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The glycosaminoglycan heparan sulfate (HS), present at the surface of most

cells and ubiquitous in extracellular matrix, binds many soluble extracellular

signalling molecules such as chemokines and growth factors, and regulates

their transport and effector functions. It is, however, unknown whether

upon binding HS these proteins can affect the long-range structure of HS.

To test this idea, we interrogated a supramolecular model system, in which

HS chains grafted to streptavidin-functionalized oligoethylene glycol mono-

layers or supported lipid bilayers mimic the HS-rich pericellular or

extracellular matrix, with the biophysical techniques quartz crystal micro-

balance (QCM-D) and fluorescence recovery after photobleaching (FRAP).

We were able to control and characterize the supramolecular presentation of

HS chains—their local density, orientation, conformation and lateral mobi-

lity—and their interaction with proteins. The chemokine CXCL12a (or SDF-

1a) rigidified the HS film, and this effect was due to protein-mediated cross-

linking of HS chains. Complementary measurements with CXCL12a mutants

and the CXCL12g isoform provided insight into the molecular mechanism

underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has

three HS binding sites, was also found to cross-link HS, but FGF-9, which has

just one binding site, did not. Based on these data, we propose that the ability

to cross-link HS is a generic feature of many cytokines and growth factors,

which depends on the architecture of their HS binding sites. The ability to

change matrix organization and physico-chemical properties (e.g. permeability

and rigidification) implies that the functions of cytokines and growth factors

may not simply be confined to the activation of cognate cellular receptors.
1. Background
Heparan sulfate (HS) is a linear polysaccharide made of variably sulfated repeat-

ing disaccharide units. Attached to extracellular matrix or cell-surface proteins (HS

proteoglycans, HSPGs), it pervades the intercellular space of many tissues and the

periphery of virtually all mammalian cells. HS binds many soluble extracellular

signalling molecules such as growth factors and chemokines, and these inter-

actions are known to be important for various physiological and pathological

processes [1–4] including organogenesis and growth control [5,6], cell adhesion
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[7] and signalling [8], inflammation [9], tumour development

[10] and interactions with pathogens [11].

Past studies have revealed how HS–protein interactions

determine protein function. For example, HS (as well as the

highly sulfated analog heparin) plays a role in the specificity

and control of the engagement of fibroblast growth factors

(FGFs) with their cell-surface receptors, through the formation

of stable ternary complexes [12], thus modulating cell signal-

ling. The binding of chemokines to HS in the extracellular

space, on the other hand, enables the formation of chemokine

gradients [13], thus providing directional cues and guiding

the migration of appropriate cells in the context of their

inflammatory, developmental and homeostatic functions.

By contrast, very little is known about the effect of signal-

ling proteins on HS and HSPGs. HS chains are typically a

few tens of nanometres in length [14] and, thus, possess mul-

tiple binding sites enabling simultaneous binding of several

proteins [15]. These interactions will influence the molecular

structure of individual HS chains. Moreover, they may also

profoundly affect the supramolecular organization of HS in

the extracellular space. Such long-range effects have hitherto

been difficult to test, because of the lack of appropriate

structural and biochemical methods.

Here, we demonstrate that several soluble extracellular

signalling proteins can effectively cross-link HS. To this end,

we developed an in vitro binding assay that is based on films

of surface-grafted HS chains, as a well-defined model of

HS-rich pericellular or extracellular matrix [7], and a combi-

nation of two biophysical analysis techniques: quartz crystal

microbalance (QCM-D) and fluorescence recovery after photo-

bleaching (FRAP). These techniques provide insight into the

binding of proteins to the HS film, and the concomitant

changes in film morphology and HS chain mobility. Through

the analysis of a set of proteins and their mutants—including

chemokines, cytokines and growth factors—with this assay,

we identify molecular features that determine the HS cross-

linking propensity of extracellular signalling proteins. The abil-

ity to cross-link, and thus to change matrix organization and

physico-chemical properties, implies that the functions of

these proteins may not simply be confined to the activa-

tion of cognate cellular receptors, and we discuss possible

physiological implications.
2. Material and methods
2.1. Buffer
The working buffer used for all measurements contained

10 mM HEPES (Fisher, Illkirch, France) at pH 7.4 and 150 mM

NaCl (Sigma-Aldrich, Saint-Quentin Fallavier, France).
2.2. Heparan sulfate and proteins
The HS polysaccharide derived from porcine intestinal mucosa

(Celsus Laboratories, Cincinnati, OH, USA) was found to have

an average molecular weight of 12 kDa and a polydispersity of

1.6 [16]. Size-uniform HS oligosaccharides from hexasaccharide

(degree of polymerization, dp6) to dodecasaccharide (dp12)

were derived from this source, as previously described [17].

HS was conjugated with biotin through an oligoethylene

glycol (OEG) linker of approximately 1 nm length, site-
specifically attached to the reducing end by oxime ligation. In

contrast to the conventionally used hydrazone ligation, oxime

ligation produces conjugates that are stable for many weeks

in aqueous solution [18]. HS conjugates were stored at a

concentration of 10 mg ml21 at 2208C until further use.

Recombinant CXCL12a (amino acids 1 to 68; 8.1 kDa) was

prepared as previously described [19]. A truncated CXCL12a

construct (amino acids 5 to 67; 7.4 kDa [20]) was produced

by solid-phase peptide synthesis, as previously reported

[4,15]. An I55C/L58C mutant of CXCL12a with reduced

dimerization propensity (‘partial monomer’) was prepared

as previously described [21]. An L36C/A65C mutant of

CXCL12a in which the introduced cysteines promote the for-

mation of dimers (‘locked dimer’) was prepared, as described

in Veldkamp et al. [22]. The cDNA of murine CXCL12g was

inserted in a pET-17b vector (Novagen, Merck Chemical Ltd.,

Nottingham, UK) between NdeI and SpeI restriction sites,

checked by DNA sequencing, and the protein (11.6 kDa) was

produced by recombinant expression in Escherichia coli strain

BL21 Star DE3, as previously reported [23]. Interferon (IFN)g

(17 kDa) was produced by recombinant expression in E. coli
strain BL21 Star DE3 using a pET-11a vector (Novagen), as pre-

viously reported [24]. Recombinant FGF-2 (18 kDa) and FGF-9

(26 kDa) were obtained by expression in C41 E. coli cells using

pET-14b and pET-M11 for vectors (Novagen), respectively, as

described by Xu et al. [25].

