extract and represent meaningful aspects

of the music signal, relevant for a subsequent modeling step, we
follow standard approaches in modeling of music. This implies that
we first extract a number of standard audio features, j ∈ {1, ... , J},
which result in a frame-based, vector space representation. With
Tn such frames, we obtain a collection of Tn vectors, X(j)

n =

[x
(j)
n,1, ... ,x

(j)
n,Tn

], where x
(j)
n,t ∈ RD

(j)

is the D(j) dimensional
feature vector of feature j at time t for track n.

The next general modeling choice concerns the representation of
the T vectors on a track level — and how to capture the temporal
and non-temporal aspects, which we hypothesize is important in
predicting higher order cognitive aspects such as emotion. In order
to provide a common and comparable representation we choose to
represent all the tracks and different features as a probability density,
p(X(j)|θ(j)n ), where X(j) = [x

(j)
n,1, ... ,x

(j)
n,T ] and T is the length of

an arbitrary feature time-series j. θ(j)n is the parameters of a specific
density which characterizes track n for feature j. This allows for
a principled statistical inclusion of different features supporting
multiple assumptions regarding the temporal structure.

The density based representation supports a wide variety of sta-
tistical models for multivariate data and sequences. In particular,
we consider a broad selection of density models grouped by the
temporal assumptions and further distinguished by whether they are
based on a discrete encoding (vector quantization).

Non-Temporal: In this case the frame-based vectors are consid-
ered independent in time and we use well-known Gaussian Mixture
Models [1, 12] in the continuous feature space and a basic Vector
Quantization (VQ) through a multinomial density (found e.g. using
K-means) in the discrete case.

Temporal: In this case the features are considered temporally
dependent and we use Auto Regressive (AR) [19] models in the
continuous feature space and Markov and Hidden Markov Models
(HMM) in the discrete, vector quantized space.

A detailed overview of the models is given in [16, 17]. The
parameters, θ, in the track representations / densities are fitted using
maximum likelihood methods.

3. MODEL
With the aim to incorporate all the aforementioned representa-

tions and automatically select the relevant ones, we formulate a
hierarchical statistical model, which can handle the density based
representation and the particular pairwise observations.

First, we collect the inputs, i.e., the representation of features, in
a set,

X =
{
p
(
X(j)|θ(j,q)n

)
|n=1,..., N ∧ j=1,..., J ∧ q=1,..., Qj

}
,

which contains the available combinations of N excerpts, J fea-
tures, and Q different types of probability densities (e.g. HMM, AR,
GMM).

The dataset under consideration contains pairwise comparison
between two audio excerpts, u ∈ {1, ... , N} and v ∈ {1, ... , N}.

Y = {(ym;um, vm)|m=1,...,M} ,

where ym ∈ {−1, 1} indicates which of the two excerpts that
had the highest valence or arousal and M denotes the number of
comparisons. ym = −1 means that the um’th excerpt is picked
over the vm’th and vice versa when ym = 1.

The goal of the the model is to predict the ranking of excerpts
on the dimensions of valence and arousal from the pairwise com-
parisons directly. In order to map from the feature representation
to the observations, we select a relatively simple non-parametric
hierarchical model [24]. The main assumption is that the pairwise
observation, ym, between two distinct excerpts, u and v, with in-
dividual representations defined by θum and θvm can be modeled
as the difference between two function values one for each excerpt,
fum = f (p (X|θum)) and fvm = f (p (X|θvm)). The likelihood
is then given as

p (ym|fm) ≡ Φ (ym × (fum − fvm)) (1)

where fm = [fum , fvm ]T and Φ is the cumulative Gaussian func-
tion this likelihood is also known as the Probit likelihood [27, 4].
The function, f , hereby defines an internal, but latent absolute
reference of e.g. valence or arousal as a function of the excerpt
represented by the audio features, which maps from a feature rep-
resentation to a real number, i.e., f : p (X|θ) → R. Given the
uncertainty about the problem complexity, we choose to model this
function in a non-parametric manner by considering the function
values, f = [f1, ... , fN ], directly as parameters and placing a (zero-
mean) Gaussian process prior on f defined via a covariance function
[24, 4], implying that f are random variables.

