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Abstract 

With the aim to develop initial recommendations for production of biochars with minimal 

contamination with polycyclic aromatic hydrocarbons (PAHs), we analysed a systematic set 

of 46 biochars produced under highly controlled pyrolysis conditions. The effects of the 

highest treatment temperature (HTT), residence time, carrier gas flow and typical feedstocks 

(wheat / oilseed rape straw pellets (WSP), softwood pellets (SWP)) on 16 US EPA PAH 

concentration in biochar were investigated. Overall, the PAH concentrations ranged between 

1.2 and 100 mg kg
-1

.
 
 On average, straw-derived biochar contained 5.8 times higher PAH 

concentrations than softwood-derived biochar. In a batch pyrolysis reactor, increasing carrier 

gas flow significantly decreased PAH concentrations in biochar; in case of straw, the 

concentrations dropped from 43.1 mg kg
-1

 in the absence of carrier gas to 3.5 mg kg
-1 

with a 

carrier gas flow of 0.67 L min
-1

; for woody biomass PAHs concentrations declined from 7.4 

mg kg
-1 

to 1.5 mg kg
-1 

with the same change of carrier gas flow. In the temperature range of 

350-650°C the HTT did not have any significant effect on PAH content in biochars, 

irrespective of feedstock type, however, in biochars produced at 750°C the PAH 

concentrations were significantly higher. After detailed investigation it was deduced that this 

intensification in PAH contamination at high temperatures was most likely down to the 

specifics of the unit design of the continuous pyrolysis reactor used. Overall, it was 

concluded that besides PAH formation, vaporisation is determining the PAH concentration in 

biochar. The fact that both of these mechanisms intensify with pyrolysis temperature (one 

increasing and the other one decreasing the PAH concentration in biochar) could explain why 

no consistent trend in PAH content in biochar with temperature has been found in the 

literature. 
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1 Introduction 

Biochar is the solid product of thermochemical conversion of biomass under an atmosphere 

with reduced content of free oxygen or its complete absence, i.e. pyrolysis and gasification 

[1]. During such conversion, biomass undergoes extensive devolatilisation and develops a 

solid carbonized matrix [2]. This is accompanied by formation of polycyclic aromatic 

hydrocarbons (PAHs), an important class of organic contaminants, associated with 

environmental problems [3]. PAHs can have acute adverse effects on human health, plants 

and the wider ecosystem with some displaying carcinogenic, mutagenic and teratogenic 

effects [4]. 

PAHs are defined as aromatic structures that consist of two or more linked carbon rings and 

only contain the elements carbon and hydrogen [3]. PAHs are formed during incomplete 

combustion of any type of biomass and biomass-derived material. Thus, PAHs are present in 

the environment naturally through forest fires and volcanic eruptions, with UK rural soils 

containing a mean PAH concentration of 2.2 mg kg
-1

 [5]. However, human actions increase 

PAH concentrations locally and the average PAH concentrations in UK urban soils were 

reported to be 14.2 mg kg
-1 

[5]. In soil they are known to accumulate as they are difficult to 

degrade, associate with organic matter and have low water solubility (half-life of PAHs of 

more than 3 rings > 20 to hundreds of days) [4]. 

There are two main pathways by which PAHs are known to form: at lower conversion 

temperatures Diels-Alder reactions take place which involve dehydrogenation, 

polymerization, cyclization and aromatization of hydrocarbons to form PAHs [6–8]. At 

temperatures above 400-500°C, the alternative is a pyrosynthetic pathway consisting of 

demethylation, demethoxylation and dehydroxylation of lignin, cellulose and hemicellulose 

to form phenol, alkyl-phenols and BTEX. This is followed by deoxygenation / 



dehydrogenation, connecting single compounds and condensing these into larger compounds 

which end up as polyaromatic networks (PAHs or pyrolytic carbon) [6,7,9,10]. 

