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Abstract

Three-dimensional (3D) numerical simulations are carried out to study steady

state free convection in a sloping porous enclosure heated from below. The

model is based on Darcy’s law and the Boussinesq approximation. Two different

approaches to solve this problem are compared: primitive variables and vector

potential. Although both numerical models lead to equivalent results in terms of

the Nusselt number and convective modes, the vector potential model proved to

be less mesh-dependent and also a faster algorithm. A parametric study of the

problem considering Rayleigh number, slope angle and aspect ratio showed that

convective modes with irregular 3D geometries can develop in a wide variety

of situations, including horizontal porous enclosure at relatively low Rayleigh

numbers. The convective modes that have been described in previous 2D studies

(multicellular and single cell) are also present in the 3D case. Nonetheless the

results presented here show that the transition between these convective modes

follows an irregular 3D geometry characterized by the interaction of transverse

and longitudinal coils.
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Nomenclature1

α Slope angle2

β Thermal expansion coefficient3

ψ Vector potential4

u Dimensionless velocity5

κ Thermal diffusivity6

µ Viscosity7

Ω Surface boundary8

ρ0 Density of reference9

θ Dimensionless temperature10

B Characteristic length11

D Aspect ratio12

g Gravitational constant13

k Permeability14

L∞ Norm infinite15

Nu Nusselt number16

P Dimensionless pressure17

Ra Darcy-Rayleigh number18

Rac Critical Rayleigh number19

t Dimensionless time20

x, y, z Dimensionless coordinates21
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1. Introduction22

The problem of free convection in porous media has been of great interest23

in research due to the widespread presence of this mode of heat transfer in24

both nature and engineering processes. Geothermal energy and ground water25

modelling are examples of the application fields of this topic. The problem of a26

porous enclosure heated from below has been of particular interest for the study27

of heat transfer rate and steady state convective modes under different para-28

metric conditions. The aim of this paper is to present steady state solutions of29

free convection in sloping porous enclosures for a range of governing parameters30

(aspect ratio, slope angle and Rayleigh number) as well as discussing the 3D31

convective modes present in the parameter space. The steady convection is ob-32

tained from the solution of the transient governing equations for long simulation33

time.34

Fundamental aspects of this problem are given by the solution of the Horton-35

Rogers-Lapwood problem [1]. The solution to this problem establishes the con-36

ditions for the onset of convection in a horizontal porous layer heated from37

below. The early works by Horton and Rogers [2] and Lapwood [3] determined38

a critical Rayleigh number (Rac = 4π2) for the onset of convection in such a39

system. Elder [4] presented one of the first numerical and experimental studies40

of steady state convection in a two-dimensional (2D) porous enclosure. He de-41

scribed the steady state cellular motion of the fluid, incorporating edge-effects42

of the porous cavity. Bories and Combarnous [5] extended the analysis to a43

sloping porous enclosure in 3D following an experimental and theoretical ap-44

proach. They observed three different kinds of convective regimes, dependent45

on the model parameters: polyhedral cells similar to the Benard-Rayleigh cells46

for small slope angles (∼ 15◦), longitudinal coils (with axis parallel to the longest47

side of the box) and unicellular flow (which is a 2D velocity distribution) for48

nearly vertical positions. Regarding the possible convective modes in a horizon-49

tal porous enclosure, Holst and Aziz [6] presented one of the earliest numerical50

models to study this problem in 3D. Considering a set of aspect ratios of a51
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horizontal porous enclosure they determined the possible convective modes for52

several Rayleigh numbers. They pointed out that as the 2D motion always satis-53

fies the governing equations, when 3D steady state is possible, then the problem54

is characterized by a multiplicity of solutions. In a later 3D study by Schubert55

and Straus [7] the Rayleigh numbers at which 2D and 3D solutions can be steady56

were examined for the case of a cubic porous enclosure. Horne [8] emphasized57

that steady flows do not necessarily maximize the energy transfer. When mul-58

tiple solutions are possible, these early studies agree on the dependence of the59

resulting steady flow on the initial conditions of the problem. Caltagirone and60