We compactly describe the model through the following process

α(j,q)|ν, η ∼ half student - t (ν, η) (2)

k (p (X|θ) , ·) ≡
J∑
j=1

Qj∑
q=1

α(j,q) k
(
p
(
X(j)|θ(j,q)

)
, ·
)
(3)

fum , fvm |X , k(·, ·),α ∼ GP (0, k (p (X|θ) , ·)) (4)
πm|fum , fvm ≡ Φ (fum − fvm) (5)

ym|πm ∼ Bernoulli±1(πm) (6)

where α = {∀j, q : α(j,q)}. The feature representations are in-
cluded via the sum in the covariance function, like in standard MKL
[8]. Bernoulli±1 simply denotes the Bernoulli distribution return-
ing ±1 instead of 0/1.

In order to be statistically consistent, the GP-view on MKL only
requires that α(j,q) > 0 hence not having the restriction of sum-to-
one or other dependencies between the α’s as in a risk minimization
setting [23]. While a Dirichlet prior on α would provide some
interpretive power [7] we here opt for individual, non-informative
priors based on the half student-t[6], not restricting the total variance
on f yet still promoting small values ofα if not found to be relevant.
A particular down side of the model is that the joint inference about
f and α is not convex.

The core component in the model is the Gaussian process prior,
which is fully defined by the covariance function or a weighted sum
of valid covariance functions, k (p (x|θ) , ·), and the choice is very
critical to the performance of the model. Since the excerpts are
conveniently represented as densities over their features, the natural
covariance function is the PPK [9]. The PPK forms a common
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ground for comparison and integration of the different representa-
tions and is defined as,

k
(
p (X|θ) , p

(
X|θ′

))
=

∫ (
p (X|θ) p

(
X|θ′

))ρ
dX, (7)

where ρ > 0 is a free model parameter we fix to ρ = 0.5. The
parameters of the density model, θ, obviously depend on the partic-
ular representation. All the densities discussed previously result in
(recursive) analytical computations [9, 20]. We further normalize
the covariance such that each element in the diagonal is one.

3.1 Inference & Predictions
The variables of interest in this paper are the actual parameters

which enter the likelihood, f , and the weights, α on the combinations
which indicates the relative importance of the feature representation.
In the present work we limit the investigation such that Bayesian
inference is only conducted over the f parameters and rely on MAP
(type-II) estimation of the parameters α. We further fix the parame-
ters in the hyperprior (ν and η). The required posterior is now given
as

p (f |X ,Y,α, ν, η) =

p (α|ν, η) p (f |α,X )
M∏
m=1

p (ym|fum , fvm)

p (Y|X ,α, ν, η)

where p (f |X ,Y,α, ν, η) is analytical intractable and for fast and
robust inference we use the Laplace Approximation as previously
suggested for a similar model by [4].

Given the analytical approximation to p (f |X ,Y,α, ν, η), the
marginal likelihood (or evidence), p (Y|X ,α, ν, η), is also available
and is used [24] to find point estimates of the hyper parameters.
Here, we use it specifically to findα in a fast manner using standard
gradient based optimization.

Prediction of the pairwise choice, yt, between test excerpts r and
s with feature representations p

(
X(j)|θ(j,q)r

)
, p
(
X(j)|θ(j,q)s

)
∈

X , is done by first considering the joint predictive distribution of
ft = [fr, fs] which is given as

p (ft|Y,X ,α, ν, η) =

∫
p (ft|f) p (f |Y,X ,α, ν, η) df , (8)

which can easily be shown to be a two-dimensional Gaussian due
to the conditioning properties of a GP and the Laplace approxima-
tion of the posterior. It is given as N (ft|µ∗,K∗) where µ∗ =

kTt K
−1 f̂ , with K being the covariance matrix of the training in-

puts. K∗ = Kt − kTt (I + WK)kt, where Kt is the covariance
matrix of the test inputs with f̂ and W defined by the Laplace ap-
proximation (see [11]). kt is a matrix with elements [kt]i,2 =
k (p (X|θn) , p (X|θs)) and [kt]i,1 = k (p (X|θn) , p (X|θr)),
where n indexes a training excerpt.

An advantage of the Gaussian process model is the availability of
predictive uncertainties available through the predictive distribution
defined as p (yt|r, s,X ,Y) =

∫
p (yt|ft) p (ft|X ,Y,α, ν, η) dft,

where p (yt|ft) is the likelihood. The binary choice can simply be
determined by which of fr or fs that dominates, without the need
to calculate the full predictive distribution.

4. DATASET & EVALUATION APPROACH
The dataset used was described in [15] which comprises of all

190 unique pairwise comparisons of 20 different 15 second excerpts,

chosen from the USPOP20021 dataset. 13 participants (3 female, 10
male) compared on both the dimensions of valence and arousal.

