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Abstract:  Single-pixel cameras provide a means to perform imaging at
wavelengths where pixelated detector arrays are expensive or limited. The
image is reconstructed from measurements of the correlation between the
scene and a series of masks. Although there has been much research in the
field in recent years, the fact that the signal-to-noise ratio (SNR) scales
poorly with increasing resolution has been one of the main limitations
prohibiting the uptake of such systems. Microscanning is a technique that
provides a final higher resolution image by combining multiple images
of a lower resolution. Each of these low resolution images is subject to
a sub-pixel sized lateral displacement. In this work we apply a digital
microscanning approach to an infrared single-pixel camera. Our approach
requires no additional hardware, but is achieved simply by using a modified
set of masks. Compared to the conventional Hadamard based single-pixel
imaging scheme, our proposed framework improves the SNR of recon-
structed images by ~ 50 % for the same acquisition time. In addition, this
strategy also provides access to a stream of low-resolution ‘preview’ images
throughout each high-resolution acquisition.
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1. Introduction

Conventional digital cameras use a lens system to form an image of a scene onto a detector
array. The spatial resolution of the recorded image can be limited either by the point spread
function of the optical system, or by the pitch of the pixels in the detector array. If the resolution
is limited by the pixel pitch, the most common method to improve this is to increase the number
of pixels per unit area by reducing their physical size. However, apart from the technological
challenges associated with this approach, smaller pixels detect less light, which degrades image
quality [1]. An alternative approach to increase the pixel resolution is microscanning [2—6].
In this approach, multiple images of the same scene are recorded, and the pixelated detector
is displaced by sub-pixel sized translations between each images. Data from these images is
then combined to reconstruct a composite image with a spatial resolution exceeding that of the
detector array.

While there has been a global drive to increase the number of pixels in camera sensors,

#260309 Received 2 Mar 2016; revised 7 Apr 2016; accepted 18 Apr 2016; published 4 May 2016
© 2016 OSA 16 May 2016 | Vol. 24, No. 10 | DOI:10.1364/0OE.24.010476 | OPTICS EXPRESS 10477



there has also been significant developments in camera technology that records images using
just a single-pixel detector [7-9]. These techniques require a means for sampling the spatial
distribution of scene intensity, which can be achieved using a series of masks. The single-pixel
detector is then used to measure the correlation between the scene and each mask. Knowledge
of the transmitted intensities and the corresponding masks enables reconstruction of the image.
Two of the earliest examples of single-pixel imaging were the flying-spot camera patented by
Paul Nipkow in 1884 and the ‘Televisor’ (television) pioneered by John Logie Baird in 1926,
both of which provided a method for encoding and transmitting image information using a
rotating Nipkow disk.

At visible wavelengths, the advent of pixelated detector arrays such as charge-coupled device
(CCD), which offered better signal-to-noise performance, superseded single-pixel techniques.
However, at spectral regions where detector arrays are prohibitively expensive or unavailable,
single-pixel imaging still has applications. In particular, the advent of MicroElectroMechanical
Systems (MEMS) devices, which have been made affordable due to huge consumer demand,
provides a digital means for spatial light modulation and perhaps most importantly, doing so at
high-speed. In addition to reconstructing individual image frames [7, 8], single pixel cameras
have also been demonstrated at near video-rates by employing efficient image reconstruction
algorithms [10-12].

Within the single-pixel camera approach, it is the spatial resolution of the masking patterns
that is equivalent to the pixel resolution. The number of masks required to reconstruct a fully
sampled image increases with the square of the resolution (i.e. in proportion to the total number
of pixels in the reconstructed image). However, in single-pixel imaging systems there is also a
further restriction: the signal-to-noise ratio (SNR) of the reconstructed image decreases as the
resolution is increased. There are two main sources of noise: fluctuations in the ambient illumi-
nation level between different mask pattern displays (illumination noise) and noise associated
with the photodiode measurement itself (detector noise). In addition there are also sources of
noise correlated with some aspects of the system, such as stray light rejected by the digital mi-
cromirror device (DMD) bouncing around the camera housing back into the photodiode. The
ratio of illumination to detector noise is dependent upon the light level. At low light levels the
detector noise tends to dominate, whilst at higher light levels, the illumination noise tends to
dominate. However, both illumination and detector noise scale in the same way with increased
resolution, and so the SNR is inversely proportional to the square root of the number of image
pixels, regardless of illumination level. This trade-off between the image resolution and its SNR
is a key drawback limiting applications of single-pixel camera technology. To improve SNR,
schemes such as differential ghost imaging [13-18], have been developed to reduce the noise
without jeopardizing resolution.