Research effort regarding anthropogenic pollution with PAHs used to focus on reducing PAH 

emissions from fossil fuel- and biomass combustion [3]. Studies that dealt with PAHs and 

pyrolysis mostly investigated PAH formation and concentrations in pyrolysis liquids / gases 

[6,9,11–13]. Recently, attention has shifted to PAH concentrations in pyrolysis solids because 

of the potential application of biochar to soil for soil improvement, -remediation and carbon 

sequestration [8,14–19]. In order to avoid possible negative effects on soil ecosystems and to 

comply with environmental legislation, it is essential to produce biochars with low PAH 

concentrations. Biochar guideline values have been established which are based on current 

legislation. For example, the European Biochar Certificate (EBC) allows up to 12 mg kg
-1 

of 

16 US EPA PAHs for basic grade and up to 4 mg kg
-1

 for premium grade biochar which was 

adopted from the Swiss Chemical Risk Reduction Act [20]. The International Biochar 

Initiative (IBI) guidelines use threshold value of 20 mg kg
-1

 and 6 mg kg
-1

 based on the 

Austrian Compost Ordinance [21].  

The few systematic studies on dependence of PAH concentrations on pyrolysis conditions 

that exist provide different perspectives and no overall trend is observed [8,14–19,22]. In 

Hale et al. (2012) [16], the effects of highest treatment temperature (HTT - maximum 

temperature material is exposed to), residence time and feedstock was investigated by 

analysing 59 biochars, however, due to the highly variable technologies used for biochar 

production only limited conclusions could be drawn. This shows the absolute need for a 

systematic study on the relationship of pyrolysis conditions and feedstock with PAHs in 

biochars produced from highly controlled, slow pyrolysis units. 



Consequently, in this work the effects of two common feedstock types (wood and straw) and 

typical pyrolysis parameters (residence time, HTT and carrier gas flow rate) were 

investigated to determine their effect on total concentrations of 16 US EPA PAHs in resulting 

biochars. The overall objective was to provide recommendations to produce pyrolysis solids 

(biochar) with minimal PAH contamination based on a data set of biochars produced from 

highly controlled pyrolysis units.   



2 Materials and Methods 

2.1 Feedstocks 

For production of the 46 biochars, 7 feedstocks were used: 1) straw pellets (WSP) from 50/50 

wheat : oilseed rape straw [23]; 2) softwood pellets (SWP) from 5/95 pine : spruce; 3) willow 

chips (WC) Koolfuel 40, supplied by Strawsons (Retford, UK); 4) miscanthus chips (MC) 

(Miscanthus x giganteus); 5) demolition wood (DW) and 6) Arundo donax (ADX) as 

described in Buss et al. (2016) [24]; and 7) sewage sludge (SS). 

2.2 Biochar production 

46 biochars were produced under highly controlled pyrolysis conditions using three different 

slow pyrolysis units that are located at the UK Biochar Research Centre (UKBRC). The 

smallest unit (“Stage I”) is a fixed bed, batch, quartz tube reactor with an inner diameter 

(I.D.) of 50 mm and around 200 mm sample bed depth which is heated up by an infrared gold 

image furnace and can pyrolyse about 15-40 g per batch [25]. The second unit (“Stage II”) 

typically processes 500 g h
-1

 and is a continuous pyrolysis unit with a furnace screw which is 

heated up by an electric split-tube furnace (Buss et al. (2016)) [24]. The pilot scale pyrolysis 

unit (“Stage III”) has a rotary kiln and can process up to 50 kg h
-1

 of feedstock [26]. 

Production parameters, such as HTT (350-750°C), residence time (10, 20, 40 min) and carrier 

gas flow (0, 0.33, 0.67 L min
-1

) were varied. The carrier gas flows under standard conditions 

were 10 L min
-1

 for Stage III (I.D. 244 mm), 1 L min
-1

 for Stage II (I.D. 100 mm) and 0.3 L 

min
-1

 for Stage I (I.D. 50 mm). When inconsistencies during a pyrolysis run were detected, 

such as high pressure peaks, the biochars were discarded and the pyrolysis run was repeated 

ensuring comparative conditions between runs. An overview of all the biochars including 

production conditions and feedstocks can be found in Table S1.  