4.1 Features
We represent the harmonic content of a short time window of

audio by computing the spectral energy at frequencies that corre-
spond to each of the 12 notes in a standard chromatic scale. These
so-called chroma features are extracted every 250 ms using [22]
resulting in a 12-dimensional time-series. We represent the loudness
as a function of time by coefficients of energy in each 24 Bark band
[21]. We compute the energy for each 23 ms using [18] resulting in
a 24-dimensional time-series. 20 Mel-Frequency Cepstral Coeffi-
cient (MFCC)1 are computed to capture timbre like qualities in the
musical signal. For the discrete feature representation, codewords
have been found using standard k-means trained on the excerpts in
each cross validation fold, to reduce overfitting.

4.2 Performance Evaluation
In order to compare the performance of the proposed model, we

evaluate the following three conditions

• Single Representation: Only one αl 6= 0 i.e. a single feature
representation is included, which serves as a baseline (best
performing single representation). l runs over all features and
feature representations J and Q and a noise term.

• Tied Representation: The weights are tied for all feature
representations, i.e. αl = α̂ ∀l = [1, L − 1]. The αl=L on
the noise term is learned independently from the tied values.

• Multiple Representation: The weights are learned individu-
ally with no restrictions for all features and feature represen-
tations J and Q and a noise term.

The performance of the three conditions is measured in terms of
two metrics: the predictive classification error on both arousal and
valence dimension and the predictive log-likelihood which accounts
for the uncertainty in the predictions (and is thus considered a better
realistic measure of generalization). We use the McNemar paired
test to test the significance of the results of the proposed method.
The Null hypothesis is that two models are the same. If p < 0.05
then the models can be rejected as equal on a 5% significance level.

5. RESULTS
In this section we present the results of using multiple features

and feature representations for modeling emotions expressed in
music. Moreover we interpret the resulting weighting of each fea-
ture/feature representation in modeling both the valence and arousal
dimension.

The initialization of the kernel weights α is performed by an ini-
tial greedy approach using forward selection based on the marginal
likelihood. This is done due to the rather high number of kernels
used in the present study and using this simple procedure for ini-
tialization results in a much better performance of the GP model.
The weights for the kernels not chosen in the forward selection is
initialized by drawing from the prior.

The error rate is significantly lower across all participants for
the valence and arousal data, when comparing the models based
on Multiple and Single representations (Multiple model vs. Single
model). The Multiple models outperforms the models based on Tied

1http://labrosa.ee.columbia.edu/projects/
musicsim/uspop2002.html
1http://www.pampalk.at/ma/
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Measure Representation Participant
1 2 3 4 5 6 7 8 9 10 11 12 13 Average

Error rate
Single 0.182 0.132 0.132 0.129 0.153 0.224 0.245 0.129 0.139 0.168 0.134 0.132 0.118 0.155
Tied 0.205 0.150 0.161 0.179 0.176 0.253 0.284 0.139 0.213 0.211 0.171 0.161 0.163 0.190
Multiple 0.166 0.113 0.113 0.087 0.124 0.182 0.229 0.105 0.105 0.147 0.129 0.118 0.087 0.131

Negative log-
likelihood

Single 174.4 171.3 164.8 158.5 170.2 201.2 207.1 169.2 174.3 170.6 168.4 146.9 165.1 172.5
Tied 208.9 215.4 206.6 224.0 196.1 217.7 227.6 215.6 211.8 202.6 213.9 198.6 215.7 211.9
Multiple 162.7 156.6 149.7 150.3 156.7 182.5 199.8 150.0 152.7 155.4 153.1 139.5 157.6 159.0

Table 1: Comparison of the classification error rate for the arousal dimension (average of 20-folds) and negative predictive log-
likelihood (sum of 20-folds) between the Single, Tied and Multiple settings (lower is better). The McNemar test between the Multiple
and both Single and Tied representations results in p<<0.001

Measure Representation Participant
1 2 3 4 5 6 7 8 9 10 11 12 13 Average

Error rate
Single 0.261 0.189 0.205 0.197 0.247 0.211 0.189 0.192 0.184 0.221 0.218 0.195 0.203 0.209
Tied 0.368 0.232 0.253 0.226 0.387 0.295 0.397 0.242 0.232 0.353 0.300 0.237 0.268 0.292
Multiple 0.229 0.155 0.161 0.153 0.182 0.155 0.147 0.168 0.147 0.158 0.189 0.147 0.137 0.164

Negative log-
likelihood

Single 225.4 200.9 218.6 208.8 221.5 230.8 214.4 180.6 193.5 208.6 228.8 209.9 221.1 212.5
Tied 245.9 225.8 233.6 225.8 254.9 237.6 256.6 216.1 219.9 261.9 238.0 232.2 236.8 237.3
Multiple 214.8 182.9 206.3 184.0 209.4 220.8 202.9 177.0 171.8 194.3 224.3 182.6 205.4 198.2

Table 2: Comparison of the classification error rate for the valence dimension (average of 20-folds) and negative predictive log-
likelihood (sum of 20-folds) between the Single, Tied and Multiple settings (lower is better). The McNemar test between the Multiple
and both Single and Tied representations results in p<<0.001

representations (Tied models) in all cases. It is evident that learning
the individual kernel weights is clearly an advantage compared to
the Tied model especially for the Valence data.

