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A nonlocal extension of the damage-plasticity model CDPM2 is proposed. The performance of this
extension is evaluated in comparison with a crack band version of the same model for describing the
failure of reinforced concrete. In particular, the influence of mesh size on the structural response in the
form of load–displacement curves and strain distributions is studied for a reinforced concrete beam
subjected to four point bending. The nonlocal model provides mesh independent load–displacement
curves and strain profiles, whereas the peak loads and strain profiles obtained with the crack band model
depend on the element size.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The failure process of reinforced concrete is complex, since its
constituents in the form of concrete and reinforcement and their
interaction exhibit strongly nonlinear mechanical responses. For
instance, the response of plain concrete depends strongly on the
type of loading applied. In tension, concrete exhibits a quasi-brittle
softening response (decreasing stress with increasing displace-
ments), whereas for confined compression hardening (increasing
stress with increasing displacements) is observed. It is important
to consider these nonlinearities for the modelling of shear and
compressive failure processes in reinforced concrete structures.

The finite element method has the potential to predict the
nonlinear response of reinforced concrete structures based on the
spatial arrangement and properties of its constituents. However,
constitutive models for concrete, reinforcement and its interaction
are required, which describe the material behaviour mesh objec-
tively considering all important features observed in experiments.
For concrete, this is not a straightforward task due to the com-
plexity of the material response. The model should be advanced
enough to capture the different responses in tension, and low and
high confined compression, be easy to calibrate, and be formulated
in a way that the results are insensitive to the size and orientation
of finite elements. One well-known group of models, which are
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often employed to ensure a mesh independent description of the
failure of concrete, are integral type nonlocal approaches [28]. In
these models, the stress at a point is evaluated as a spatial
weighted average of history variables in the vicinity of this point.
These models produce fracture patterns independently of the
mesh for both localised and distributed cracking, and are insen-
sitive to the finite element mesh alignment [2]. Therefore, they are
more versatile than cohesive crack and crack band models [5],
which have been shown to be sensitive to the mesh alignment [19]
and, for distributed cracking, on the mesh size [14]. Many different
nonlocal models have been proposed in the literature. For
instance, a number of different averaging functions based on dis-
tances to boundaries [8,20,4] and stress states [1,11,15] have been
proposed. However, most of these models have been evaluated by
analysing structures made of plain concrete. Less research has
been performed to investigate the performance of nonlocal models
to simulate reinforced concrete structures [26,22], despite virtually
all concrete structures being reinforced. Furthermore, many pre-
vious studies are limited to very simplified constitutive models,
which are not capable to describe the complex response of con-
crete structures subjected to multiaxial stress states. Therefore,
there is more room for research to evaluate nonlocal extensions of
advanced constitutive models for the analysis of reinforced con-
crete structures to bridge the gap between theoretical constitutive
modelling and structural engineering application.

The aim of the present study is to investigate the performance
of nonlocal models for analysing the response of reinforced
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Yield function: (a) evolution of the deviatoric section of the yield surface during hardening for a constant volumetric stress of σ v ¼ � f c=3. (b) Evolution of the
meridional section of the yield surface during hardening in the pre-peak and post-peak regime. The peak is indicated by a thicker line.
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concrete structures, and to compare these results to those
obtained with crack band approaches. In particular, the influence
of the mesh size on global load–displacement curves and local
crack patterns will be investigated for these two approaches.
Special emphasis is placed on using a constitutive model capable
of capturing the important features of the nonlinear mechanical
response of concrete.

The constitutive model used for the the nonlocal and crack
band approach is the damage-plasticity model CDPM2, which was
originally proposed in Grassl et al. [16] and is an extension of the
damage-plastic model presented in Grassl and Jirásek [13]. This
model is based on a combination of effective stress based plasticity
and isotropic damage. The plasticity part uses a yield surface based
on a strength envelope proposed in Menétrey and Willam [24],
which incorporates concrete specific features such as curved
meridians and deviatoric sections varying from triangular shapes
in tension to almost circular shapes in confined compression.
Together with a pressure sensitive hardening law, the pressure
dependence of strength and peak strain are described. The damage
part uses damage variables for tensile and compressive dominant
stress states following the approaches proposed in Mazars [23],
Ortiz [25], and Fichant et al. [10]. It describes the reduction of
stiffness in tension and low confined compression, as well as
stiffness recovery for the transition from tension to compression.
The proposed nonlocal extension of the model in the present
study has not been presented before.