2.2.1 Highest treatment temperature (HTT) 

To be able to find overall trends of the influence of HTT on the total PAH concentration in 

biochar, different feedstocks were pyrolysed using two pyrolysis units in the typical 

temperature range used for biochar production (350 - 750°C). Stage II pyrolysis unit was 

used to pyrolyse demolition wood and A. donax at 5 temperatures (350, 450, 550, 650, 

750°C), willow chips at 3 temperatures (350, 550, 750°C) and miscanthus chips at 4 

temperatures (350, 450, 550, 750°C). Furthermore, sewage sludge was pyrolysed at 5 

temperatures (350, 450, 550, 650, 750°C) with the Stage III pyrolysis unit.  

2.2.2 Effects of carrier gas flow rate, HTT, feedstock, and residence time at HTT 

The Stage I pyrolysis unit was used to pyrolyse straw pellets (WSP) and softwood pellets 

(SWP) at 2 HTTs (350, 650°C), 2 residence times (10, 40 min) and 3 carrier gas flows (0, 

0.33, 0.67 L min
-1

). In total, 24 biochars were produced. The feedstocks and production 

conditions were chosen as typical feedstocks and production conditions for biochar 

production. More details on the production and on the feedstocks, such as elemental content 

(ultimate analysis) and biomass components, can be found in Crombie & Mašek (2015) [23]. 

2.3 PAH analysis 

2.3.1 Sampling 

To gain representative samples, first the container with the biochar was mixed and around 

1/10 of the biochar was sampled (~10 g) from all areas of the container. The 10 g sample was 

ground with mortar and pestle and homogenized, transferred into a sample tube, and mixed 

again before a 2 g sub-sample was taken. Finally, accurately weighed aliquots (1 g) were 

used for extraction. 



2.3.2 Extraction and analysis 

Biochar has a very strong sorption capacity for PAHs and studies have shown that a longer 

extraction duration results in much higher PAH recovery compared to conventional 

extraction techniques used for soil (e.g. 6 h Soxhlet extraction) [16,27,28]. Since recovery 

rates reached maximum values after an extraction for 36 h [27,28], the method recommended 

in the European Biochar Certificate [20] is a 36 h Soxhlet extraction using toluene [27], 

followed by GC-MS analysis which was also applied in this study.  

Each homogenised biochar sample was subjected to a 36 h Soxhlet extraction using 

approximately 100 mL of toluene. The resulting extract was rotary evaporated to 1 mL and 

analysed without clean-up for the 16 PAHs on the US EPA priority pollutants list by GC–MS 

(Agilent 6890 GC plus 5975c MS). Full details including validation of the method can be 

found in Hilber et al. (2012) [27]. Naphthalene-d8, acenaphthene-d10, phenanthrene-d10, 

chrysene-d12 and perylene d-12 were used as internal standards. RSD of the GC-MS analysis 

for all individual PAHs measuring high and low standards can be found in supplementary 

information in Buss et al. (2015) [29]. The limit of detection for the individual PAHs was 

0.10 mg kg
-1

. The analyses were performed by Northumbrian Water Scientific Services 

(Newcastle, United Kingdom), accredited by United Kingdom Accreditation Service 

(UKAS). The sum of 16 US EPA priority PAHs is reported for 46 biochars. Several of these 

were extracted and analysed in triplicate (separate vials on separate occasions) and RSD 

values were typically < 20%.  

2.4 Statistics 

Results were evaluated statistically using two-sample, two-tailed t-tests and Analysis of 

Variance (ANOVA) followed by Student-Newman-Keuls post hoc tests performed with 

SigmaPlot 12 (Systat Software Inc., Chicago, IL). Significant differences are stated with a p-

value < 0.05.  