In this work, we show that it is possible to further enhance the pixel resolution of a
single-pixel camera, while maintaining its SNR, by adopting a digital microscanning approach.
We obtain multiple low-resolution images, each laterally shifted by sub-pixel steps. These
images are then co-registered on a higher resolution grid to give a single high-resolution
image. We demonstrate that by sampling with the same number of masks, and therefore
in the same acquisition time, this methodology results in a reduced noise level in the final
high-resolution reconstructed image for only a slight reduction in resolution. In addition,
our method simultaneously delivers a sequence of low-resolution ‘preview’ images during
the high-resolution image acquisition. We note that the concept of digital microscanning in
the context of single-pixel imaging was recently considered theoretically in [19]. Our digital
microscanning technique is applicable to all single-pixel imaging systems, both those based on
projected light fields and those based on image masking, the latter of which is demonstrated
here. More importantly, digital microscanning in the single-pixel camera context requires no
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extra hardware and only a trivial increment in algorithm complexity. Therefore, our method can
be deployed as a complement to existing single-pixel camera schemes [8,9,20,21], including
those utilising compressive sensing [8,22,23].

Computer

Heat lamp

Fig. 1. Experimental set-up. A heat reflector lamp illuminates the object, which is a
100mm x 100mm grey-scale target located at a distance of ~ 0.5 m from the imaging sys-
tem. A 50 mm camera lens collects the reflected near-infrared light and images the object
onto a high-speed digital micro-mirror device (DMD). The DMD is placed at the image
plane and applies rapidly changing binary masks to the transmitted image. An InGaAs de-
tector measures the total intensity transmitted through the masks. An analogue-to-digital
converter (ADC), triggered by the synchronisation TTL signals from the DMD, acquires
and transfers the light intensities data to a computer for image reconstruction.

2. Experimental setup

Figure 1 illustrates our infrared single-pixel camera set-up, which is a modified and compacted
version of the system in our previous work [12]. We test our system by imaging a grey-scale
picture, which is located ~ 0.5 m from the single-pixel camera and illuminated with a heat re-
flector lamp (Philips PAR38 IR 175C, wavelength: 400nm — 1200nm). The camera lens (Nikon
AF Nikkor, {/1.8D) images the scene onto a high-speed DMD (Texas Instruments Discovery
4100, 1024 x 768, wavelength: 350nm — 2500 nm, operating at 22kHz) which is used to se-
quentially mask the image of the scene with a preloaded sequence of binary masks. The total
intensity of light transmitted through each mask is detected by a InGaAs detector (Thorlabs
PDA20CS InGaAs, 800 nm to 1800 nm, 0 dB-70 dB gain). A high dynamic range analogue-to-
digital converter (ADC, National Instruments DAQ USB-6221 BNC, sampling at 250kSs™!),
synchronised with the DMD, acquires and transfers the intensity data to a computer for im-
age reconstruction. A photograph of our integrated single-pixel camera prototype is shown in
Fig. 1.

As in our previous work, we make use of Hadamard matrices to form our DMD masking
patterns [24,25]. This is a convenient basis, as the rows (or columns) of the Hadamard matrices
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form a complete orthogonal set, enabling efficient sampling of the image at a well defined
resolution using a given set of patterns [10, 12]. We note that in all images shown in this work,
the end-to-end framework is limited by Gaussian sensor noise, and thus Hadamard mask sets
were the optimal basis (chosen over pixel scanning, for example) [26]. The elements of the
Hadamard matrices take values of ‘1’ or ‘-1°, and each row is reformatted into a 2D grid and
displayed as a 2D binary mask on the DMD, where ‘1’ and ‘-1’ denote micromirrors states ‘On’
and ‘Off” respectively. Therefore, the intensity signal S, associated with a particular masking

pattern M), is given by:
Sp :ZZ(MPJ./"DU)» (M
i

where i and j index the x and y coordinates of the binary mask respectively, and D is the intensity
distribution on the image plane that we wish to reconstruct, also discretized by the mask pixels.
After performing n independent DMD measurements, the image I can be reconstructed as