Firstly, the performances of the nonlocal and the crack-band
models are investigated for uniaxial tension of an unreinforced
specimen and a three point bending test to demonstrate the
techniques used to describe fracture in plain concrete mesh
independently. Then, the models are applied to the analysis of a
reinforced concrete beam [21], which was selected, because it
exhibits both localised and distributed cracking. This test involves
failure modes, which, both on the material and structural level, are
challenging to model. Therefore, this is a suitable test to evaluate
the capabilities of the present modelling approaches to describe
the experimental results mesh independently. Furthermore, the
influence of the interaction radius of nonlocal models on the
prediction of crack patterns is investigated.
2. Constitutive model

The constitutive model used for the analysis of reinforced
concrete is based on the damage-plasticity concrete model CDPM2
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
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[16], which is an extension of CDPM [13]. In the present section, a
brief overview of the main formulation of this constitutive model
and its nonlocal and crack band extensions are presented. The
nominal stress is evaluated as

σ ¼ ð1�ωtÞσ tþð1�ωcÞσ c ð1Þ
where ωt and ωc are two scalar damage parameters, ranging from
0 (undamaged) to 1 (fully damaged). The stress components σ t

and σ c are the tensile and compressive part, respectively, of the
effective stress

σ ¼De ε�εp
� � ð2Þ

where De is the elastic stiffness, ε is the strain and εp is the plastic
strain. The split of the effective stress into tensile and compressive
parts is performed in the principal stress space. Firstly, the prin-
cipal effective stress σ P is split into σ Pt ¼ σ Piþ

�
and σ Pc ¼ σ Pi�

�
,

which are the positive and negative parts, respectively. Then, σ Pt

and σ Pc are expressed in the original coordinate system to form σ t

and σ c.
The plastic strains in (2) are evaluated by the plasticity part of

the model, which consists of the yield function, hardening func-
tions, flow rule and loading and unloading conditions. The yield
function f p is formulated using the Haigh–Westergaard coordi-
nates, which are the volumetric effective stress σv, the length of
the deviatoric effective stress ρ and the Lode angle θ . The mer-
idians of the yield surface (f p ¼ 0) are parabolic and the deviatoric
sections vary from being triangular at low confinement to almost
circular in high confinement. The evolution of the yield surface,
shown in Fig. 1, is described by two hardening functions qh1 κp

� �
and qh2 κp

� �
, which are controlled by the hardening variable κp

defined in rate form as

_κp ¼
J _εp J
xhðσvÞ

ð3Þ

The hardening functions are shown in Fig. 2(a). At qh1 ¼ qh2 ¼ 1,
the peak has been reached at which stage the yield surface coin-
cides with the failure surface proposed in Menétrey and Willam
[24], which is shown in Fig. 1 by a thicker line. In (3), the variable xh
is a hardening ductility measure, which is a function of the effective
volumetric stress. It is used to provide a greater strain capacity in
confined compression than in uniaxial compression and tension.

The flow rule provides the direction of the plastic flow

_εp ¼ _λ
∂gp
∂σ

ð4Þ

Here, function gp is the plastic potential function, and _λ is the rate
of the plastic multiplier. In CDPM2, the flow rule is non-associated,
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Fig. 2. (a) Hardening laws of the plasticity part. (b) Exponential softening law for the damage part.
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i.e. the yield function f p and the plastic potential gp do not coin-
cide, which results in a better description of the volumetric
expansion during confined compressive stress states [12]. Finally,
the loading–unloading conditions

f pr0; _λZ0; _λf p ¼ 0 ð5Þ

complete the description of the plasticity part. A detailed
description of the individual components outlined above are
described in Grassl et al. [16] and Grassl and Jirásek [13].