3 Results 

Production conditions and total PAH concentrations for all 46 biochars used in this work are 

shown in Table S1. The PAH concentrations measured in the biochar sample set covered a 

wide range, from ~1.2 to ~100 mg kg
-1

. Comparison of the measured values against guideline 

values for acceptable PAHs concentrations in biochar for soil application showed that out of 

the 46 biochars tested 59% exceeded the EBC premium grade PAH limit (4 mg kg
-1

), 46% 

were above the EBC basic grade limit (12 mg kg
-1

) and 43% were higher than the IBI 

threshold (20 mg kg
-1

) (Table 1). 

 

Table 1: Biochars exceeding PAH guideline values. The values depicted are for biochar soil 

application according to European Biochar Certificate (EBC) and International Biochar 

Initiative (IBI), and number and percentage of biochars out of the set of 46, exceeding these 

guideline values. 

  
EBC premium EBC basic IBI 

threshold mg kg 
-1

 4 12 20 

exceedance 
biochars 27 21 20 

% 59 46 43 

  



3.1 Highest treatment temperature (HTT) 

Four different feedstocks were pyrolysed with Stage II pyrolysis unit and one with Stage III 

pyrolysis unit in the temperature range 350-750°C (Figure 1). For production temperatures of 

up to 650°C, biochars from both pyrolysis units showed some variations in the PAH 

concentrations, but, taking all feedstocks and both pyrolysis units into account, there was no 

significant change in the range 350-650°C (one-way ANOVA).  

However, on average, the biochars produced at 750°C showed significantly higher PAH 

concentrations than biochars produced at any of the lower temperatures (one-way ANOVA). 

Yet, the PAH concentrations of the biochar produced at 750°C with the Stage III pyrolysis 

unit was only 1.2 fold higher than the biochar from the same feedstock produced at 350°C, 

while the PAH concentrations in the biochars produced at 750°C with the Stage II pyrolysis 

unit were 1.9 fold to 23.3 fold higher than the 350°C-biochars (DW 21.8 fold, ADX 23.3 

fold, MC 1.9 fold and WC 5.0 fold).   



 

Figure 1: Effect of pyrolysis temperature on 16 US EPA PAH concentration in biochar (mg 

kg
-1

). The biochars were produced from 4 different feedstocks in Stage II pyrolysis unit 

(ADX, Arundo donax; DW, demolition wood; MC, miscanthus chips; WC, willow chips) and 

1 feedstock in Stage III pyrolysis unit (SS, sewage sludge). For all the feedstocks combined, 

the PAH concentration in the biochars produced at 750°C is significantly different to all the 

other HTTs (one-way ANOVA). 

 

  



3.2 Carrier gas flow, HTT and residence time 

The effects of carrier gas flow rate, HTT, and residence time at HTT on PAH concentrations 

were tested by pyrolysing 2 feedstocks (straw, wood) at 12 different conditions in a batch 

pyrolysis reactor (Stage I), respectively (Figure 2). Straw pyrolysis yielded biochar with 

much higher PAH concentrations than wood (further discussed in 3.2). The biochars that only 

differed in residence time show very similar PAH concentrations (Figure 2), confirming 

previous observations that in these samples residence time at HTT in the range investigated 

had negligible effect on resulting biochars (energy content of pyrolysis products and carbon 

sequestration potential tested in Crombie & Mašek (2015) [23]). 

It is also apparent that the concentration of PAHs in biochar decreased with increasing carrier 

gas flow rate irrespective of HTT and residence time from 43.1 mg kg
-1

 to 17.3 mg kg
-1

 and 

3.5 mg kg
-1

 for biochars produced from WSP and 7.4 mg kg
-1

 to 2.0 mg kg
-1

 and 1.5 mg kg
-1

 

for biochars produced from SWP (Figure 2, averages in Table S2). For biochars from both 

feedstocks this meant a significant reduction of PAHs due to increased carrier gas flow rates 

from 0 to 0.33 L min
-1

 (two-sample, two-tailed t-test; WSP: p-value = 0.046, SWP: p-value = 

0.048) and from 0 to 0.67 L min
-1

 (WSP: p-value = 0.0003, SWP: p-value = 0.035).  