1=Y (M,-S,). 2
p=1

In order to reduce sources of noise such as fluctuations in ambient light levels, we obtain differ-
ential signals by displaying each Hadamard mask immediately followed by its inverse (where
the micromirror status ‘On’ and ‘Off’ are reversed), and taking the difference in the meas-
ured intensities [13, 14, 16]. This scheme also ensures that each difference measurement is lin-
early independent from the others, and so the image is critically sampled (the same number of
measurements as pixels), and Eq. (2) is equivalent to a linear sum of orthogonal measurements.

In our experiments, we utilise the square central region of our DMD, which consists
of 768 x 768 micromirrors. The DMD micromirrors are grouped together to display the
reformatted Hadamard masks. For example, if displaying an 8 x 8 pixel Hadamard mask,
each Hadamard pixel comprises of 96 x 96 adjacent micromirrors. In order to apply digital
microscanning to single-pixel imaging, it is the position of the Hadamard masks on the DMD
that must be laterally displaced by sub-Hadamard-pixel sized translations. In our results,
we compare two different microscanning approaches, based on the percentage of active
micromirrors used within each pixel, which are detailed below. We contrast both of these
digital microscanning methods with the standard technique of increasing the image resolution
by simply increasing the resolution of the Hadamard mask set, which we refer to here as
‘normal’ high-resolution (NHR) imaging.

3. Results

The complete microscanning (CM) method uses lower resolution masks which utilise all
of micromirrors within each Hadamard pixel. Figure 2 illustrates the reconstruction of a 16 X
16 pixel image from four 8 x 8 pixel images of the equivalent field-of-view. A set of 8 x 8
pixel Hadamard masks (each pixel comprising of 96 x 96 DMD micromirrors, except along the
edges of the shifted images as shown in Fig. 2(b). In these cases the edge pixels are 96 x 48
micromirrors for x shifted patterns, 48 x 96 micromirrors for y shifted patterns, and 48 x 48
micromirrors for the bottom right pixel of the patterns shifted in both x and y) is displayed four
times, with a lateral shift in x and/or y of half a pixel width (i.e. 48 DMD micromirrors) applied
between each set (Fig. 2(b)). This operation yields four 8 x 8 pixel images (Fig. 2(c)), using the
same number of masks as required to obtain a 16 X 16 pixel NHR image. Each of these 8 x 8
pixel images contains different spatial information. A 16 x 16 pixel image is then reconstructed
by co-registering each 8 x 8 pixel image in its laterally shifted location on a 16 x 16 grid, and
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Fig. 2. The complete microscanning method. (a) Binary object to be imaged. (b) A set
of low-resolution (LR) Hadamard masks is displayed four times, with a lateral shift in x
and/or y of half a pixel width applied between each mask set. (¢) This operation yields four
low-resolution ‘preview’ images, each of which contains different spatial information. (d)
This allows a high-resolution (HR) image to be reconstructed by co-registering each image
in its laterally shifted location on a higher resolution grid.

averaging the overlapping pixel values for each high-resolution pixel (Fig. 2(d)). Therefore, as
shown in Fig. 3(a), the value of the hatched central pixel on the high-resolution grid is computed
as:

1
Icentra[ = Z (Ired + Igreen + Ihlue + I])urple)7 (3)

where Leq, Igreens Ipiue, and Ipypre, represent the measured intensities in the low-resolution
pixels as shown. Each pixel in the high-resolution reconstruction is computed from a unique set
of low-resolution pixels. The fact that the DMD mirror binning is used for pattern shifts, rather
than a physical shift of a sensor, means that the image registration accuracy between shifted
images is given by the fabrication tolerance of the DMD, which is sub-micrometer with no
need for device specific calibration. To further improve upon this, techniques such as Markov
random fields or dictionary learning algorithms could be employed.