In the damage part of the model, the evolution of ωt and ωc is
controlled, among others, by the tensile and compressive equiva-
lent strains, ~εt and ~εc, respectively. The tensile equivalent strain ~εt
is a function of the effective stress σ . For the special case of 1D
tension, it simplifies to ~εt ¼ σ=E, where E is Young's modulus. The
compressive equivalent strain ~εc is defined in rate form as

_~ε c ¼ αc
_~ε t ð6Þ

The variable αc is used to distinguish between tensile and com-
pressive stress states. It ranges from 0 for pure tensile to 1 for pure
compressive stress states. This allows for the modelling of the
apparent stiffness recovery during the transition from tension to
compression. The history variables, which enter the damage func-
tions, form two groups of three variables each, which are related to
the tensile and the compressive part, respectively. They are

κdt ¼max
τr t

~ϵt; _κdt1 ¼
J _ϵp J

xs σv;ρ
� �; _κdt2 ¼

_κdt

xs σv;ρ
� �

κdc ¼max
τr t

~ϵc; _κdc1 ¼
αcβc J _ϵp J
xs σv;ρ
� � ; _κdc2 ¼

_κdc

xs σv;ρ
� � ð7Þ

Here, the ductility measure xs is a function of σv and ρ, which takes
into account the influence of multiaxial stress states on the damage
evolution. Exponential damage laws are used in which the initial
slope of the softening curve is controlled by the strain threshold
parameters, εft and εfc for tension and compression, respectively,
which is shown for the case of tension in Fig. 2(b). In this figure, εin
is the inelastic strain in tension composed of both reversible and
irreversible inelastic strain components expressed as

εint ¼ κdt1þωκdt2 ð8Þ
In compression the inelastic strain and the history and damage
variables are replaced by their compressive counterparts.

CDPM2 requires a large number of input parameters, for the
elastic, plastic and damage parts. However, in the present paper,
only a few parameters are calibrated, namely the tensile strength
f t, the compressive strength f c and the tensile damage threshold
εft, which is related to the fracture energy GF. Furthermore, the
strain threshold εfc and the parameter As in the damage ductility
measure were chosen as 3� 10�5 and 15, respectively. The
remaining parameters were set to their default values provided in
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
using the damage-plasticity model CDPM2, Finite Elem. Anal. Des. (2
Grassl et al. [16], where it was shown that these values provide a
good fit with a wide range of experimental results.

2.1. Nonlocal approach

The integral type nonlocal approach is applied to CDPM2 to
provide mesh independent load–displacement curves and mesh
independent localised fields of history variables. It is aimed to
achieve this by evaluating the nonlocal history variables at a point
x as the weighted average of the local history variables at all points
ξ in the vicinity of x within the integration domain V. For a history
variable f this is expressed as

f xð Þ ¼
Z
V
α x; ξ
� �

f ξ
� �

dξ ð9Þ

According to the standard scaling approach originally proposed
in Pijaudier-Cabot and Bažant [28], the weight function

α x; ξ
� �¼ α1 x; ξ

� �
R
Vα1 x; ζ

� �
dζ

ð10Þ

is constructed from a function α1 normalised by its integral over
the integration domain V so that the averaging scheme does not
modify a uniform field. In the present study, this weight function is

α1ðx; ξÞ ¼ exp � Jx�ξJ
R

� �
ð11Þ

where R is the nonlocal interaction radius, which is a material
parameter independent of the finite element size. The value of the
interaction radius controls the width of nonlinear zones formed
during failure. There is no direct link between experimentally
measured fracture properties and the nonlocal interaction radius,
because the width of the nonlinear zones depends also strongly on
the selected weight function. However, R can be implicitly cali-
brated by comparison of the roughness of fracture surfaces and the
dissipated energy fields as it was shown for example in [31]. In this
study it was shown that the roughness depends also on the size of
the inclusions which were modelled indirectly by an auto-
correlated random field. Another calibration strategy has also been
proposed in [6].