Bories [9] presented a theoretical and numerical study for a sloping porous box,61

their results were consistent with the experimental results by Bories and Com-62

barnous [5]. However they also predicted convective regimes characterized by63

the interaction of longitudinal coils and transverse rolls. More recent research64

has been carried out by Barletta and Storesletten [10] to study the stability of65

transverse and longitudinal convective rolls in an inclined porous channel. These66

authors described the discontinuous nature of the critical Rayleigh numbers as67

a function of the inclination angle.68

Likewise several studies have been carried out in the past to study this prob-69

lem in 2D. Moya et al. [11] analyzed steady state convection in tilted square and70

rectangular cavities and the transition between multicellular convective pattern71

and single cell as the slope angle and Rayleigh-Darcy number were varied, as72

well as the existence of multiplicity of steady state solutions. Báez and Nicolás73

[12] studied a wider range of tilt angles and higher Rayleigh numbers as well74

as several aspect ratios of the porous cavity. They analyzed how the transition75

angle between single cell and multiple cell is affected by the Rayleigh number.76

This problem has been further extended to the analysis of entropy generation77

[13] and also, more recently, to turbulence [14] and non-Darcian effects [15]. Al-78

though these recent studies explore new aspects of the physics of the problem,79

3D modelling is an important complementary analysis to identify their range of80

validity. The aim of this work is to illustrate the complexity of the convective81

modes that can be present in 3D porous enclosures even at low Rayleigh num-82
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bers, and to highlight the importance of 3D modelling for a better understanding83

of this problem in real three-dimensional systems.84

2. Problem formulation85
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Figure 1: Schematic model of a sloping porous enclosure heated from below and cooled from

the top with adiabatic lateral boundaries.

The problem consists of a rectangular porous cavity, tilted at an angle α86

with respect to the horizontal axis (Figure 1). The porous medium is assumed87

to be homogeneous and fully saturated. The problem was stated assuming88

local thermal equilibrium. Fluid flow is described by Darcy’s law and buoyancy89

effects by the Boussinesq approximation. Viscous heat generation is assumed90

negligible. From these considerations the momentum equation can be stated as91

follows (the bar notation denotes dimensional variables and operators):92

ū = −k
µ

(
∇̄P̄ − ρ0gβ(T̄ − T̄0)e

)
(1)

Where k, µ, ρ0, β, and g are permeability, viscosity, density of reference,93

thermal expansion coefficient and gravitational constant, respectively. Likewise94

e = (sinα, 0, cosα) gives account of the components of the gravity in the system.95

The energy equation is as follows96

∂T̄

∂t̄
+ ū · ∇̄T̄ = ∇̄ · (κ∇̄T̄ ) (2)

Where κ is the thermal diffusivity. The condition of incompressibility of the97

fluid is also invoked:98
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∇̄ · ū = 0 (3)

Dimensionless variables are defined as follows:

x =
x̄

B
y =

ȳ

B
z =

z̄

B
P =

k

µκ
P̄

u =
B

κ
(ū, v̄, w̄) θ =

T̄ − T̄0

T̄0 − T̄c
t =

t̄κ

B2

Ra =
Bkgβρ0

κµ
(T̄0 − T̄c)

Where Ra is the Darcy-Rayleigh number and B the characteristic length.99

The dimensionless equations are then as follows, energy equation:100

∂θ

∂t
−∇2θ + u · ∇θ = 0 (4)

The dimensionless momentum equation is as follows:101

u +∇P = Raθe (5)

The domain is given by 0 ≤ x ≤ D, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, with D = C/B,

the aspect ratio. Additionally, a global Nusselt number is defined to quantify

the heat transfer through the upper surface z = 1:

Nu =

∫ ∣∣∣∣∂θ∂z
∣∣∣∣
z=1

dA (6)