Looking at the predictive likelihood in Table 1 and 2 we see a
similar pattern, both the valence and arousal data is explained better
by the Multiple model compared to the best Single model across all
participants.

The error rate for the Single models results in 0.1551 as an average
across all subjects for the arousal dimension and 0.2087 for the
valence dimension, which is significantly lower than previous work
[16] (p-value<< 0.001). The best performing single feature/feature
representation combination is the Markov model with 16 codewords
of Loudness features producing an error rate of 0.1704 for arousal
data and for valence the HMM model of order p = 24 on Chroma
features producing an error rate of 0.2289.

In Figure 1 and 2 the kernel weights α are presented as results
from the Gaussian process model trained on arousal and valence
data respectively. Interpreting the α values we can clearly see
the different aspects being coded for the two dimensions. For the
arousal data there is a clear concentration of α around the low order
Diagonal AR models (DAR) (p=1-3) for the MFCC feature. The
simple Markov models and to some degree the HMM are favored
in encoding Loudness both using 8, 16 and 24 codewords. The VQ
representation of MFCC and Mean of Loudness are the primary
non-temporal feature representation learned, these trends are seen
across multiple subjects.

For the valence dimension shown in Figure 2 we see a similar
pattern of DAR models being selected, here the MFCC features
are picked and with slightly higher orders, directly translated to
longer temporal dynamics captured. For the discrete representations
on the valence data the HMMs are favored for both coding the
MFCC, Loudness and Chroma features, indicating the need for
more complex temporal structures.

6. DISCUSSION
In this work we proposed a probabilistic framework for modeling

the emotions expressed in music not only including multiple features,

but also multiple probabilistic feature representations capturing both
temporal and non-temporal aspects.

We first note that the obtained Multiple models are significantly
better than the best Single models. Across both emotion dimensions
we see improved performance when learning each kernel weight as
compared to only including a single representation. We also note
that both Single and Multiple models perform better than previous
reported performance. The Tied models proved to be less successful
judged by both the predictive likelihood and error rate. This suggest
that the idea of simply applying a naive summation of all kernels
into standard methods such as SVMs, GPs or kGLM is not a viable
approach. It really calls for actual tuning of individual weights, for
learning multiple feature and feature representation combinations.
This is however not viable via an exhaustive search and — as noted
by us and others — this leaves MKL the only viable solution.

We explored the potential of the outlined approach for interpre-
tation of which different both temporal and non-temporal aspects
is important in representing higher-order cognitive aspects in mu-
sic, showing that the method relatively robustly identifies a certain
subset of the representations across test subjects. We foresee that
the method through the learning of explicit temporal dynamics will
become an important tool in understanding and analyzing the tem-
poral aspects of music, which was explored in [17]. We see the
expressed emotions in music as a prototypical example of higher
order cognitive aspects and categorization of music and audio in
general and this approach can easily be extended to other areas.
Furthermore this method can be applied to any task where multiple
both temporal and non-temporal aspects can be coded in time-series
data.

A particular limitation of the current model is the relative simple
type-II based inference of the weights, which shows great sensitivity
to initialization. We foresee that future work in developing more
efficient and sophisticated inference schemes will further improve
the performance of the proposed probabilistic model.

7. CONCLUSION
This work presents a novel approach of combining multiple fea-

tures and feature representations by using generative models as
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Figure 1: Arousal:The normalized kernel weights α. Each color correspond to the weights for each 13 subjects individually. p
indicates the order of the model or the number of codewords in the VQ, Markov and HMM model case.

feature representation coding both temporal and non-temporal as-
pects of the music. Using the Product Probability Kernel to compute
covariance between each feature representation, we present the
Gaussian process model utilized in a Multiple Kernel Learning set-
ting enabling us to find optimized combinations of both features and
feature representations. We show greatly improved performance of
the error rate and predictive likelihood, on both valence and arousal
dimensions.
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