For CDPM2, the nonlocal averaging was applied to both the
tensile and the compressive damage part. The variables ~εt, ~εc, κdt1,
κdc1, κ2t and κ2c used in the damage laws were replaced by their
nonlocal counterparts by averaging their rates using (9). Nonlocal
averaging of all these variables is required to calculate the nonlocal
inelastic strain εin given in its local form in (8). The nonlocal aver-
aging is not applied to the plasticity part of the model. Therefore,
the effective stress–strain part of the model remains local.

For calibrating the nonlocal version of CDPM2 for the two-
dimensional analyses in Section 5, the softening strain threshold of
the nonlocal model was determined by means of 1D uniaxial
f reinforced concrete with nonlocal and crack band approaches
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Fig. 3. Average stress–strain curves for the (a) nonlocal and (b) crack-band model for the 1D direct tension test for three different meshes.
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Fig. 4. Comparison of the dissipated energy density profiles for the analysis with the (a) nonlocal and (b) crack band model of the 1D direct tension test for three different
meshes.
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tensile analyses. Since in the 1D analyses the averaging in the
lateral direction is not taken into account automatically, a mod-
ified weight function is used in the 1D analyses so that the results
for one and two-dimensional analyses are the same, as long as
they are not affected by boundaries. In Grassl et al. [15], it has been
shown that this can be achieved by defining the averaging for the
1D case as

ϵeq zð Þ ¼
Z 1

�1

Z 1

�1
α1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�ξÞ2þs2

q� �
ϵeq ξ

� �
dξ ds ð12Þ

where z is the coordinate along the 1D specimen. This approach
was adopted in the present study. There is no closed form solution
for the integral in (12) for the exponential weight function in (11),
so that it is evaluated numerically.

2.2. Crack-band approach

The crack band approach for producing mesh independent
load–displacement curves for fracture in plain concrete is based on
the idea that the crack opening is transformed into inelastic strain
by distributing it over an element length dependent zone [5]. This
approach will only produce mesh independent load–displacement
curves, if the inelastic strain profiles in the finite element analysis
are mesh size dependent. This requirement is an important dif-
ference to the nonlocal model which is designed to produce both
mesh size independent load–displacement curves and strain pro-
files. In CDPM2, the crack band approach is applied only to the
tensile part of the damage algorithm by replacing the stress–
inelastic strain law shown in Fig. 2(b) by a stress–inelastic dis-
placement law of the form

σ ¼ f t exp �ϵinh
wft

� �
if ϵin40ð Þ ð13Þ

Here, wft is a crack opening threshold used to control the slope of
the softening curve and h is the width of the crack-band, which in
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
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the present study is equal to the maximum dimension of the
element along the principal direction of the strain tensor corre-
sponding to the maximum tensile principal strain at the onset of
damage. For the compressive part, a stress–inelastic strain law was
used to determine the compressive damage parameter, since it
was reported in [14] for columns subjected to eccentric com-
pression that inelastic strain profiles in compression do not exhibit
a mesh dependence which would satisfy the assumptions of the
crack-band approach. This approach of applying the crack-band
approach only to the tensile part has already been successfully
used in Grassl et al. [16].
3. Calibration

The constitutive model CDPM2 requires a large number of
input parameters. However, the majority of these parameters have
default values, which give acceptable results for standard concrete
mixes. For a detailed description of the meaning of the input
parameters and suggestions how to determine them, the reader is
referred to Grassl and Jirásek [13] and Grassl et al. [16]. In the
present calibration, the parameters E¼30.5 GPa, ν¼ 0:2, f c ¼ 28:5
MPa, f t ¼ 2:247 MPa and GF ¼ 133 N=mwere determined using the
CEB-FIB Model Code 2010 [9] for the compressive strength speci-
fied in [21].