2.1. Boundary conditions and initial conditions102

It is assumed that the system rests at mechanical and thermal equilibrium as103

the initial condition. Additionally, the initial dimensionless temperature is set to104

zero. Assuming that the lateral walls of the cavity are adiabatic (x = 0, x = D,105

y = 0, y = 1) and the bottom and top boundaries have specified temperatures,106

the boundary conditions for the energy equation can be written as107

∂θ

∂x
= 0, for x = 0 and x = D
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∂θ

∂y
= 0, for y = 0 and y = 1

θ = 1, for z = 0 and θ = 0, for z = 1 for t > 0

Regarding the momentum equation impermeable boundary conditions are108

assumed. The implementation of these boundary conditions is described in the109

following section.110

3. Numerical solution111

There are two numerical approaches to solve the problem given above: prim-112

itive variables and vector potential. The vector potential approach has been113

historically preferred [6, 8, 16, 17], since it has proven to be a faster computa-114

tional algorithm. A comparison of these two methods has not been presented115

before however.116

3.0.1. Primitive variables approach117

Taking the divergence of Equation 5 and considering the incompressibility118

condition, a Poisson equation for the pressure is obtained119

∇2P = Ra

(
∂θ

∂x
sinα+

∂θ

∂z
cosα

)
, (7)

Neumann boundary conditions for this Poisson equation are obtained from120

the momentum equation (Eq. 5). To obtain this Neumann condition let us121

define the boundary of the enclosure as a surface Ω . Then the pressure gradient122

normal to the surface must satisfy the following condition [18].123

∂P

∂n

∣∣∣
Ω

= n · (Raθe− u)|Ω (8)

The normal component of the velocity is zero in this boundary condition.124

No restriction is required, however, regarding the tangential velocity (further125

details of this approach can be referred to Orszag et al. [19] and Karniadakis126

et al. [20]). This boundary condition ensures mass conservation and leads to127
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a non-iterative solution algorithm for the problem given by Equations 4 and 7128

with the corresponding boundary and initial conditions. The algorithm con-129

sists of a three-step procedure per each time step: 1) the energy equation is130

solved to obtain the temperature field; 2) the Poisson equation is solved; 3)131

Finally, the velocity field is obtained from Equation 5, for which a second order132

approximation is applied to calculate the pressure gradient.133

The mathematical problem was discretized using the finite volume numerical134

method [21]. A first order fully implicit scheme was used for temporal discretiza-135

tion which is unconditionally stable. Likewise a central differencing scheme was136

applied to approximate the convective term in the energy equation.137

3.0.2. Vector potential138

In the vector potential approach, pressure is eliminated from the momentum139

equation (Equation 5) by taking the curl. Additionally it is assumed that there140

exists a solenoidal vector potential, ψ, such that u = ∇× ψ. So that the curl141

of Equation 5 leads to:142

∇× (∇×ψ) = Ra∇× θe (9)

And owing to the solenoidal property of ψ, it can be simplified as143

∇2ψ = −Ra∇× θe (10)

The components of this equation are the following:144


∇2ψ1 = −Ra ∂θ∂y cosα

∇2ψ2 = Ra
(
∂θ
∂x cosα− ∂θ

∂z sinα
)

∇2ψ3 = Ra ∂θ∂y sinα.

(11)

The corresponding boundary conditions are:

∂ψ1

∂x
= ψ2 = ψ3 = 0, for x = 0 and x = D

∂ψ2

∂y
= ψ1 = ψ3 = 0, for y = 0 and y = 1
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∂ψ3

∂z
= ψ1 = ψ2 = 0, for z = 0 and z = 1

The problem given by Equations 4 and 11 and their boundary conditions145

was also discretized using Finite Volume. This approach requires an iterative146

solution for each time step for which a fixed point method was implemented. A147

central differencing scheme was also applied for the convective term of the energy148

equation and a first-order fully implicit scheme was used for the temporal term.149

Both algorithms were implemented in Fortran 90 and a Tri-Diagonal Matrix150

Algorithm (TDMA) with alternating sweep directions was used for the solution151

of the resulting system of algebraic equations.152

As regards the determination of the steady state, it was defined evaluating153

the convergence of the temperature matrix. The norm infinite of the difference154