Lyophilized streptavidin (SAv), fluorescently labelled SAv

(fl-SAv; with atto565) and bovine serum albumin (BSA) were

obtained from Sigma-Aldrich. All proteins were stored in

working buffer at 2208C until further use. Thawed protein

solutions were used within 5 days.
2.3. Surfaces and surface funtionalization with a biotin-
displaying and otherwise inert background

QCM-D sensors with gold (QSX301) and silica (QSX303)

coatings (Biolin Scientific, Västra Frölunda, Sweden) were

used as is. Glass coverslips (24 � 24 mm2; Menzel-Gläser,

Braunschweig, Germany) for FRAP assays were cleaned by

immersion in freshly prepared piranha solution (i.e. a 1 : 3

(v/v) mixture of H2O2 (Fisher Scientific) and concentrated

H2SO4 (Sigma-Aldrich)) for 1 h, rinsing with ultrapure

water and blow-drying with N2. All substrates were exposed

to UV/ozone (Jelight Company, CA, USA) for 10 min prior

to use.

Gold surfaces were functionalized with biotin-displaying

monolayers of OEG as previously described [7]. Briefly, the

gold-coated surfaces were immersed overnight in an ethan-

olic solution of OEG disulfide and biotinylated OEG thiol

(Polypure, Oslo, Norway), at a total concentration of 1 mM

and a molar ratio of thiol equivalents of 999 : 1.

Silica (for QCM-D) and glass (for FRAP) surfaces were

functionalized with biotin-displaying supported lipid bilayers

(SLBs) by the method of vesicle spreading, as described in

detail elsewhere [26]. Briefly, the surfaces were exposed for

30 min to small unilamellar vesicles, made from a mixture

of dioleoylphosphatidylcholine (DOPC) and dioleoylphos-

phatidylethanolamine-CAP-biotin (DOPE-CAP-b) (Avanti

Polar Lipids, Alabaster, AL, USA) at the desired molar ratio

(99.5 : 0.5 or 95 : 5) at a total concentration of 50 mg ml21 in

working buffer supplemented with 2 mM CaCl2 (VWR

International, Leuven, Belgium).
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2.4. Assembly of HS films
Biotin-displaying surfaces were further functionalized for

studies of protein interactions with well-defined HS films,

as described in detail earlier [7]. Briefly, the surfaces were

first exposed to SAv, to form a SAv-monolayer, and then to

biotinylated HS (b-HS), to form a molecular film of HS that

is site-specifically attached through the reducing end to the

surface. This mode of attachment avoids any perturbation

of protein–HS interactions through chemical modifications

along the HS chain [27,28]. Sample concentrations and incu-

bation times were chosen such that binding either saturates

or equilibrates, unless otherwise stated.

2.5. Quartz crystal microbalance with dissipation
monitoring

Quartz crystal microbalance with dissipation monitoring

(QCM-D) measurements were performed, as previously

described [7]. QCM-D measures changes in frequency, Df,
and in dissipation, DD, of a quartz sensor upon interaction

of molecules with its surface. Measurements were performed

with a Q-Sense E4 system equipped with Flow Modules

(Biolin Scientific) with a flow rate of typically 10 ml min21

and at a working temperature of 248C. QCM-D data were

collected at six overtones (n ¼ 3, 5, 7, 9, 11, 13, corresponding

to resonance frequencies of approximately 15, 25, 35, 45,

55, 65 MHz). For the sake of simplicity, only changes in dis-

sipation and normalized frequency, Df ¼ Dfn/n, of the third

overtone (n ¼ 3) are presented. Any other overtone would

have provided comparable information.

Aviscoelastic model [29], implemented in the software QTM

(Diethelm Johannsmann, Clausthal University of Technology;

http://www2.pc.tu-clausthal.de/dj/software_en.shtml), was

used to quantify the thickness d and viscoelastic properties of

HS films from QCM-D data. Details of the fitting procedure

are described elsewhere [30]. We parametrized viscoelastic

properties in terms of the elastic and viscous compliances J0

and J00 at a reference frequency of f ¼ 15 MHz (i.e. close to

the resonance frequency at n ¼ 3). J0 and J00 are measures

for the softness of the film. The elastic compliance can also

be estimated directly from the QCM-D responses for the

film through the approximate relationship DD/(2Df ) ¼

4pnhlrl/r � J0, where hl ¼ 0.89 mPa.s and rl ¼ 1.0 g cm23 are

the viscosity and density of the aqueous bulk solution,

respectively, and r � 1.0 g cm23 is the film density [31].

2.6. Fluorescence recovery after photobleaching
For fluorescence recovery after photobleaching (FRAP) assays,

cleaned glass coverslips were attached, using a bi-component

glue (Picodent, Wipperfürth, Germany), to a custom-built

teflon holder, thus forming the bottom of four identical wells

with a volume of 50 ml each. All surface functionalization

steps were performed in still solution. To remove excess

sample after each incubation step, the content was diluted by

repeated addition of a twofold excess of working buffer and

removal of excess liquid until the concentration of the solubil-

ized sample, estimated from the extent of dilution, was below

10 ng ml21. Repeated aspiration and release ensured hom-

ogenization of the liquid volume at each dilution step. Care

was taken to keep the substrates wet at all times.
FRAP measurements were performed with a confocal

laser scanning microscope (LSM 700, Zeiss, Germany)

using a laser with 555 nm wavelength, a plan-apochromat

63�/1.4 oil immersion objective and a fully opened pinhole

(1 mm diameter). fl-SAv, attached to biotin-displaying SLBs,

was used as a fluorophore to report on the lateral mobility

of SAv-bound HS.

After acquiring three pre-bleach images, a circular region

with a radius of 10 mm in the centre of the imaged area was

bleached through exposure for approximately 20 s to high

laser intensity; approximately 80% bleaching in the centre

of the exposed area was achieved. The fluorescence recovery

due to lateral diffusion of bleached and unbleached fl-SAv

was monitored through acquisition of post-bleach images

over a period of typically 10 min.