For the crack band model, GF can be directly related to the
model parameter wft, as wft ¼ GF=f t ¼ 0:0594 mm. For the nonlocal
model, GF is a function of parameters f t, εft and R without a closed
form solution. Therefore, the parameter εf was determined
inversely by analysing a 1D bar subjected to uniaxial tension used
in the next Section 4 for a given f t and R. For R¼0.01 m, the
inverse calibration for GF ¼ 133 N=m resulted in εft ¼ 0:00099. For
R¼0.005 m, εft ¼ 0:00179.
f reinforced concrete with nonlocal and crack band approaches
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4. Uniaxial tensile and three point bending test of plain
concrete

Two tests for fracture in plain concrete are performed to
investigate how well the nonlocal and crack band model can
describe the failure process in plain concrete mesh independently.
The first analysis comprises a uniaxial tensile bar of 0.25 m length
subjected to direct tension. In the middle of the bar, one element
was slightly weakened to trigger localisation. The material para-
meters were chosen to be equal to those in Section 3 for
R¼0.01 m. A coarse, medium and fine mesh with 25, 51 and 101
elements, respectively, were used to discretise the tensile bar. In
the nonlocal model, the modified averaging introduced in (12) was
used, which allows for employing 1D elements for 2D nonlocal
averaging, as described in Section 2.1. Both nonlocal and crack
band approaches provide mesh independent average stress–strain
curves shown in Fig. 3. The dissipated energy density profiles at
the final loading step at an average strain of 2 mm/m are shown in
Fig. 4 for the two models. The nonlocal approach provides mesh
independent representations of the dissipated energy density
profiles. It should be noted that this result is not always obtained
for nonlocal damage-plasticity models, in which the averaging is
only applied to the damage part. In Grassl and Jirásek [14], it was
shown that if the local plasticity part exhibits perfect plasticity, the
nonlocal damage-plasticity model results in mesh independent
load–displacement curves but mesh dependent dissipated energy
density profiles. The mesh independent energy density profiles are
obtained in the present study because the plasticity part exhibits
only hardening (Hp40). For this reason, the standard nonlocal
a

b

Fig. 5. Three point bending test of plain concrete: (a) geometry and loading setup
of the analyses. (b) Fine mesh with an element length of approx. 5 mm.
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formulation described in Section 2.1 provides mesh independent
results and was applied in the analyses. In the analyses with the
crack-band approach, the zone of dissipated energy is mesh
dependent, as it is expected for plain concrete subjected to uni-
axial tension.

In the second test of fracture in plain concrete, a beam sub-
jected to three point bending is investigated. The geometry and
the loading setup are shown in Fig. 5a. Three meshes with element
lengths in the refined zone in the middle of the beam of 20, 10 and
5 mm were used for both the nonlocal and the crack band model
(Fig. 5b).

The load–CMOD curves for the nonlocal and crack band
approaches are shown in Fig. 6. Here, CMOD is defined as the
relative horizontal displacement between points B and A shown
in Fig. 5a.

Both models produce very similar load–CMOD curves for the
different mesh sizes. The pre-peak response and the peak loads
obtained with the nonlocal model for the three meshes are iden-
tical. Only for the coarse mesh, the post-peak part of the curves is
steeper than the response obtained for the other meshes. Also for
the crack band model the load–CMOD curves are not very sensi-
tive to the mesh size. Only the peak differs significantly for the
three meshes. The mesh dependencies observed for the two
models can be understood by studying the contour plots of history
variables. The contour plots of the principal strain are shown in
Figs. 7 and 8 for the nonlocal and crack band model, respectively
for a coarse, medium and fine mesh. The maximum principal
strain contour plots for the nonlocal model demonstrate that for
the coarse mesh only two elements are located in the localised
strain region. As a result, there are not enough integration points
located in the localised strain region to accurately calculate the
nonlocal averages. Therefore, the energy dissipation in the post-
peak is slightly less than for the other two meshes, which explains
the difference in the load–CMOD curves in the post-peak regime. A
small region of distributed strain is visible at the bottom of the
beam, which is typical for analyses of unnotched structures.
However, this distributed region does not introduce any mesh-size
dependence. For the analyses with the crack band approach, the
localised strain profiles are mesh-dependent which is a necessary
requirement for the crack band approach to provide mesh inde-
pendent load–CMOD curves. However, the zone of distributed
damage at the bottom is not mesh dependent. Therefore, the peak
loads of the crack band analyses are depend on the mesh size.
5. Leonhardt and walter reinforced concrete beam

