
n

Nabi, S. W., and Vanderbauwhede, W. Using Type Transformations to Generate
Program Variants for FPGA Design Space Exploration. In: 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), Mexico City,
Mexico, 7-9 Dec 2015, pp. 1-6. ISBN 9781467394055.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/117319/

Deposited on: 09 March 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Using Type Transformations to Generate Program
Variants for FPGA Design Space Exploration

Syed Waqar Nabi, Wim Vanderbauwhede
School of Computing Science

University of Glasgow, Glasgow G12 8QQ
{syed.nabi, wim.vanderbauwhede}@glasgow.ac.uk

Abstract—We present preliminary results with the TyTra
design flow. Our aim is to create a parallelising compiler for
high-performance scientific code on heterogeneous platforms,
with a focus on Field-Programmable Gate Arrays (FPGAs).
Using the functional language Idris, we show how this pro-
gramming paradigm facilitates generation of different correct-
by-construction program variants through type transformations.
We have developed a custom Intermediate Representation (IR)
language, the TyTra-IR, which is similar to the LLVM IR, with
extensions to express parallelism, allowing us to designs variants
associated with each program variant. The key innovation of
the TyTra-IR is the ability to construct and cost design variants
for FPGAs. Our prototype compiler generates Verilog code for
FPGA synthesis from a given IR description. Using a real-world
Successive Over-Relaxation (SOR) kernel, we illustrate generation
of program variants in Idris, their representation in TyTra-IR,
and evaluation of variants using our cost-model. We compare
the estimates from the cost-model with results from synthesis
and simulation of equivalent HDL.

I. INTRODUCTION

Platforms for High-Performance Computing (HPC) are
becoming increasingly heterogeneous with the adoption of
GPUs, many-core accelerators and FPGAs. Such platforms
present a significant programming challenge, especially be-
cause the key users of HPC resources are scientists, not parallel
programmers. The work we present in this paper aims to
facilitate the use of Field-Programmable Gate Arrays (FPGAs).
These devices are very promising in terms of energy efficiency,
but programming them presents a major obstacle to their wider
adoption in HPC. High-level programming tools for FPGAs
have made significant contributions, but require considerable
effort to find the best design variant from the complex design
space offered by the fine-grained reconfigurability of FPGAs.

Our main contribution is raising the programming ab-
straction for FPGAs such that we can express the design
in a functional language like Idris as shown in Figure 1.
This functional abstraction enables type transformation that
reshape the data to create a variants that are correct-by-
construction. The transformation implies a reconfigured FPGA
architecture for that reshaped data, effectively creating a new
design variant. A light-weight cost-model for evaluation of
multiple design variants opens the route to a fully automated
compiler that can: generate variants, evaluate them, choose the
best option, and generate HDL code for it.

Multiple program variants are generated using type-
transformations that are intrinsically safe. Each program vari-

ant in Idris is associated with a design variant in a lower-
level description using an IR, the Tytra-IR. The TyTra Back-
End Compiler (TyBEC) then generates resource-utilization
and performance estimates, and emits Hardware-Description
Language (HDL) code in Verilog for the chosen program
variant. Currently we translate the Idris code to TyTra-IR
manually, and a front-end compiler for doing this is a work
in progress. The back-end compiler can cost the IR code and
emit Verilog code.

Our running exemplar is a real kernel from the scientific
computing domain, the successive over-relaxation (SOR) ker-
nel used in a weather model [1] through which we illustrate
generation of program variants in Idris, their representation in
TyTra-IR, and evaluation of variants using our cost-model.

High-level Functional
Language e.g. Idris

[baseline]

TyTra-IR
variant-1

Selected
Variant-X

. . .

Kernel in HDL

Cost-model

Code-
Generator

HLL
variant-1

HLL
variant-2

HLL
variant-N

. . .

Apply type-tranformations
to generate program variants

TyTra-IR
variant-2

TyTra-IR
variant-N

 Solution

HLS Framework
Integration

Fig. 1. Design entry in the TyTra flow is in a functional language like Idris,
variants are generated using type-transformations and converted to the TyTra-
IR. The back-end compiler costs the variants and emits HDL code, which can
be integrated with an HLS tool for working solution. The dotted line marks
the stages in the flow that are currently automated.

II. PROGRAM GENERATION THROUGH TYPE
TRANSFORMATIONS

We aim to demonstrate how a program can be rewritten
in a high-level language that facilitates generation of differ-

978-1-4673-9406-2/15/$31.00 c©2015 IEEE

ent, correct-by-construction instances of that program through
type- transformations. Each program variant will have a differ-
ent performance related to its degree and type of parallelism,
and a different cost. Through our cost model we are able to
select the best suited instance in a guided optimisation search.