The images acquired using this protocol were then analysed

by ‘time-resolved profile analysis’, a custom-made algorithm

[32] implemented in Matlab (MathWorks, MA, USA). Briefly,

each post-bleach fluorescence image was first corrected for

background fluorescence, spatial aberrations and intensity fluc-

tuations and then radially averaged. The radial intensity profiles

thus obtained were compared with numerical solutions of a dif-

fusion equation, where the first post-bleach image defined the

initial conditions for the diffusion process. A lateral diffusion

model with one mobile fraction and one immobile fraction

was found to reproduce our data well. This model has two inde-

pendent fitting parameters, namely the size and diffusion

constant of the mobile fraction. These were computed through

global minimization of the root-mean-square differences

between numerical predictions and all post-bleach profiles.
3. Results
We tested the effect of several extracellular signalling mol-

ecules on HS model matrices, namely the a and g isoforms

of the chemokine CXCL12, the cytokine IFNg and the

growth factors FGF-2 and FGF-9. These were selected based

on their known affinity for HS and distinct structural features

(figure 1). All proteins bind HS more strongly, or at least as

strongly, as other glycosaminoglycans (GAGs) such as chon-

droitin sulfate or dermatan sulfate [23,25,38–41], suggesting

that HS serves as their natural ligand in HS-rich extracellular

matrices. CXCL12a forms homodimers through the associ-

ation of b-sheets upon binding to HS, with the known HS

binding site being located at the interface between the two

monomers (figure 1a). CXCL12g is distinct from CXCL12a

in that it features flexible C-terminal extensions that are also

involved in HS binding, and that it is not known to form

b-sheet dimers (figure 1b). IFNg is constitutively present as

a homodimer which features a very extended HS binding sur-

face on the flexible C-termini of the monomers (figure 1c).

The FGFs are more compact. FGF-2 has three distinct HS

binding sites (figure 1d ) that are separated from each other

by borders of negatively charged and hydrophobic residues.

FGF-9, by contrast, features only one HS binding site

(figure 1e). As HS matrix model, we employed films of HS

chains grafted with the reducing end to a protein-repellant

surface (figure 2a). QCM-D allows monitoring of HS film

assembly and protein binding as well as analysis of film

thickness and mechanical properties (figure 2). FRAP

allows for the lateral mobility of HS chains to be probed

(figure 3).

http://www2.pc.tu-clausthal.de/dj/software_en.shtml
http://rsob.royalsocietypublishing.org/


IFNg CXCL12g 

CXCL12a

FGF-2   

180° 180°

FGF-9  

HS-binding amino acids (primary site) 

HS-binding amino acids (secondary sites) 

amino acids deleted in mutation

other amino acids (first monomer)

other amino acids (second monomer)

2 nm

N

N

CN

C C

C

N

C

N

(b)

(a)

(c)

(d ) (e)

Figure 1. Structures of soluble extracellular signalling proteins used in this study. Structures are surface plots, all drawn at the same scale (scale bar indicated
in (a)). Amino acids known to contribute to primary and secondary HS binding sites are shown in dark and light blue, respectively; the remaining protein surfaces
are coloured in grey, or in light brown for the second monomer in the structures of homodimers; the position of selected N or C terminals are marked with an arrow.
CXCL12a (a) is shown as a homodimer associated through b-sheets (PDB code: 1QG7, where missing residues were added as described in [17]) with its reported
HS-binding amino acids [15,17,33] and the first four amino acids, lacking in the CXCL12a(5 – 67) mutant, indicated (orange). CXCL12g (b) was constructed from a
CXCL12a monomer and the additional 30 amino acid long N-termini modelled as previously reported [23]. IFNg (c; PDB code: 1HIG [34]) is shown as a homodimer
with the C-termini (residues 120 – 143, absent in the structure) built as extended b-strands. FGF-2 (d; PDB code: 1FQ9 [35]) and FGF-9 (e; PDB code: 1IHK [36]) are
shown as monomers with their known HS binding sites, i.e. three sites for FGF-2 [37] and a single, extended site for FGF-9 [25].

rsob.royalsocietypublishing.org
Open

Biol.5:150046

4

 on March 9, 2016http://rsob.royalsocietypublishing.org/Downloaded from 
3.1. Design of HS model matrix
Our HS films present HS in an oriented manner and at con-

trolled density (figure 2a) [7]. Gold supports were first coated

with a monolayer of OEG exposing terminal biotin groups at

controlled surface density. A monolayer of SAv was then

formed and used to anchor HS through a biotin moiety that

was conjugated to the GAG’s reducing end [7]. Binding in

this orientation effectively reproduces the attachment of HS

to core proteins in HSPGs [42], and minimizes effects of

biotin conjugation and surface-confinement on protein bind-

ing. The SAv-on-OEG film inhibits non-specific protein

binding to the surface, i.e. measured responses are exclusively

because of specific interactions.

QCM-D was used to validate correct assembly of the

model surface and to characterize the effect of protein bind-

ing on HS films. The QCM-D response is sensitive to the

amount of adsorbed ligand (including coupled solvent),

with a negative frequency shift Df typically correlating with

a mass increase, and to mechanical properties, as well as

morphological features of the biomolecular film, typically

reflected in the dissipation shift DD [31].

QCM-D responses upon sequential incubation of OEG

monolayers with SAv and HS at saturation (figure 2b, curves

without symbols; at 6–21 min and 46–61 min, respectively, as

indicated by arrows on top of the graph) were consistent with

the formation of a relatively rigid SAv-monolayer (i.e. with

Df ¼ 223+1 Hz and a low dissipation shift, DD � 0.3 �
1026, at saturation) and a soft, hydrated HS layer (i.e. with
Df ¼ 228.5+1.0 Hz and a high dissipation shift, DD ¼ 5.0+
0.2 � 1026, at saturation), respectively. As reported in our pre-

vious study [7], the frequency shift for such an HS film

(henceforward called high-density HS film) corresponds to an

areal mass density of 35.5+2.2 ng cm22, and to a water content

of 96.9+0.5%. In this earlier work, we had also estimated

the mean distance between adjacent HS anchor sites to be

5 nm, consistent with the dimensions of SAv, and the mean

length of the surface-bound HS chains to be 20 monosac-

charides (or 10 nm); in this regard, we note that the mean

length of surface-bound b-HS chains is shorter than the mean

length in the solution from which they were bound, because

shorter chains bind preferentially [7]. In essence these numbers

indicate that, while there is plenty of space for small proteins to

bind into the HS films, the pendant HS chains are long enough

to make contact with their neighbours and cover the whole

surface area.
3.2. Effect of CXCL12a binding on HS films
Exposure of the chemokine CXCL12a at a concentration of

0.64 mM to the high-density HS film generated a negative fre-

quency shift (29+1 Hz; figure 2b, blue curve without

symbols, 74 to 90 min), confirming CXCL12a binding. The con-

comitant change in dissipation was pronounced and negative

(23.8+0.2 � 1026; figure 2b, red curve without symbols).