At 650°C the effect was more pronounced, with a sharp decline with increase of carrier gas 

flow rate from 0 to 0.33 L min
-1

 for both feedstocks. At 350°C the decrease with flow rate 

was more gradual, ultimately reaching concentrations similar to those obtained for the 650 °C 

biochar when the carrier flow rate was increased to 0.67 L min
-1

. Most importantly both 

feedstocks resulted in biochars with PAH concentrations of less than 6 mg kg
-1 

(IBI lower 

guideline value) at higher carrier gas flow rate, and wood pellets biochars even stayed below 

the premium grade biochar limit (4 mg kg
-1

) at low carrier gas flow rate. 



 

Figure 2: Effects of HTT, residence time (RT) and carrier gas flow rate on 16 US EPA PAH 

concentration in biochar (mg kg
-1

). Biochars were produced from (a) softwood pellets (SWP) 

and (b) wheat straw pellets (WSP) in Stage I pyrolysis unit. 

  



3.3 Biomass type: wood – straw 

As already indicated above, in Figure 2 there is a notable difference in scale for total PAH 

concentrations for (a) wood and (b) straw – derived biochars produced at 12 different 

pyrolysis conditions, respectively. The results showed that straw pyrolysis yielded biochars 

with significantly higher PAH concentrations compared to softwood pellets (two-sample, 

two-tailed t-test, p-value = 0.007), on average the PAH concentration in straw biochar was 

5.8 fold higher than in wood biochar (Table S3). The difference in PAH concentrations 

between straw and wood biochar was most apparent at low carrier gas flow rates, but were 

almost undetectable at the highest carrier gas flow rate in the range investigated.   



 

Figure 3: Schematic illustration of conceptual relationship of PAHs and pyrolysis 

temperature. (a) shows PAH yield consisting of PAH formation and destruction at each 

individual pyrolysis temperature. (b) is the integral of (a) and shows the total yield 

accumulated over the whole temperature range up to the highest treatment temperature. (c) 

shows the concentration of PAHs in biochar as the difference between accumulated PAH 

yield and PAHs vaporized (released). (d) shows which effect increased carrier gas flow has 

on PAHs in biochar and what might have caused this effect. 

  



4 Discussion 

Studies published to date that employed Soxhlet extraction (various solvents and durations) 

reported concentrations of the 16 US EPA PAHs in biochars in the range 0.07-355 mg kg
-1 

[16,18,27,28,30–32]. The PAH concentrations detected in the 46 biochars analysed in this 

study, 1.2 to 100 mg kg
-1

, fall within the range in published studies. However, according to 

proposed biochar guidelines (IBI and EBC) only 40-60% of these would satisfy the PAH 

concentration criteria for safe application to soils. 

4.1 Effect of highest treatment temperature (HTT) on PAHs in biochar 

So far, no satisfactory explanation has been given in the literature regarding the relationship 

of PAH concentrations in biochar and pyrolysis HTT [33]. Brown et al. (2006) [22] (450 - 

1000°C) and Freddo et al. (2012) [19] (300, 600°C) reported decreasing PAH concentrations 

with increasing temperature. Kloss et al. (2012) [18] (400 - 525°C) didn’t observe any 

temperature dependence, while Rogovska et al. (2012) [17] (450 - 850°C) and  Zielińska & 

Oleszczuk (2015) [34] (500 - 700°C) found that PAH concentrations increased with 

increasing pyrolysis temperature. In our study, the PAH concentrations were not significantly 

different in biochars produced in the temperature range 350 - 650°C. At 750°C, however, a 

significant increase in PAH concentration was observed. Although most published studies did 

not investigate biochar produced at temperatures ≥ 700°C, those that did, did not report any 

marked increase in PAH concentrations at temperatures ≥ 700°C [8,14–16,22]. Several 

studies observed peak PAH concentrations in biochars produced at lower pyrolysis 

temperatures than 750°C, e.g. Hale et al. (2012) [16] using various feedstocks over the range 

350 - 550°C; Devi & Saroha (2015) [15] at 500°C with sewage sludge; Keiluweit et al. 