In the absence of noise, the reconstructed result using CM is mathematically equivalent to
the convolution of the NHR image (obtained in the standard way using a sequence of 16 x 16
Hadamard masks in this example) with a smoothing kernel:

1 1
H=—12
16 1

[\SRESA )

1
2 “)
1

This convolution causes a modest reduction in the contrast of the high spatial frequencies in the
reconstructed CM image. However, CM does offer a significantly improved SNR compared to
the NHR method, because the SNR of a single-pixel camera image decreases roughly in pro-
portion to the square root of the number of mask pixels. Therefore a high-resolution image re-
constructed from four lower-resolution images inherits the higher SNR of the lower-resolution
images.

We note that it is possible to use a matrix inversion to recover the NHR image from the four
laterally shifted low resolution images. The matrix inversion method is equivalent to solving
a set of simultaneous equations describing the intensity of each high-resolution pixel in terms
of the low resolution measurements. However, matrix inversion requires the use of appropriate
boundary conditions at the edges of the image, and we found this method to be highly unstable
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with respect to small levels of noise in the measurements. Deconvolution algorithms such as
Weiner deconvolution [27,28] could also be used to restore the high resolution image from the
CM image.

A A
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1 1
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r1=ra Z .| !
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in HR image grid HR image grid in HR image grid HR image grid

Fig. 3. Schematics of two microscanning strategies. (a) Complete microscanning. (b)
Quarter microscanning.

The quarter microscanning (QM) method again allows reconstruction of a higher res-
olution image from four half-pixel laterally shifted images. However, in this case each lower
resolution image is recorded with only one quarter of the micromirrors active within each pixel,
as shown in Fig. 3(b). The four quadrants of the pixel are sequentially utilised, and each quad-
rant corresponds to a half-pixel shift in x and/or y. This ensures that each low-resolution image
samples a non-overlapping region of the scene. Therefore, the four low-resolution images ob-
tained using QM can simply be co-registered accordingly on a high-resolution image grid, with
no need for averaging. Consequently, the resolution of the QM image is identical to that of
the NHR image in the absence of noise. As with CM, QM also delivers low-resolution images
within each high-resolution image acquisition. However, as only a quarter of the micromirrors
within each pixel are active during the acquisition, QM suffers from a reduced SNR compared
to CM and NHR.

Figure 4 shows a comparison of images recorded using the different approaches. To test the
performance of each method, we image a modified US Air Force (USAF) resolution test chart.
Figures 4(a)—4(d) show 128 x 128 pixel images reconstructed using (a) CM, (b) QM, (c) NHR
and (d) NHR convolved (NHRC) with a kernel .#" (Eq. (4)), the data for Figs. 4(a)-4(d) are
obtained in less than 2seconds using 32,768 patterns (2 x 1282, The factor of 2 accounts for
the pattern and its inverse). Figure 4(e) shows an example of a 64 x 64 pixel image, the data
for (e) are obtained in 0.5 seconds using 8,192 patterns (2 x 642) and linearly interpolated into
128 x 128 resolution for comparison. For each image we calculate the SNR using [29, 30]:

SNR = ((Ir) — (Ir))/ (o7 +03)/2), 5)

where <If> is the average intensity of the feature (here calculated from the data within the
white block, highlighted by a solid red square in Fig. 4(e)), (I;,) is the average intensity of the
background (here calculated from the data highlighted by the dashed red square in Fig. 4(e)),
and oy and o, are the standard deviations of the intensities in the feature and the background
respectively. The calculated results show that the SNR of the image reconstructed using CM is
significantly higher than that of the image obtained using NHR and NHRC with the smoothing
kernel. Magnified views of the high frequency regions (highlighted by the blue dashed box in
Fig. 4(e)) are shown at bottom-right of each sub-figure.
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Fig. 4. Experimental images of a modified USAF resolution test chart. Images recon-
structed using (a) complete microscanning (CM), (b) quarter microscanning (QM), (c) nor-
mal high-resolution (NHR) method, (d) NHR method convolved (NHRC) with kernel 7",
and (e) low-resolution (LR) method. In (e) a 64 x 64 pixel image has been interpolated upto
a 128 x 128 pixel image for comparison. The data for (a)-(d) are obtained in 2 seconds, (e)
is obtained in 0.5 seconds. The experimentally measured SNR and magnified view of high
frequency feature is quoted beneath each image. (f) Greyscale distribution highlighted by
the solid blue line. (f) Greyscale distribution highlighted by the dashed blue line.