In this section, the results of the analysis of the reinforced
concrete beam no. 5 from the series of experiments reported in
Leonhardt and Walther [21] are described. In the experiment, the
beam was subjected to four-point loading and exhibited shear
0

2

4

6

8

10

12

0 0.03 0.06 0.09 0.12 0.15 0.18

Lo
ad

 [k
N

]

CMOD [mm]

coarse
medium

fine

ack band model of the three point bending test with different meshes.

f reinforced concrete with nonlocal and crack band approaches
016), http://dx.doi.org/10.1016/j.finel.2016.04.002i

http://dx.doi.org/10.1016/j.finel.2016.04.002
http://dx.doi.org/10.1016/j.finel.2016.04.002
http://dx.doi.org/10.1016/j.finel.2016.04.002


Fig. 7. Contour plots of the maximum principal strain ε1 of the three point bending test at CMOD¼0.18 mm analysed with the nonlocal approach. Light grey corresponds to
values of ε1o0 whereas black colour corresponds to values of ε1410�3.

Fig. 8. Contour plots of the maximum principal strain ε1 of the three point bending test at CMOD¼0.18 mm analysed with the crack band approach. Light grey corresponds
to values of ε1o0 whereas black colour corresponds to values of ε1410�3.
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failure in absence of shear reinforcement. The geometry, loading
setup and experimental fracture patterns, and the meshes used in
the analysis are shown in Figs. 9 and 10, respectively. Due to
symmetry, only half of the specimen was analysed by constraining
the horizontal displacements of the nodes lying on the symmetry
plane. Direct displacement control was applied using the vertical
displacement at the bottom of the midspan of the beam. The stress
state in the beam during the failure process is triaxial, neither
satisfying plane stress nor plane strain conditions [3]. However, in
order to reduce the computational time, so that mesh dependence
could be studied, the concrete was modelled by 2D plain strain
triangular elements.

The procedure to calibrate the two material models and the list
of the input parameters are presented in Section 3. The initial
analyses are performed with a nonlocal radius of R¼ 0:01, which is
considerably larger than the one determined experimentally for a
different type of concrete in [31]. However, smaller values of R
would require smaller mesh sizes to ensure that there are enough
material points within the interaction domain for the calculation
of the nonlocal averages, which would increase the computational
time for the present implementation of the constitutive law so
much that the mesh dependence study performed here would not
be possible. It is emphasised that the computational time required
could be reduced by parallel computations. Symmetry was taken
into account in the material models by modifying the material
properties of the points lying close to the symmetry line. In the
crack-band approach the fracture energy was assumed to be half of
the calibrated value, as proposed by Jirásek and Bauer [18],
whereas in the nonlocal approach symmetric local state variable
fields were assumed on the other side of the symmetry line. Steel
plates were modelled to be linear elastic with Young's modulus
E¼200 GPa and Poisson's ratio ν¼ 0:3. The same constitutive law
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was applied to describe the response of the longitudinal reinfor-
cement, which was modelled explicitly by truss elements. Perfect
bond was assumed between steel and concrete for both the non-
local and crack band analyses in order to simplify the computa-
tional problem. This is an idealisation of the interaction of rein-
forcement and concrete, which might influence the predicted
crack patterns and load-displacement curves. However, the pre-
sent paper focuses mainly on the mesh dependence of the non-
local concrete material model. Furthermore, in Jendele and Cer-
venka [17], it was shown that the adoption of an elaborate bond
model might lead to numerical stability issues and does not
influence the results significantly, if a fine enough mesh has been
used, which is the case in the present simulations. Nevertheless,
the influence of bond-slip on the fracture should be investigated in
future studies.