L∞ = |θt − θt−1|∞ was calculated for successive time steps over a long time155

interval that proved to be long enough after several tests (tint = 4.4). The156

convergence criterion was defined according to the condition 〈L∞〉tint < 5 ×157

10−7, where 〈L∞〉tint
is the average norm infinite over the time interval tint.158

4. Numerical results and discussion159

4.1. Validation: cubic porous enclosure160

The numerical models were validated considering a horizontal cubic cavity161

(D = 1 and α = 0). The models were tested just above the critical Rayleigh162

number (Rac = 39.48); for this particular test no convergence criterion was163

used. Instead, a long simulation time was applied (t = 60) until significant164

evidence of convection was detected. Table 1 shows the steady state Nusselt165

number, both models presented convection at Ra = 41 using a coarse mesh166

composed of n = 253 elements. With a finer mesh however (n = 503 elements)167

the primitive variables model remained conductive (Nu ' 1).168

The steady state Nusselt number was more consistent between the two mod-169

els when higher Rayleigh numbers were examined. Table 1 shows that identical170

results were obtained with both models. However, the evolution towards the171

steady state was different. As shown in Figure 2, primitive variables reaches172
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Table 1: Nusselt number for a cubic porous enclosure considering two mesh sizes.

Nu

Mesh elements Ra Primitive variables Vector potential

n = 253 40 0.999 0.999

41 1.070 1.058

n = 503 40 1.000 1.000

41 1.000 1.061

n = 253 60 1.773 1.773

120 2.934 2.934

n = 503 60 1.778 1.778

120 2.945 2.945

the steady state sooner than vector potential. Additionally, primitive variables173

displayed a higher dependency on the mesh size, whereas the evolution of the174

Nusselt number in vector potential can be considered mesh-independent. The175

steady state convective mode in these cases was characterized by a single 2D176

convective cell.177

As regards the time step of these simulations, the optimum time step for the178

primitive variables model using fine mesh was smaller (10 times) than the other179

cases studied. The fine mesh primitive variables model required ∆t = 2× 10−5
180

to generate numerically stable results, whereas a time step ∆t = 2 × 10−4 was181
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Figure 2: Nusselt number as a function of time for primitive variables and vector potential
models using two different mesh sizes (n = 253 and n = 503).
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suitable in the other cases.182
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Figure 3: Steady state Nusselt number vs slope angle for an aspect ratio D=3.

Although the models proved a good match with the steady state results for183

moderate Rayleigh numbers, we opted for the vector potential algorithm for184

further 3D modelling on the basis that the primitive variables approach is more185

sensitive to the mesh size and demands a longer computing time when dealing186

with fine meshes, since the time step required is an order of magnitude smaller.187

Ra=60, !=0º

Figure 4: Longitudinal coil characteristic of α = 0 and D = 3 with Ra ≤ 60.
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4.2. Sloping porous enclosure with aspect ratio D = 3188

Figure 3 shows the global Nusselt number as a function of the slope angle for189

a set of Rayleigh numbers, with an aspect ratio D = 3. Regarding the horizontal190

case (α = 0), three different convective regimes were observed: a longitudinal191

coil (Figure 4) for moderate Rayleigh numbers (Ra ≤ 60), transverse rolls for192

Ra ≥ 63 (Figure 5), and the transition between these convective modes for193

Ra = 61 to 62. The transverse rolls regime was characterized either by three or194

four cells depending on Ra, three cells were observed up to Ra = 65 and four195

cells for higher Ra. The transition between longitudinal coil and transverse196

rolls for the horizontal box is characterized by an interaction of these convective197

modes as shown in Figure 6. For this particular case the simulation time required198

to reach the steady state was tss = 9.1. An additional simulation was carried199

out for further confirmation of this result using a long simulation time (t = 60)200

without a convergence criterion. The result was the same with a negligible201

difference in the Nusselt number (∼ 0.02%), this supports the selection of the202

convergence criterion used to define the steady convection of the system.203

As regards the sloping porous enclosure (α 6= 0), a local maximum can be204

identified at α = 10◦ (Figure 3), which is absolute for Ra = 80 and higher.205

Ra=63, !=0º

Figure 5: Transverse rolls convective mode for D = 3 and α = 0. As presented in Table 2, up
to 4 cells were observed at higher Rayleigh numbers.
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Ra=62, !=0º

Figure 6: Convective mode characteristic of the transition between the longitudinal coil and
transverse rolls for D = 3 and α = 0.