(2012) [8] at 500°C with wood and grass and Dai et al. (2014) [14] at 600°C with sewage 

sludge.  



Although there appears to be no clear trend in biochar PAH concentrations with temperature, 

PAH yield in all pyrolysis products, i.e. solids, liquids and gases, has been shown to increase 

with temperature (at least in the temperature range suitable for biochar production) [6,9,11–

13,35,36]. PAH yield at a particular temperature consists of PAH formation and destruction 

(conversion of PAHs into lighter hydrocarbons / gases [12,14] and condensation to form high 

molecular weight PAHs / pyrolytic carbon [8,9,13]). This concept is illustrated in Figure 3. 

However, during fast/slow pyrolysis the particle that is heated up goes through all the 

different temperature phases in rapid/slow succession until the highest treatment temperature 

(target) is reached, e.g. as shown in Huang et al. (2013) [37]. Consequently, what is actually 

determined when the total PAH concentration in pyrolysis solids, liquids and gases is 

measured is the PAH yield integrated over temperature which is the accumulation of all 

PAHs produced from starting- to highest treatment temperature. Consequently, the peak of 

PAH yield (Figure 3a) indicates the temperature where the highest accumulated yield 

increase is reached (slope change Figure 3b). At even higher temperatures, the PAH yield 

decreases until PAH destruction equals PAH formation (PAH yield is zero) and the 

maximum accumulated PAH yield is reached (Figure 3a, b) which is between 750-900°C 

[13,14,35,36]. 

However, neither PAH formation, nor accumulated PAH yield alone are the key for 

elucidating the relationship between pyrolysis temperature and PAH concentrations in 

biochar; the distribution of PAHs into the pyrolysis fractions is a highly important 

contributing factor. Since PAHs are reported to be mostly formed at the gas-solid interphase 

[6,8,10,13,33], most PAHs created are easily vaporised at typical pyrolysis temperatures 

(>99% end up in pyrolysis liquids / gases) [14,38]. Naturally, increasing pyrolysis 

temperature leads to higher PAH vaporisation from pyrolysis solids which counteracts the 

increasing amount of PAH yield at higher temperatures. The difference between PAHs 



formed and -vaporised is the actual concentration of PAHs in biochar, which is illustrated in 

Figure 3c. It is hypothesised that simultaneous increase in PAH formation and -vaporisation 

with temperature is the reason why no general trend of PAHs in biochar with pyrolysis 

temperature has been reported in literature as the effects are counteracting, one resulting in 

increased and one in decreased PAHs in biochar (Figure 3c).  

This explanation is supported by the PAH concentrations in biochars produced in the 

temperature range 350-650°C (Table 1) where no significant changes were seen. Yet, the 

significantly higher PAH concentrations observed in biochars produced at 750°C (with the 

Stage II pyrolysis unit) in our study could be seen as contradictory. However, a plausible 

explanation of this unit-specific effect, is that it is caused by the pyrolysis unit design and 

operation, resulting in distribution of temperatures that allowed cooling of volatiles at the 

discharge end of the unit. Due to the pyrolysis unit design, where pyrolysis vapours 

(containing >99% of the produced PAHs [14,38]) travel concurrently through the pyrolysis 

chamber and into a discharge chamber where biochar is separated, extensive contact between 

biochar and vapours is possible. Therefore, if at any point the reactor or material temperature 

drops below dew point of the tars, including PAHs in the pyrolysis vapours, these would 

condense onto the biochar. This effect has been described in Buss et al. (2014), (2015) 