Such a QCM-D response provides a strong indication that the

chemokine rigidifies the HS film. Quantitative analysis of the

http://rsob.royalsocietypublishing.org/
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QCM-D data through viscoelastic modelling revealed decreases

in the elastic compliance J0 and the viscous compliance J00 upon

CXCL12a binding (figure 2c). J0 and J00 are physical parameters

(elastic and viscous contributions, respectively) related to film

softness, and their decrease thus confirms film rigidifica-

tion. This analysis also revealed that the protein induces a

moderate decrease in film thickness (figure 2c). Upon sub-

sequent rinsing in buffer, frequency and dissipation increased

slowly, but did not return to the level of the virgin HS film

(figure 2b, curves without symbols; from 89 min), demon-

strating that some, but not all CXCL12a is released over

experimentally accessible time scales, and that the HS film

partially recovers its original morphology.
To test if the protein-induced morphological changes

depend on HS surface density, we repeated the QCM-D

assay at reduced HS surface coverage (figure 2b, curves

with square symbols). To this end, b-HS was incubated at a

lower solution concentration (1 mg ml21) and binding was

interrupted after 15 min (figure 2b, 46 to 61 min). The fre-

quency shift for HS (28+1 Hz) in this case (henceforward

called low-density HS film) corresponds to an areal mass

density of 12.0+0.5 ng cm22 and an average distance

between adjacent HS anchors of about 10 nm, according to

previously reported estimates [7]. It is thus likely that most

HS chains can make contacts with their neighbours even

for low-density HS chains. CXCL12a induced a clear (albeit

http://rsob.royalsocietypublishing.org/
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50 mg ml21 biotin-free HS produced no measurable response, confirming that the fluorescent label does not induce any non-specific binding. The QCM-D responses
for b-HS (incubated at 50 mg ml21 to saturation) and for CXCL12a (incubated at 0.64 mM) were comparable with the low-density HS films shown in figure 2b. (c)
Representative fluorescence micrographs demonstrating the FRAP assay to assess chemokine-mediated cross-linking. Recovery of the bleached spot is seen after 100 s
for a bare HS film, but not for a CXCL12a-loaded HS film. (d,e) Quantitative analysis of FRAP data in terms of the mobile fraction (d ) and its diffusion constant (e).
Lateral mobility of fl-SAv was assessed in the absence of b-HS, after incubation with b-HS at saturation, after 15 min incubation of the HS film with chemokines (in
the presence of 0.64 mM chemokines in solution) and after regeneration of the HS film by 2 M GuHCl. Data correspond to mean and standard error of the mean for
three independent experiments.
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smaller) decrease in dissipation (figure 2b, 74 to 90 min),

i.e. film rigidification also occurred on low-density HS films.
3.3. Effect of CXCL12a binding on HS chain mobility
We hypothesized that the rigidification and thinning of HS

films is due to cross-linking of HS chains by the chemokine.

However, an alternative explanation could be that indivi-

dual HS chains wrap around CXCL12a molecules, thereby

stiffening the film and reducing the film thickness without

generating any inter-chain cross-links. To distinguish between

these two scenarios, we tested how the chemokine affects the

lateral mobility of HS chains.
To this end, we used a modified model surface in which

the gold-supported OEG monolayer was replaced by a silica-

or glass-supported lipid bilayer (SLB; figure 3a). The oriented

immobilization of HS at controlled densities is retained on

these surfaces and the SAv-on-SLB film is also effectively pas-

sivating against non-specific binding of proteins [7]. SLBs are

distinct, however, in that they provide a fluid surface on

which SAv, and the SAv-bound b-HS, have the freedom to

move laterally (schematically shown in figure 3a).

The lateral mobility was probed by FRAP, using fluores-

cently labelled SAv (fl-SAv) as b-HS anchors. In this

method, a limited surface area is rapidly bleached and diffu-

sion of fluorescent molecules into (and bleached molecules

out of) the bleached area is subsequently monitored.
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We verified correct surface functionalization by QCM-D

(figure 3b). The fraction of biotinylated lipids used to form

SLBs was adjusted to 0.5% such that incubation of fl-SAv at

saturation (figure 3b, 10 to 20 min) led to a partial protein

monolayer, in which the SAv molecules diffused freely, i.e.

without being appreciably hindered by two-dimensional

crowding. The fluorescent label did not induce any non-

specific binding of CXCL12a or HS (figure 3b, 29 to 37 min

and 44 to 51 min, respectively). The shifts in frequency

(29+ 1 Hz) and dissipation (2+ 0.2 � 1026) for incubation

of b-HS at saturation (figure 3b, 58 to 68 min) were compar-

able with the low-density HS film shown in figure 2b.

Moreover, the QCM-D responses upon subsequent binding

of CXCL12a (figure 3b, 92 to 105 min) were also similar to

those observed in figure 2b. This indicates that the FRAP

measurements can be directly correlated with QCM-D

measurements on low-density HS films.

The representative fluorescence micrographs in figure 3c
demonstrate close-to-complete recovery of virgin b-HS films

within 100 s, confirming that fl-SAv with HS is indeed laterally

mobile, as desired. By contrast, the bleached spot remained

clearly visible after 100 s when CXCL12a was added to the

HS film. Radially averaged fluorescence intensity profiles

were computed from time-lapse series of micrographs after

photobleaching, and analysed to quantify lateral mobility. To

this end, the pool of fl-SAv was assumed to be distributed in

two distinct fractions, one immobile and the other laterally

mobile with a given diffusion constant. The size of the

mobile fraction and its diffusion constant are shown in

figure 3d,e. These quantitative results confirm that virtually

all (i.e. � 95%) fl-SAv in a virgin SAv-monolayer was mobile,

and that the mobility was unaffected by the presence of

b-HS. In the presence of CXCL12a, 40% of the fl-SAv became

effectively immobilized, and additionally, the diffusion con-

stant of the retained mobile fraction was strongly reduced

(by 45%). These data provide evidence that CXCL12a impedes

lateral motion of HS and its fl-SAv anchor, and we propose that

this immobilization is the consequence of CXCL12a-mediated

HS cross-linking.

After treatment with 2 M GuHCl, which we know effec-

tively releases all CXCL12a from HS while keeping the HS

film intact [7], the mobile fraction and its diffusion constant

largely returned to the values observed for a virgin HS film.

This confirms that HS mobility is restored upon chemokine

release, i.e. the cross-linking is reversible and requires

the presence of the chemokine. The mobile fraction though

remained marginally reduced, indicating that a small fraction

of fl-SAv remains permanently immobile upon GuHCl treat-

ment. Most probably, the lack of complete regeneration is

due to a weak yet irreversible perturbation of the fl-SAv film

by GuHCl: detailed inspection of the fluorescent micrographs

after GuHCl treatment revealed bright spots that we believe

are fl-SAv aggregates.