Coarse, medium and fine meshes with element sizes h¼0.02,
0.01 and 0.005 m, respectively, were used to study any possible
mesh dependence. The corresponding load–displacement curves
are shown in Fig. 11. Furthermore, the evolution of the failure
process is illustrated in Figs. 12 and 13 using contour plots of the
maximum tensile principal strain ε1 for the medium mesh for
loading steps marked in Fig. 11, as well as contour plots of tensile
damage and first principal plastic strain. In addition, the influence
of the mesh size on the crack patterns is shown in Fig. 14. The
overall failure process observed in the experiments is well repro-
duced by both models. At early loading stages, vertical failure zones
appear in the region of high moment that correspond to the
experimentally observed bending cracks (Fig. 12). At about 75% of
the peak load, diagonal failure zones develop close to the reinfor-
cement and propagate towards the support and the load application
point, which is in accordance with the shear band observed in the
original experiments. The failure patterns observed in the model is
f reinforced concrete with nonlocal and crack band approaches
016), http://dx.doi.org/10.1016/j.finel.2016.04.002i
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a

b

Fig. 9. (a) Geometry and setup, and (b) experimental crack patterns of the reinforced concrete beam [21].

Fig. 10. Analysed mesh sizes: (a) coarse mesh, (b) medium mesh, and (c) fine mesh.
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also in agreement with the experimental ones (Fig. 9) and obser-
vations reported for similar experimental campaigns [3,30]. How-
ever, the inclination of the main crack in the simulations (ca. 45°) is
steeper than in the experiments in Fig. 9 (ca. 30°). This difference
might be due to the modelling the beam in plane strain and
assuming perfect bond between reinforcement and concrete. The
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
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load–displacement curves in Fig. 11 are in reasonable agreement
with the experimental results. The initial stiffness is overestimated
by both approaches. Again, this could be attributed to the use of the
plane strain assumption. However, it is more likely that Young's
modulus determined using the CEB-FIP Model Code 2010 over-
estimates the one in the experiments. In both approaches, the
f reinforced concrete with nonlocal and crack band approaches
016), http://dx.doi.org/10.1016/j.finel.2016.04.002i
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Fig. 11. Load–deflection curve for the reinforced concrete beam [21] analysed for three different meshes with the (a) nonlocal and (b) crack band approach. Deflection is
measured at the lowest point at the midspan of the beam.

Fig. 12. Evolution of the contour plot of the maximum tensile principal strain ε1 of the shear beam [21] for the medium mesh at the three loading stages marked in Fig. 11.
Light grey colour corresponds to values of ε1o0 whereas black colour corresponds to values of ε1410�3.
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tensile damage and the plasticity part are important to describe this
failure mode. Moreover, both constitutive models are not influenced
by the mesh size for low load levels. However, nearer to the peak,
the two approaches perform differently. For the nonlocal approach,
an almost mesh independent response up to the peak is observed
(Fig. 11(a)). The response for the coarse mesh differs very slightly,
which is explained by studying the strain contour plots for this
mesh in Fig. 14. This shows that the mesh is so coarse that only very
few integration points are located within the zone considered for
the nonlocal averaging. Therefore, a less accurate description of the
constitutive response is obtained. Nevertheless, the difference
between the results for the three meshes is still very small. On the
other hand, the use of the crack-band approach results in mesh
dependent peak loads and post-peak responses. There is no clear
trend visible in respect of mesh size, as the lowest and highest load
capacities are obtained with the coarse and medium mesh,
respectively, bracketing the peak of the fine mesh. The mesh
dependence for the crack-band approach is also illustrated in Fig. 14,
where the contours of ε1 at the loading stage 3, marked in Fig. 11(b),
are shown. The smaller the mesh size is, the larger is the number
and the width of the final failure zones and the smaller is their
width. This difference in the final crack patterns is the main reason
why the load–displacement curves are not converging for
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
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decreasing mesh size. The mesh arrangement does not influence
the orientation of the final failure zones.