[26,29]. The discharge chamber of the Stage II pyrolysis unit is actively heated up with 

heating tapes which are fixed at a certain temperature irrespective of the pyrolysis 

temperature, while the discharge chamber of the Stage III pyrolysis unit is heated by the 

furnace and released vapours / gases. Consequently, in the Stage III unit the temperature of 

the discharge chamber depends on the pyrolysis temperature used. The difference in set-up of 

the discharge chamber may be the reason for the difference in PAH concentration observed 

for the biochars produced at 750°C with the Stage II and III pyrolysis unit. 



4.2 Effect of carrier gas flow and residence time on PAHs in biochar 

It was shown that increasing carrier gas flow through the bed of biomass undergoing 

pyrolysis in a fixed bed reactor decreased the PAH concentrations in biochar. On the other 

hand, residence time of biomass at HTT in the fixed bed did not have any discernible effect 

on PAH concentrations.  

PAHs are mainly formed through secondary reactions of vapours, and similar reaction 

pathways also form biochar through combining PAHs to higher molecular weight PAHs and 

further combine these to build pyrolytic carbon [9,10,12]. It is reported that the magnitude of 

secondary (char) reactions is mainly influenced by the intensity and duration of contact of 

vapours with feedstock / biochar [37,39] as longer vapour residence times increase biochar 

yields [40]. This means that reduced hot vapour residence time, besides reducing biochar 

formation [23], should also reduce PAH formation as already speculated in McGrath et al. 

(2003) [6] and shown in Dai et al. (2014a) [35]. 

Residence time of feedstock in the heated zone, however, must be clearly differentiated from 

hot vapour residence time. During fast pyrolysis, vapour residence time indeed is influenced 

by residence time of the feedstock in the heated zone and has a major effect on PAH yield 

[12]. Residence time during slow pyrolysis, on the other hand, is in the range of minutes (10 

and 40 min tested here) to hours and hot vapour residence time in the range of seconds to tens 

of seconds, which is much longer than during fast pyrolysis [41]. Consequently, during slow 

pyrolysis in a batch reactor, variation of the residence time of the feedstock in the heated 

zone has much less effect on hot vapour residence time. This could explain why no effect of 

residence time on PAH concentration has been observed in this study. However, it needs to 

be stressed that this has only been investigated in a batch reactor and in a continuous 

pyrolysis reactor the system is quite different. In a continuous unit, pyrolysis vapours can 

interact with pyrolysis solids further down-stream within the pyrolysis unit on their way to 



the gas outlet (e.g. after-burner) [37]. Therefore, in a continuous unit a change of residence 

time could also have an effect on secondary char reaction and on PAH concentration in 

biochar. 

Carrier gas flow rate also affects the vapour-solid interaction. In a batch-reactor with no 

carrier gas flow, the gas-solid residence time for secondary reactions to take place is 

maximized [23,40]. Higher carrier gas flow decreases the hot vapour residence time which 

results in decreased PAH formation [35]. In addition, carrier gas flow rate increases the 

driving force for physical removal of PAHs from the solids (biochar). Thus, carrier gas flow 

increases PAH vaporisation from biochar and decreases PAH formation which is illustrated 

in Figure 3d, however, it is unclear which is the dominant factor. Considering the small 

proportion of PAHs that attached to pyrolysis solids without carrier gas flow in the Fagernäs 

et al. (2012) study (0.6% = 24 mg kg
-1

) [38], a small change in the distribution of PAHs in 

solids and liquids/gases could have a large effect on total PAH concentrations in biochar. The 

phenomenon that carrier gas flow has a major effect on PAH concentrations in biochar could 

explain parts of the high fluctuations of PAH concentrations reported in literature and 

increased PAH concentrations in biochars produced under field conditions (no carrier gas 

flow) [16]. Again, this has only been investigated in a batch reactor and needs to be tested for 

continuous units.  