3.4. Effect of CXCL12a mutations on HS cross-linking
CXCL12a is known to form b-sheet dimers (figure 1a) upon

binding to HS [15]. To test if this oligomerization is involved

in HS cross-linking, we additionally tested two CXCL12a

constructs with point mutations that leave the ternary struc-

ture of CXCL12a essentially intact, but alter the ability of

the protein to form b-sheet dimers: L36C/A65C mutations

result in inter-molecular disulfide bonds and formation of a
‘locked dimer’ [22] while I55C/L58C mutations promote an

intra-molecular disulfide bond and formation of a ‘partial

monomer’ with a reduced propensity to form dimers [21].

We tested the effect of binding of these constructs to low-

and high-density HS films by QCM-D, and HS mobility in

low-density HS films by FRAP. As with the wild-type, both

mutants bound to HS films (figure 4a, blue curves), but not

to the supporting SAv-monolayer (figure 4a, grey curves

with triangle symbols). Binding to HS was distinct, however,

with regard to the magnitude of the frequency shift at equili-

brium and reversibility upon elution in buffer. The locked

dimer exhibited enhanced and more stable binding, whereas

binding was reduced and less stable for the partial monomer,

as compared with native CXCL12a. These systematic vari-

ations reflect the importance of CXCL12a dimerization in

stabilizing the interaction between the protein and HS [21].

Interestingly, both mutants also generated pronounced

decreases in dissipation (figure 4a, red curves) upon binding

to HS, albeit with different magnitudes. Parametric plots

of the DD/2Df ratio as a function of 2Df are shown in

figure 4b. At a given HS density, the curves were very similar

for all three protein constructs, except at the highest magni-

tudes of Df. For thin films, the DD/2Df ratio is proportional

to the elastic compliance J0 [31] and thus a simple relative

measure for softness, whereas 2Df is a relative measure for

the protein surface density. The plots illustrate that the softness

of HS films reduces only marginally as the HS grafting density

increases during HS film formation (i.e. from 2Df ¼ 0 to 28.5+
1 Hz), and that subsequent protein binding (cf. larger values of

2Df ) reduces the softness drastically and in a coverage-depen-

dent manner. The fact that the DD/2Df versus 2Df curves for

protein binding are superimposed indicates that the mechan-

ical properties (and hence the morphologies) of the HS films

are comparable for a given HS surface density and protein con-

centration in the film, irrespective of the quaternary state of the

employed protein. This implies that the differences in the mag-

nitude of Df and DD at equilibrium are entirely because of

differences in the affinity (i.e. the adsorbed amounts), but

that the intrinsic propensity of CXCL12a to cross-link HS

does not depend on protein oligomerization.

Complementary FRAP assays revealed that the partial

monomer and locked dimer can effectively reduce the mobile

fraction (figure 4c) and its diffusion constant (figure 4d ), con-

firming that all CXCL12a constructs can indeed cross-link

HS. However, an appreciable reduction in mobility for the par-

tial monomer could only be observed after increasing the

protein solution concentration (by sixfold). Moreover, after

elution of residual partial monomer from the bulk solution

with working buffer, the mobile fraction and its diffusion con-

stant returned close to the level of a virgin HS film, whereas

both parameters remained unaffected for the locked dimer.

This demonstrates that an efficient cross-linking of the HS

film requires a minimal protein concentration. Taken together,

we conclude that the HS-induced CXCL12a dimerization

[21,22] enhances protein binding, but that this dimeric struc-

ture is dispensable for HS cross-linking if the reduced affinity

is compensated by an increased protein solution concentration.

CXCL12a mutants lacking the N-terminal lysine residue

have been reported to display reduced affinity for HS based

on surface plasmon resonance data [15,33], while nuclear mag-

netic resonance (NMR) analysis found no direct evidence of

interaction with heparin-derived oligosaccharides [19,33]. We

hypothesized that this amino acid, which forms the end of a

http://rsob.royalsocietypublishing.org/
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Figure 4. Dimerization and N-terminal lysine are dispensable for HS cross-linking. (a) QCM-D data for the binding of selected CXCL12a constructs to low-density
(curves with square symbols) and high-density (curves without symbols) HS films on SAv on OEG monolayers. As in figure 2b, Df and DD are shown relative to
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constants of b-HS (bound to fl-SAv on SLBs) before incubation with CXCL12a constructs, after incubation with the proteins at equilibrium (native CXCL12a,
CXCL12a(5 – 67) and locked dimer at 0.64 mM monomer equivalents, partial monomer at 3.8 mM), and after elution of respective protein from the solution
phase, as indicated. The fluorescent label of fl-SAv was confirmed by QCM-D not to induce any measurable non-specific binding of any of the CXCL12a constructs
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rather flexible protein domain and is rather distant from all

other amino acids known to be involved in HS binding [17],

may be important for cross-linking. To test this, we studied
an additional construct with a truncated amino acid sequence,

i.e. a mutant that lacked the four N-terminal amino acids

(CXCL12a(5–67); figure 1a). The magnitudes of the frequency

http://rsob.royalsocietypublishing.org/


0 6 12 18

0

0.6

1.2

0 10 20 30 40

–12

–6

0

0

20

40

60

80

100
m

ob
ile

 f
ra

ct
io

n 
(%

)
time (min) time (min)

0

0.5

1.0

1.5

2.0

2.5

di
ff

us
io

n 
co

ns
ta

nt
(µ

m
2

s–1
) 

HS_dp6
HS_dp8

HS_dp10
HS_dp12

(a)

(b) (c)
Df

(H
z)

 
DD

(1
0–6

)

HS dp
6

HS dp
12

+ CXCL12
a

CXCL12
a rin

sin
g

+ CXCL12
a

CXCL12
a rin

sin
g

HS dp
6

HS dp
12

+ CXCL12
a

CXCL12
a rin

sin
g

+ CXCL12
a

CXCL12
a rin

sin
g

Figure 5. CXCL12a binding to and rigidification of films of oligomeric HS. (a)
CXCL12a binding to monolayers of b-HS oligosaccharides of different lengths
(as indicated; dp ¼ degree of polymerization), immobilized on a SAv-mono-
layer on OEG (figure 2) was monitored by QCM-D to test the minimal length
needed for the chemokine to bind and to cross-link HS. Injection of b-HS
oligosaccharides (at 50 mg ml21; left panels) and CXCL12a (at 0.64 mM;
right panels) started at 0 min, and arrowheads indicate the start of rinsing
with working buffer. Clear binding of CXCL12a is only observed for HS of
dp8 (Df ¼24 Hz) and larger, indicating that a hexasaccharide is not suffi-
ciently long for protein binding. Pronounced dissipation decreases for HS as
small as dp8 indicate that even films of oligomeric HS are rigidified. (b,c)
Mobile fractions and their diffusion constants of b-HS oligosaccharides
(bound to fl-SAv on SLBs) either bare or in the presence of 0.64 mM
CXCL12a, as indicated. The moderate reduction in dp12 mobility suggests
that oligosacharides can be cross-linked into relatively small clusters by
CXCL12a.