CM QM NHR d NHRC ILR
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Fig. 5. Experimental images of two different objects. (a-e) Images of letters with dif-
ferent sizes obtained using different methods. The experimentally measured SNR quoted
beneath each image is computed using the highlighted feature (solid red box) and back-
ground (dashed red box). We acknowledge University of Glasgow and Beihang University
for the permission to use their names.

Figures 4(f) and 4(g) show intensity distributions through two vertical lines of the USAF test
chart containing different spatial frequencies. In Fig. 4(f), the low frequency features (high-
lighted by the blue solid line in Fig. 4(e)) are well resolved using all five imaging methods.
In Fig. 4(g), the intensity distributions (highlighted by the blue dashed line in Fig. 4(e)) of the
high frequency features are given. In this case, the features are now only resolved in the images
obtained using CM, QM, NHR and NHRC. The effect of the convolution is evident in both CM
and NHRC, resulting in a modest reduction in contrast compared to NHR and QM. Figure 5
demonstrates that the trend in image SNR discussed above is also reproducible when imaging
another object.
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Fig. 6. Comparison of images obtained in a high noise situation. (a-b) Images obtained
using NHR. (c-d) Images shown in (a-b) are NHR convolved (NHRC) with kernel 7. (e-
f) Images obtained under identical conditions using CM. The measured SNR (using the
same features and background as before) is quoted beneath each image, demonstrating the
superior performance of CM in this situation. We acknowledge University of Glasgow and
Beihang University for the permission to use its name as experimental subjects.

In low light levels, the advantage of improved SNR using CM becomes more significant.
For example, in Figs. 6(a)-6(b) the noise is so severe when using the NHR method that parts
of the image are unidentifiable. However, under identical illumination conditions, CM enables
a dramatic improvement in image quality, as shown in Figs. 6(e)-6(f). As discussed above, in
the absence of noise CM is mathematically equivalent to NHR convolved with the smoothing
kernel .Z". However even when the NHR images are themselves smoothed with kernel ., the
SNRs of the resulting images (Figs. 6(c)—6(d)) are still far lower than the images obtained using
CM.

univers

of glasc

univers

of olase

SNR 39.05 43.18 SNR 76.83 92.75
QM with 40dB QM with 50dB

Fig. 7. Comparison of images obtained using QM with different gains. (a) 40 dB gain.
(d) 50 dB gain. Experimentally measured SNR (using the same features and background as
before) is quoted beneath each image. We acknowledge University of Glasgow and Beihang
University for the permission to use its name as experimental subjects.
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While CM offers advantages at low light levels, the QM may find more use operating in
high light conditions. For example, in our experiments the photodiode gain is set in order to
maximise the dynamic range of the ADC. As the QM method reduces the amount of light
arriving at the photodiode, the gain can be increased to improve the QM image quality. This
is demonstrated in Fig. 7 where Fig. 7(a) shows images obtained using QM with a 40 dB gain
(equivalent to the gains used in all images shown in Figs. 4 and 5), while Figs. 7(b) shows
the improvement in SNR when using a gain of 50dB with the QM method. However, the
same improvement cannot be achieved in NHR and CM, because increasing the detector gain
saturates the photodiode outputs, resulting in inaccurate meansurements and distorted image
reconstructions.

4. Discussion

We have demonstrated two image reconstruction strategies based on a digital microscanning
approach applied to an infrared single-pixel camera. Both of these strategies deliver a sequence
of low-resolution ‘preview’ images throughout the high-resolution image acquisition. For ex-
ample we obtain 128 x 128 pixel images at a rate of ~0.5 Hz. During the high-resolution ac-
quisition our method delivers 64 x 64 pixel ‘preview’ images at a rate of ~2 Hz. Compared to
conventional sampling, the complete microscanning strategy improves the SNR of images, at
the expense of a modest reduction in the contrast of high spatial frequencies. The quarter mi-
croscanning strategy suffers from reduced SNR, which under certain situations can be improved
by optimising the photodiode gain. These techniques are applicable to all single-pixel imaging
systems, both those based on structured illumination and those based on masked detection. Im-
portantly, our approach requires no additional hardware and can be utilised as a complement
to existing single-pixel imaging schemes, such as compressive sensing. Our work demonstrates
an additional degree of flexibility in the trade-off between SNR and spatial resolution in single-
pixel imaging techniques, which can be optimized as the case demands.
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