4.3 Effect of biomass type on PAHs in biochar: wood – straw 

Our findings that straw-derived biochar contained 5.8 times more PAHs than wood-derived 

biochar are similar to those obtained by Keiluweit et al. (2012) [8] who reported four times 

higher concentrations of PAHs in grass-derived biochar produced at 500°C, compared to 

wood biochar. Similarly, Kloss et al. (2012) [18] observed considerably higher PAH 

concentrations in straw-derived biochar compared to spruce-derived biochar and Fabbri et al. 



(2013) [28] reported that slow pyrolysis of woody biomass resulted in the lowest PAH 

concentrations compared to various other feedstocks. 

In general, lignin-rich feedstocks have been observed to produce biochars with less PAHs 

than those which are comprised mainly of pectin and cellulose [9,42]. The opposite was, 

observed by Zhou et al. (2014b) [43]. As the lignin content of straw pellets and wood pellets 

used in the current study was very similar (~22%, analysed in Crombie and Mašek (2014) 

[44]), the content of lignin cannot explain the trends observed in our study. Besides lignin 

content, the composition of lignin, which is very different between straw and woody biomass 

[45,46] could be at least partly responsible for differences in PAH content, however, 

insufficient studies on this are available. In addition, the C, H, N, O-elemental contents and 

cellulose and hemicellulose content of the feedstocks varied greatly [44] which could explain 

the different PAH contents after pyrolysis. Zhou et al. (2014b) [43] observed non-additive, 

synergistic effects of biomass components, i.e. of cellulose, hemicellulose and lignin, on the 

formation of PAHs during pyrolysis, making prediction of PAH concentrations in biomass 

based on feedstock composition very challenging. 

4.4 Conclusions 

From data collected on the 46 biochars investigated in this study, it is concluded that 

residence time at peak temperature (slow pyrolysis, batch reactor) did not influence PAH 

concentration in biochar. On the other hand, it was observed that pyrolysis of woody biomass 

yielded biochar with considerably lower PAH contents than straw biomass, at least in the 

units and operating conditions deployed in this study. Overall, this work showed how 

complex the matter of effects of feedstock characteristics on PAH concentrations in biochar 

is and how many factors could have an influence. This study presents a significant 

contribution to the limited body of knowledge on feedstock effects on PAHs in biochar, and 

shows that: (i) feedstock selection is a critical parameter and (ii) careful matching with 



conversion technology is necessary to ensure production of clean biochar, satisfying proposed 

biochar guideline values [20,21].  

Regarding pyrolysis temperature, based on the extensive data set collected in this study, it is 

not possible to recommend particular pyrolysis temperature/-range for production of biochar 

with low PAH content. This research showed that pyrolysis temperature alone did not seem 

to be the main influencing factor of PAH concentration in biochar. The HTT should be 

considered in conjunction with the specific design of the pyrolysis unit used, as this study 

indicates that it is the combined effect that affects the PAH concentrations in resulting 

biochar. Besides HTT, the flow of carrier gas in the pyrolysis reactor has an important effect, 

and in general, higher carrier gas flow rate resulted in biochars with lower PAH 

concentrations (independent of temperature, residence time and feedstock). However, even 

low carrier gas flow rates can be sufficient for production of biochar with PAH 

concentrations below guideline values, for certain feedstock, HTT and unit design. Overall, it 

may not be possible to completely eliminate formation of PAHs during biomass pyrolysis, 

but it is possible to minimize contamination of produced biochar by suitably combining 

feedstock with conversion unit and operating parameters. In this study, it was shown that 

“clean” biochar, i.e., with low PAH content, can be produced from a range of feedstock and 

in different units. Furthermore, this study provides critical information for bringing us one 

step closer to production of biochar with low PAH contamination from diverse biomass using 

different production processes.  
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