rsob.royalsocietypublishing.org
Open

Biol.5:150046

9

 on March 9, 2016http://rsob.royalsocietypublishing.org/Downloaded from 
shifts for this construct were comparable with native CXCL12a

on high-density HS films and slightly reduced on low-density

HS films (figure 4a), consistent with a rather weak contribution

of the N-terminal lysine to protein binding. Importantly, the

mutant also showed a negative dissipation shift, and the

DD/2Df versus2Df curves for CXCL12a(5–67) and native

CXCL12a at a given HS surface density (figure 4b) were indis-

tinguishable. Moreover, FRAP results (figure 4c,d) confirmed

that the mutation does not affect HS mobility. Taken together,

these data indicate that the N-terminus is also dispensable for

cross-linking, which is presumably consistent with its modest

and/or transient interaction with HS [15,17,33].

3.5. Effect of CXCL12a on HS oligomers
Having established that CXCL12a cross-links HS, we next

tested if there is a minimal length of HS chains required for

cross-linking. CXCL12a binding to HS oligosaccharides of

different size was analysed by QCM-D to determine the mini-

mum number of saccharides necessary for CXCL12a binding

and cross-linking (figure 5a). No response was observed on

hexasaccharides (dp6), while clear binding was present on

dp8, dp10 and dp12, confirming that an octasaccharide but

not a hexasaccharide is sufficient for efficient binding, in agree-

ment with the literature [15]. The dissipation decreased only

slightly yet significantly (20.1 � 1026) for dp8, while films of

dp10 and dp12 showed pronounced dissipation decreases

upon CXCL12a binding. Clearly, the chemokine induced a

rigidification of the oligosaccharide HS layers, suggesting

that even rather short HS chains can be cross-linked.

Consistent with this interpretation, FRAP measurements

on dp12 revealed significant decreases in the mobile fraction

and its diffusion constant with CXCL12a (figure 5b,c). No

significant effect was observed with dp6, as expected,

demonstrating specificity of the assay. The effect of

CXCL12a on the mobility of dp12 was, however, rather

weak. This indicates that the oligosaccharides assemble into

relatively small clusters with largely retained lateral mobility.

In other words, longer HS chains are required for a sufficient

amount of CXCL12a to bind to each chain and thus to induce

effective cross-linking of many HS chains.

3.6. Effect of other HS-binding proteins on HS films
To test whether HS-cross-linking is unique to CXCL12a, we

extended our study and systematically investigated the effect

of several other HS-binding proteins, namely CXCL12g,

IFNg, FGF-2 and FGF-9, on high- and low-density HS surfaces

by QCM-D, and on low-density HS surfaces by FRAP

(figure 6). The structures of all tested proteins are known

and HS binding sites have been identified [23,34,36,37,43]

(figure 1b–e). As expected, none of the proteins exhibited any

significant non-specific binding to the SAv-monolayer

(figure 6a, grey curves with triangle symbols).

Compared with CXCL12a (figure 1a), CXCL12g

(figure 1b) features 30 additional amino acids at the C-termi-

nus, which are known to have HS-binding activity and

enhance the affinity of CXCL12 for HS: dissociation constants

KD of 200 nM and 1.5 nM have been reported for the a and g

isoforms, respectively [23]. Indeed, CXCL12g bound more

stably and more rapidly than CXCL12a (figures 6a and 4a,

respectively, blue curves). The decrease in dissipation for

CXCL12g was pronounced at low and high HS coverage
(figure 6a, red curves). The DD/2Df versus 2Df plots

(figure 6b) confirm that this protein also has a strong propen-

sity to rigidify the HS film. In these plots, differences between

CXCL12g and CXCL12a were small, albeit significant com-

pared with the variations between CXCL12a and its

mutants (figure 4b), suggesting that there are subtle differ-

ences in the morphology of the protein-loaded HS films.
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Figure 6. Correlation between structure and HS cross-linking propensity of HS-binding proteins. (a) QCM-D data for binding of proteins to HS films are displayed
analogous to figure 4a. CXCL12g, as CXCL12a, induced strong negative shifts in dissipation irrespective of HS film density; FGF-2, but not FGF-9, induced negative
dissipation shifts irrespective of HS film density; for IFNg, the dissipation decreased only on high-density HS films, indicating distinct, protein-specific degrees of HS
film rigidification. (b) Parametric plot of DD/2Df for the protein-loaded HS film versus –Df for protein binding for the binding data on low-density (top) and
high-density (bottom) HS films displayed in (a); the curves show that HS film rigidification depends on HS surface density, and protein type and coverage. (c,d)
Mobile fractions and their diffusion constants of b-HS (bound to fl-SAv on SLBs at low surface density) either bare or in the presence of CXCL12g, FGF-2 or FGF-9, as
indicated. (e,f ) Mobile fractions and their diffusion constants of b-HS (bound to fl-SAv on SLBs at low surface density (left graphs) and high surface density (right
graphs)) either bare or in the presence of IFNg, as indicated. The fluorescent label of fl-SAv was confirmed by QCM-D not to induce any measurable non-specific
binding of any of the HS-binding proteins (not shown). Protein concentrations used throughout were 0.43 mM for CXCL12g, 0.29 mM for IFNg, 0.28 mM for FGF-2
and 0.17 mM for FGF-9. The mobility and rigidification data correlate, confirming that FGF-2 is a potent cross-linker whereas FGF-9 does not cross-link, that CXCL12g
cross-links HS film similarly to CXCL12a locked dimer, and that IFNg is a rather poor cross-linker.
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Nevertheless, CXCL12g reduced the HS mobile fraction and

its diffusion constant (figure 6c,d) somewhat more strongly

than native CXCL12a, i.e. to a similar extent as the locked

dimer of CXCL12a (figure 4c,d). We conclude that

CXCL12g is also a potent HS cross-linker and that this

potency is enhanced by the HS binding stability.