At this angle the convective flow is characterized by three transverse rolls for206

every Rayleigh number from 50 to 100 (Figure 7). A summary of results is pre-207

sented in Table 2. As the angle is increased there is a transition to a single cell208

regime. Initially, at α = 20◦, all the cases analyzed undergo a complex 3D ve-209

locity distribution (Figure 8) characterized by the interaction of two transverse210

rolls with a longitudinal coil located in the centre of the box. This convective211

Ra=100, !=10º

Figure 7: transverse rolls convective mode for D = 3, Ra = 100, and α = 10◦. This convective
mode provides the maximum heat transfer rate (Nu = 8.344) for the parameters considered
(Figure 3).
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Ra=100, !=20º

Figure 8: 3D velocity field distribution characteristic of the transition between transverse rolls
and single cell convective modes for an aspect ratio D = 3.

mode is accompanied by a decrease in the Nusselt number and is consistent212

with the observations by Caltagirone and Bories [9] who reported an interaction213

of transverse and longitudinal coils for relatively small slope angles. When the214

angle is further increased, the convective regime reaches a 2D velocity distribu-215

tion composed of an external cell with two internal secondary cells (Figure 9).216

This flow regime has been described in previous 2D studies [12], however, the217

Ra=70, !=30º

Figure 9: 2D convective mode characteristic of the transition to single-cell convection. The
minimum Nusselt number was associated with this convective mode for Ra = 60 and higher.
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Table 2: Convective modes and transition angles for selected cases.

D Ra α Convective mode Nu tss

3 50 0 longitudinal coil 4.345 9.06

1 3 transverse rolls 4.399 5.29

17 transverse rolls with a longitudinal coil 4.507 13.11

22 external cell with 2 internal secondary cells 4.392 5.16

100 0 4 transverse rolls 7.936 8.02

1 5 transverse rolls 7.438 5.39

6 3 transverse rolls 8.194 19.73

11 transverse rolls with a longitudinal coil 8.090 14.51

32 external cell with 2 internal secondary cells 6.871 4.86

5 50 0 longitudinal coil 7.242 9.03

1 5 transverse rolls 7.295 6.04

14 transverse rolls with a longitudinal coil 7.264 15.32

30 external cell with 2 internal secondary cells 6.600 5.09

100 0 7 transverse rolls 13.119 12.93

9 partial rotation of transverse rolls 12.905 19.92

11 transverse rolls with a longitudinal coil 13.263 11.09

50 single cell 9.846 4.88

10 50 0 transverse rolls with a longitudinal coil 14.336 11.89

1 11 transverse rolls 14.379 8.50

10 transverse rolls with a longitudinal coil 14.353 30.76

30 external cell with 2 internal secondary cells 11.602 4.62

100 0 14 transverse rolls 26.196 32.78

1 15 transverse rolls 25.775 8.62

7 13 transverse rolls 26.656 14.45

10 partial rotation of transverse rolls 25.493 22.34

14 transverse rolls with a longitudinal coil 26.092 15.46

3D modelling presented here shows that the transition to this convective mode218

occurs for a higher α, due to the complex 3D convective mode that is preceding219

(α = 20◦). Finally, at α = 50◦ the convective modes become single cell (Figure220

10) with a maximum Nusselt located at α = 70◦.221

4.3. High aspect ratio porous enclosures D = 5 and D = 10222

The parametric study for the aspect ratios D = 5 and 10 is shown in Figures223

11 and 12, respectively. These figures show that the difference in the Nusselt224

number at small and large angles increases with the aspect ratio. This is due to225

the fact that a larger number of convective cells can be hosted in the transverse226

rolls regime characteristic of small slope angles, the multiplication of up-flow and227
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Ra=100, !=70º