All nonlocal analyses underestimate the peak load, which may
be attributed to the selected interaction radius R. However, no
attempt was made to adjust the input parameters to obtain a
better fit, as the focus was to investigate the influence of mesh size
on the model response. Nevertheless, it is illustrative to investigate
the influence of R to highlight the fundamental differences in
representing the failure zones in crack band and nonlocal
approaches. Therefore, an additional analysis for the fine mesh
with a smaller radius of R¼0.005 m was performed. All model
parameters except for εft were the same as the ones applied for
R¼0.01 m. The damage parameter εft was determined from the
calibration procedure shown in Section 3 and was equal to
0.00179. The effect of R on the load–displacement curves is shown
in Fig. 15. Furthermore, the contour plot of ε1 is presented in Fig. 16
for loading stage 3 marked in Fig. 15. The interaction radius R has a
strong influence on the results. With R¼0.005 m a higher load
capacity was obtained, and more and narrower failure zones were
observed in the analyses than for R¼0.01 m. As it happens, the
predicted peak load for this parameter set is in better agreement
with the experimental one (Fig. 15) than for R¼0.01 m. For the
same increase of the beam deflection, a larger decrease of the
f reinforced concrete with nonlocal and crack band approaches
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Fig. 13. Contour plots of the (a), (b) tensile damage variable ωt and (c), (d) the first principal plastic strain εp1 for the medium mesh at loading stage 3 marked in Fig. 11. Light
grey colour corresponds to values of ωt and εp1 equal to 0 whereas black colour corresponds to values of ωt ¼ 1 and εp140:005.
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Fig. 14. Contour plots of the maximum tensile principal strain ε1 of the shear beam [21] for all mesh sizes at loading stage 3, marked in Fig. 11. Light grey colour corresponds
to values of ε1o0 whereas black colour corresponds to values of ε1410�3.
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applied load is observed for R¼0.01 m than for R¼0.005 m, which
is not in accordance with similar studies performed for experi-
mental setups where a single localisation zone is observed [7].
However, multiple failure zones form in this experiment and
therefore the arrangement of the failure zones predicted for a
certain value of R results in different loading histories of the
material points and in different global load–displacement curves.
It is also noted that no attempt was made to fit R to match the
load–displacement curve. The interaction radius R in the nonlocal
approach has a similar influence as the mesh size in the crack-
band approach. The main difference between the two approaches
is that R is a material parameter, which is independent of the mesh
size. Consequently, in nonlocal models crack spacing is, among
others, influenced by the choice of the material parameter R,
whereas in crack band approaches it depends on the numerical
discretisation.
the fine mesh with the nonlocal model with different R. Deflection is measured at
the lowest point of the midspan of the beam.
6. Conclusions

The damage-plasticity constitutive law CDPM2, originally pre-
sented in Grassl et al. [16], was extended according to the nonlocal
and crack-band theory. Both material models were applied to
model two plain concrete tests in the form of a one-dimensional
bar subjected to direct tension and an unnotched three point
bending test. Furthermore, a reinforced concrete beam subjected
to four point bending was analysed. For the one-dimensional bar,
Please cite this article as: D. Xenos, P. Grassl, Modelling the failure o
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both models produce mesh independent load–displacement
curves. The nonlocal model provides mesh independent strain
profiles, whereas for the crack band model, the strain profiles
representing the crack depend on the element size. For the beams,
the use of the nonlocal model results in mesh independent load–
displacement curves and strain crack patterns as long as the mesh
size is small enough to ensure that there are enough material
points contributing to the nonlocal averaging of the history
f reinforced concrete with nonlocal and crack band approaches
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Fig. 16. Contour plots of the maximum tensile principal strain ε1 of the shear beam [21] at loading stage 3, marked in Fig. 15, for the fine mesh analysed with the nonlocal
approach for (a) R¼0.01 m and (b) R¼0.005 m. Light grey colour corresponds to values of ε1o0 whereas black colour corresponds to values of ε1410�3.
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variables. For the crack band approach, both the load–displace-
ment curves and the crack patterns are mesh dependent.
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