IFNg is a homodimeric cytokine known to strongly inter-

act with HS (KD � 1 nM [39]). The known HS binding site is

located at the C terminus and the two C termini in the homo-

dimer are spatially separated (figure 1c). At present, it is not

clear, if the two binding loci bind to a single or to two distinct

HS chains. IFNg readily bound to the HS films and binding

was very stable as shown by the QCM-D frequency response

(figure 6a). In high-density HS films, IFNg induced a nega-

tive shift in dissipation (figure 6a) albeit with a reduced

magnitude compared with CXCL12a (figure 4a). However,

IFNg generated a slight increase in dissipation in low-density

HS films. FRAP (figure 6e,f, left plots) revealed that IFNg

induces only moderate reductions in the mobile fraction of

HS (by 15%) and in the diffusion coefficient of this mobile

fraction (by 25%). The lack of dissipation decrease and the

weak reduction in HS mobility thus correlate, and indicate

that IFNg does not cross-link HS strongly, at least at low sur-

face density. Under these conditions, the two HS binding

sites on the IFNg homodimer apparently bind within a

single HS chain (intra-HS-chain bond).

To test if the decrease in dissipation at high HS surface

density (figure 4a) is an indicator for the formation of inter-

HS-chain bonds by IFNg when HS chains are densely

packed, we performed additional FRAP measurements at

high HS surface densities (figure 6e,f, right plots). To this

end, the fraction of biotinylated lipids used to form the SLB

was increased (from 0.5 to 5%) to enable formation of a

dense fl-SAv-monolayer. Under these conditions, the lateral

mobility of the bare HS films was largely retained (i.e. the

mobile fraction was only slightly reduced, to 90%) although

crowding of fl-SAv entailed a marked reduction of the diffu-

sion constant (from 2 mm2 s21 to 0.5 mm2 s21). Interestingly,

the mobile fraction as well as its diffusion constant decreased

only weakly in the presence of IFNg (by 12% and 20%,

respectively). This indicates that the IFNg homodimer prefers

to form intra-HS rather than inter-HS-chain bonds even

at high HS concentrations, and supports the previously

proposed model in which IFNg binds to two adjacent N-sul-

fated domains along a single HS chain [44].

FGF-2 and FGF-9 were selected because of their well-

characterized HS binding sites (figure 1d,e). FGF-2 has three

HS binding sites, of which two are located on the same face

and the third on the opposite face of the protein [37,43,45,46].

By contrast, only one (rather extended) HS binding site has

been identified for FGF-9 [25]. FGF-2 and FGF-9 were reported

to have affinities of 10 and 620 nM, respectively, to heparin dp8

(i.e. a representative of high-affinity binding sites on HS)

[25,47]. Both FGFs bound readily to HS films (figure 6a), as

expected. The frequency shifts on high-density HS films

exceeded those observed for the previously investigated

chemokines (figures 4 and 6), indicating extensive binding.

FGF-2 generated pronounced decreases in dissipation for

high-density and low-density HS films. By stark contrast, the

dissipation remained largely unchanged and increased drasti-

cally, respectively, for FGF-9. This contrast is also apparent in

the DD/2Df versus 2Df plots (figure 6b), where the curves

for FGF-9 are located above the curves for FGF-2 irrespective
of the HS surface density, thus indicating that FGF-2 is more

potent in rigidifying HS films. FRAP revealed a drastic

reduction (by 80%) in the mobile fraction with FGF-2

(figure 6c), i.e. this protein essentially immobilized HS.

FGF-9, on the other hand, did not affect the mobile fraction at

all (figure 6c) and the diffusion constant of the mobile fraction

was only weakly affected (figure 6d).

Clearly, FGF-2, but not FGF-9, has a strong propensity to

cross-link and to rigidify HS films. In the light of the distinct

structural features of these two growth factors, we propose

that FGF-2 cross-links HS by accommodating at least two

different chains simultaneously in its multiple HS binding

sites, whereas only one HS chain at a time can bind to the

extended binding site on FGF-9. The results with FGFs high-

light that not all HS-binding proteins cross-link HS and

that the cross-linking propensity can vary distinctly among

proteins of the same family.
4. Discussion
4.1. What are the molecular mechanisms behind HS

cross-linking?
One may argue that a protein with an HS-binding surface

large enough to accommodate more than one HS chain

should be able to cross-link HS. Yet, we found the extension

of the HS-binding surface alone to be a poor predictor of a

protein’s cross-linking propensity. This is illustrated by the

limited cross-linking propensity of the IFNg homodimer

(figure 6), and also by the negligible effects of the elongated

C-terminal of CXCL12g, compared with CXCL12a, on

HS film rigidification and cross-linking (figures 4 and 6).

Apparently, the formation of multiple bonds with the

same HS chain is more favourable in these cases than the

inter-connection of several distinct HS chains.

FGF-2, by contrast, exhibited strong cross-linking activity

(figure 6). A detailed inspection of the protein’s surface reveals

that the three HS-binding patches containing basic amino acids

are separated from each other by acidic and hydrophobic

amino acids. Such HS-repelling rims are not present in any of

the other proteins tested. From the correlation with our exper-

imental data, we thus propose multiple HS-binding patches

separated by HS-repelling borders as a distinct structural

feature conducive to HS cross-linking.

Mutation of the primary binding site reduces binding of

FGF-2 to HS substantially [48], i.e. the affinities of the second-

ary HS binding sites on FGF-2 are rather weak. Yet, FGF-2

apparently is a potent HS cross-linker. This effect is not sur-

prising if one takes into consideration that, once FGF is

sequestered into the matrix through its primary high-affinity

binding site, the local concentration in HS is high such that

even weak interactions can occur frequently. Thus, the

example of FGF-2 illustrates how rather weak secondary

binding sites can fulfil functions.

CXCL12 is also a potent HS cross-linker (figures 4–6), yet

the molecular mechanism of cross-linking must be different

since this protein does not feature several clearly separated

binding sites. It is instructive to consider the quaternary struc-

ture of this protein. Upon HS binding, CXCL12 readily forms

homodimers through the association of b-sheets [15], but our

tests with partial monomer and locked dimer (figure 4) demon-

strated that this ‘b-sheet’ dimer is not directly involved in HS
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cross-linking. Crystallographic studies [49] though revealed

that CXCL12a can form another homodimer through the

association of two N-termini, analogous to what is commonly

observed for chemokines of the CC family [50], although the

functional significance of the ‘N-terminal’ dimer has so far

remained unclear.

We propose that b-sheet and N-terminal dimers coexist in

the HS matrix, potentially forming dimers of dimers. In this

scenario, the two dimerization mechanisms would have dis-

tinct functions, i.e. dimerization through b-sheets enhances

the affinity of the protein for HS whereas dimerization

through N-termini induces HS cross-linking. Our experimen-

tal data are fully consistent with such a scenario. In

particular, arginines at positions 8 and 12 were found to be

involved in the formation of the N-terminal dimer [49].