Figure 10: Single cell convective mode for D = 3 characteristic of high slope angles.

down-flow zones enhances the heat transfer rate throughout the cavity. Firstly,228

let us discuss the horizontal case (α = 0) for D = 5. A longitudinal coil was229

observed at this aspect ratio for Ra ≤ 62 (Figure 13), which is characterized by230

a high up-flow and down-flow areas in comparison with the single cell regime231

typical of high α; for this reason the Nusselt number turns out to be higher232

even for moderate Ra (see for instance Ra = 60, Figure 11). The transition to233

transverse rolls in the horizontal case starts at Ra = 63 with an interaction of a234

longitudinal coil and transverse rolls. Unlike D = 3 this convective mode proved235
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Figure 11: Steady state Nusselt number vs slope angle for an aspect ratio D = 5.
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Figure 12: Steady state Nusselt number vs slope angle for an aspect ratio D = 10.

to be steady for a wider range of Rayleigh numbers, Ra = 70 was characterized236

by the same convective mode and transverse rolls were only observed at Ra = 80237

and higher (Figure 13). On the other hand, as regards the horizontal case for the238

Ra=62, !=0º

Ra=70, !=0º

Ra=100, !=0º

Figure 13: Convective modes characteristic of a horizontal porous enclosure with D = 5. As
the Rayleigh number is increased the longitudinal coil regime becomes multicellular.
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Ra=50, !=0º

Ra=90, !=0º

Ra=100, !=0º

Figure 14: Convective modes characteristic of a horizontal porous enclosure with D = 10.
A purely longitudinal coil was not attained for this aspect ratio for the Rayleigh numbers
considered.

aspect ratio D = 10, the steady state was characterized either by the interaction239

of longitudinal coil and transverse rolls or by a fully transverse rolls regime240

(Figure 14). Similar arguments apply to explain the high Nusselt number of241

these cases.242

Considering the sloping case for D = 5 at Ra = 50, three transition angles243

were identified: α = 1◦, α = 14◦, and α = 30◦ (Figure 15, Table 2). The244

transition in the convective mode was characterized by a gentle variation in245

the Nusselt number with the maximum at α = 80◦ (Nu=7.493) (Figure 11) in246

response to the low Rayleigh number of the system. At Ra = 100, on the other247

hand, the maximum Nusselt number corresponds to α = 0 (Nu=13.119), which248

is transverse rolls convection. The transition to single-cell convection starts at249

α = 9◦, with a partial rotation of the cells located in the centre of the cavity250

(Figure 16-upper), this rotation leads to the coalescence of these cells giving rise251

to a longitudinal coil that interacts with transverse rolls (α = 11◦). Single-cell252

convection is finally attained at α = 50◦ after a steep decrease in the Nusselt253

number.254

Similarly, three transition angles were identified for D = 10 and Ra = 50:255
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Ra=50, !=14º

Ra=50, !=30º

Figure 15: Steady state convective modes for D = 5 and Ra = 50. α = 14◦ and α = 30◦

represent transition angles (Table 2).

Ra=100, !=9º

Ra=100, !=11º

Figure 16: Steady state convective modes for D = 5 and Ra = 100. α = 9◦ and α = 11◦ are
transition angles for Ra = 100 (Table 2).
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Ra=50, !=10º

Ra=50, !=30º

Ra=50, !=1º

Figure 17: Steady state convective modes for D = 10 and Ra = 50 at the transition angles
(Table 2).

Ra=50, !=1ºRa=100, !=1º

Ra=100, !=10º

Ra=100, !=14º

Figure 18: Steady state convective modes for D = 10 and Ra = 100 at the transition angles
(Table 2).
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α = 1◦, α = 10◦, and α = 30◦, that correspond to transverse rolls, mixed256

transverse rolls with a longitudinal coil, and single cell with secondary cells,257

respectively (Figure 17). At Ra = 100 the convective mode remains multicellu-258

lar until α = 10◦ (Figure 18). At this angle the transition to single cell starts259

in the same manner as D = 5, the innermost cells coalesce to give rise to a260

longitudinal coil that interacts with two remaining 2D rolls. For the space of261

parameters analyzed, the steady state velocity field is no longer two-dimensional262

until α = 70◦ where the flow is single cell.263

5. Conclusion264

Three dimensional numerical simulations were carried out for the study of265

free convention in sloping porous enclosures. Two different approaches to solve266

the problem were compared: primitive variables and vector potential. In gen-267

eral terms, both models are suitable to study this problem. However, some268

limitations were identified in the primitive variables approach. Regarding the269

sensitivity of the model to the critical Rayleigh number for the onset of convec-270

tion, it appeared that both models were equally sensitive to the Rac when using271

coarse meshes. When fine meshes were used however, the primitive variables272

model remained mainly conductive for Ra = 41, which is above the critical limit,273

whereas the vector potential solution was clearly convective. Furthermore, the274

time step required by primitive variables with a fine mesh was considerably275

smaller than the time step needed for vector potential, which results in a longer276

computing time for equivalent simulations. It was also observed that the primi-277

tive variables model produced mesh-dependent results, whereas vector potential278

was mesh independent.279

A parametric study for moderate Rayleigh numbers (between 50 and 100)280

in a sloping porous enclosure permitted us to identify steady state convective281

modes overlooked by 2D analysis, such as longitudinal coils in the horizontal282

case and mixed longitudinal coils with transverse rolls, which was observed at283

Rayleigh numbers as low as 50. A purely longitudinal coil flow was observed284
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only in the horizontal porous enclosure for low Ra and moderately high aspect285

ratios, D = 3 and D = 5. This convective flow was steady in both cases up to286

a Rayleigh number Ra ∼ 62, above which occurs a transition to a multicellular287

regime. The stability of this solution is however affected for higher aspect ratios,288

since D = 10 did not attain a purely longitudinal coil regime. Regarding the case289

of the sloping enclosure, there is a general tendency to maximize the heat flux290

with the transverse rolls regime due to the multiplication of up-flow and down-291

flow regions. For low D and Ra however, the Nusselt number associated with292

the single cell regime, characteristic of high slope angles, can be comparable or293

higher. On the other hand, the transition between transverse rolls and single cell294

convective modes was characterized by a mixed multicellular and longitudinal295

coil convective flow accompanied by a decrease in the Nusselt number. There is296

an angle at which transverse rolls are no longer steady. AtRa = 50 the transition297

angle was clearly dependent on the aspect ratio: α = 17◦, α = 13◦, and α = 9◦298

were the transition angles for D = 3, D = 5, and D = 10, respectively. For299

Ra = 100 however, that dependency is no longer present, being the transition300

angle between 9 and 11 for the three aspect ratios analyzed. A more detailed301

study of the parameter space would be necessary to describe more accurately302

the transition between the different convective modes observed, for which faster303

simulations would be convenient. As a final remark, the results show that304

convective modes in 3D can be of considerable complexity, which impacts not305

only on the heat transfer properties of the system but also on other aspects306

not covered so far in this study such as mass transport properties and entropy307

generation.308
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[18] E. Báez, A. Nicolás, From cat’s eyes to multiple disjoint natural convection360

flow in tall tilted cavities: A direct primitive variables approach, Physics361

Letters A 377 (2013) 2270–2274.362

[19] S. A. Orszag, M. Israeli, M. O. Deville, Boundary conditions for incom-363

pressible flows, Journal of Scientific Computing 1 (1986) 75–111.364

24



[20] G. E. Karniadakis, M. Israeli, S. A. Orszag, High-order splitting methods365

for the incompressible navier stokes equations, Journal of Computational366

Physics 97 (1991) 414–443.367

[21] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid368

Dynamics, The Finite Volume Method, Prentice Hall, 1995.369

25