These are present in all mutants (including the truncated

CXCL12a(5–67) form), and it is thus not surprising that all

our CXCL12a constructs exhibited a similar propensity to

rigidify and cross-link HS films once the differences in

affinity were adjusted for (figure 4b–d). Moreover, an

N-terminal dimer can also readily cross-link short HS oligo-

saccharides (figure 5), whereas such an effect would be

difficult to explain with b-sheet dimers alone: in the current

binding model, dp8 is just long enough to fit the HS-binding

interface in the b-sheet dimer [19]; it would be conceivable

that a single dp8 binds two b-sheet dimers (i.e. one on each

face of the oligosaccharide), but not the opposite. Future

studies with other CXCL12a mutants should be useful to

test if the arginines at positions 8 and 12 are indeed crucial

for dimerization-mediated cross-linking and how HS binding

[19,33] and CXCL12a oligomerization interplay to promote

cross-linking. In this regard, it is notable that many chemo-

kines form oligomers, when free in solution or upon

binding to GAGs [51]. It will thus also be interesting to inves-

tigate how the oligomerization of other chemokines correlates

with their propensity for cross-linking GAGs.
4.2. The methodological approach presented in this
study is novel

HS films as model matrices present HS at controlled orien-

tation and lateral mobility and at tuneable surface density,

thus enabling supramolecular interaction studies under

well-defined conditions. The two characterization techniques,

QCM-D and FRAP, provide complementary information and

together enable identification of the protein’s binding and

cross-linking activity. Specifically, QCM-D provides infor-

mation about binding kinetics, and about HS/protein film

morphology (thickness) and rigidity, whereas FRAP enables

quantification of the lateral mobility of HS chains. The

assay does not require any labelling of the protein and is

thus broadly applicable to assess the propensity of proteins

to cross-link HS and other GAGs. In particular, some extra-

cellular signalling proteins are known to bind several types

of GAGs (e.g. CXCL12g [23,38] or IFNg [38–40]) and it will

thus be interesting to probe if the propensity of a given

protein to cross-link is specific to a particular GAG type.

GAG-on-chip devices are increasingly used to probe the

interaction of GAGs with proteins. On such devices, the

extent of protein-mediated GAG cross-linking will depend

sensitively on the presentation and surface density of

GAGs. As a consequence, the binding behaviour of proteins
may also vary strongly, calling for care in the interpretation

of the read out and comparison of data between different

GAG-on-chip-based assays. The method developed here

should be very useful to evaluate how GAG presentation

and surface density affect binding.
4.3. What is the functional relevance of HS cross-linking
by extracellular signalling proteins?

Cross-linking of HS requires the spatial proximity of HS chains.

This criterion was met on average in our well-defined model

matrices within the range of HS surface densities employed.

Based on the typical length of HS chains and the typical density

of HS-bearing proteoglycans (PGs), Yanagishita & Hascall [14]

estimated that the ensemble of HS chains on cells can readily

explore the entire cell surface. This implies that neighbouring

HS chains can meet, and HS cross-linking thus may also be a

frequent phenomenon at the cell surface and in extracellular

matrix. The distribution of HS, however, may not be homo-

geneous across the cell surface [52] and may vary across cell

types and states. This implies that the local HS density can

vary over a large range, and that cross-linking may be confined

to specific locations. It is thus possible that HS cross-linking is

spatio-temporally controlled through the expression of HS

and the sequestration of chemokines or growth factors in the

course of specific biological processes (e.g. angiogenesis [53],

inflammation [54], cell proliferation [6,47,55]). This may have

consequences at different levels.

On the level of the matrix, the proteins can promote

changes in structure that parallel their signalling activity. The

ensuing changes in physical properties of peri- and extracellu-

lar matrices, such as permeability, rigidity or thickness, may

elicit a range of additional cellular responses. For example, a

reduction in the thickness of pericellular coats may facilitate

intercellular contacts through membrane-bound cell adhesion

receptors/ligands [56], or the cross-linking of HS displayed

by two distinct pericellular coats could be important in the

initial stage of cell–cell adhesion. Moreover, changes in the

rigidity of the cellular glycocalyx through HS cross-linking

may provide a physical cue that guides the behaviour of cells.

On the local scale, cross-linking of HS could promote clus-

tering of cell-surface PGs to which the HS chains are attached,

thereby activating signalling. Clustering of the HSPG synde-

can-4, for example, is important for the binding to and

activation of protein kinases which ultimately determine the

assembly of focal adhesions and the organization of the actin

cytoskeleton [57]. In this regard, it has been demonstrated

that a syndecan-4 dimer requires a minimum of four HS

chains to be functional, whereas a mutated form of synde-

can-4 with a single HS chain was not functional unless a

cluster of multiple syndecan-4 dimers was formed. This

suggests that multiple HS chains must associate in the presence

of a ligand, to form a signalling unit [58]. In this scenario, HS-

cross-linking proteins would elicit signalling activity in a way

that has thus far not been appreciated. Moreover, the inter-

action between FGFs and syndecans has been demonstrated

to promote their clustering, activation of protein kinase Ca,

translocation to cholesterol-rich membrane domains and even-

tually internalization and transfer of FGF-2 to the nucleus

[59–62]. Thus, ligands that do not cause cross-linking of HS

chains, such as IFNg and FGF-9, may not be able to activate

these parallel, HS-specific signalling pathways. A further
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HS-dependent pathway that may be activated by ligands that

cross-link HS chains on syndecans is the formation of exosomes

[63]. Future studies comparing the effect of proteins that cross-

link HS (e.g. FGF-2, CXCL12a or CXCL12g) with those that

do not (e.g. IFNg or FGF-9) would provide a direct test if HS

cross-linking is important for exosome formation and other

HS-specific signalling pathways. Last but not least, the proteins

themselves would also be affected by HS cross-linking, in that

the attachment through multiple binding sites reduces their

mobility. This may contribute, for example, to the substantial

fraction of FGF-2 that is observed to undergo confined, rather

than diffusive motion in pericellular matrix [52].
en
Biol.5:150046
5. Conclusion
In summary, we have demonstrated that extracellular signalling

proteins can cross-link GAGs and propose that several binding

sites, well separated either through GAG-repellent borders on

the protein’s surface (e.g. FGF-2) or through spatial separation

in quaternary protein structures (e.g. N-terminal CXCL12

dimers), are required for GAG cross-linking. This prediction

can now readily be tested with other GAG-binding proteins

using the here-presented GAG cross-linking assay. The ability

of extracellular signalling proteins to influence matrix organiz-

ation and physico-chemical properties implies that the

functions of these proteins may not simply be confined to the
activation of cognate cellular receptors. This may have

far-reaching implications for cell–cell and cell–matrix com-

munication, and our predictions can be tested in future cell

and in vivo assays.
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