A. Exemplar: Successive Over-Relaxation

Consider the following SOR kernel, taken verbatim from
the code for the Large Eddy Simulator, an experimental
weather simulator [1] written in Fortran.
do l =1 , nmaxp ; do k =1 ,km ; do j =1 , jm ; do i =1 , im

r e l t m p = omega ∗ (cn1 (i , j , k)∗
(c n 2 l (i)∗ p (i +1 , j , k)+ cn2s (i)∗ p (i −1, j , k) &
+ c n 3 l (j)∗ p (i , j +1 , k)+ cn3s (j)∗ p (i , j −1,k) &
+ c n 4 l (k)∗ p (i , j , k +1)+ cn4s (k)∗ p (i , j , k−1) &

−r h s (i , j , k))−p (i , j , k))
p (i , j , k) = p (i , j , k) + r e l t m p
s o r e r r = s o r e r r + r e l t m p ∗ r e l t m p

end do ; end do ; end do ; end do

The kernel iteratively solves the Poisson equation for
the pressure assuming periodic boundary conditions in the
transverse (i) direction and open (Neumann) conditions in
other directions. The main computations are a stencil over the
neighbouring cells (which is inherently parallel), and a reduc-
tion to compute the remaining error. The boundary conditions
are simple copy operations. As the boundary conditions do
not involve any computation, they are not discussed in what
follows. The SOR algorithm is iterative, when the error is
smaller than a preset value or when a maximum number of
steps is reached, the algorithm stops.

B. Idris, Higher-Order Functions map and fold, and Depen-
dent Types

Functional languages can express higher-order functions
i.e. functions that take functions as arguments and can return
functions. They support partial application of a function, and
have strong type safety. These features make them suitable as
a high-level design-entry point, and for generating correct-by-
construction or safe program variants through type transfor-
mations. We have chosen the Idris language [2] because it is
dependently typed, which allows the size of the data to be
expressed explicitly in the type. This feature is crucial for our
purpose of generating program variants by reshaping data and
ensuring correctness through type safety.

To describe computations on finite-size ordered sets of data
we use a dependent vector type which encodes the size of the
vector1:

p1D : Vect (ip+3)*(jp+3)*(kp+2) Float

Here the type of p1D is the entire string after :, showing it
is a vector of size equal to size of the 3D matrix, and of type
Float. Multi-dimensional vectors are obtained through nesting:

p2D : Vect (jp+3)*(kp+2) (Vect ip+3 Float)

The main higher order functions we will use are map
and fold, which capture the computation pattern at a higher
abstraction than the more familiar for loops. The map operation

1Note that in Idris, arguments in a type signature or a function call are
separated by a space.

simply applies a function to a vector, similar to a dependency-
free for-loop. We can write its type as2:

map : (t1 -> t2) -> (Vect sz t1) -> (Vect sz t2)

The foldl operation (which performs reduction) applies a
function to a vector and an accumulator, similar to a for-loop
that performs an accumulation. We can write its type similarly
as

foldl : (t2 -> t1 -> t2) -> t2 -> (Vect sz t1) -> t2

These higher order functions allow us to transform pro-
grams through transformation of the types, as discussed in
§II-D. Although expressing programs in terms of map and
fold might seem restrictive, the paradigm is in fact expressive
enough to express most scientific codes and is a very good
starting point for stream-based FPGA programming.

C. SOR Kernel in Idris

The functions map and fold perform computations on the
vector without explicit iterators. Therefore, to calculate e.g. the
SOR expression as above, we need to define a set of vectors,
one for every term in the expression. This means that we
need a function that will take the original vectors p, rhs, cn*
and return a single new vector of size im.jm.km, where each
elements is a tuple consisting of all terms required to compute
the SOR, i.e. the pressure at a given point an its 6 neighbouring
cardinal points, the weight coefficients cn* and the rhs term for
a given point. The implementation of this function is simply
a copy operation and not our main concern.

pps = prepare_vectors p rhs cn1 cn2l ...

Given the new vector of tuples, we can define the actual
SOR computation as

ps = map p_sor pps

where p sor computes the new value for the pressure for
a given input tuple from pps:

p_sor pt = reltmp + p_c
where

(p_i_p1,...,p_c,rhs_c) = pt
reltmp = omega * (cn1 * (

cn2l_x * p_i_p1 + cn2s_x * p_i_m1
+ cn3l_x * p_j_p1 + cn3s_x * p_j_m1
+ cn4l_x * p_k_p1 + cn4s_x * p_k_m1)
- rhs_c) - p_c

D. Type Transformations

Our main purpose is to generate many safe variants by
transforming the type of the various functions making up
the program and inferring the program transformations from
the type transformation. The details and proofs of the type
transformations and their safety are available in [3]. In brief,
we reshape the vector in an order-preserving manner and infer
the corresponding program that produces the same result. Each
reshaped vector in a program variant translates to a different

2Function types are specified by the type of each argument, separated by
the arrow ->, with the last argument being the return type.

arrangement of streams. We then use our cost-model to choose
the best design, as we will discuss in §V-A.

Let’s assume that the type of the 1-D prepared vector is t
and its size im.jm.km, which we can turn into e.g. a 2-D vector
with sizes im.jm and km using type-transformation:

pps : Vect (im*jm*km) t --1D vector
ppst: Vect km (Vect im*jm t) --transformed 2D vector

Resulting in a corresponding change in the program:

ps = map p_sor pps --original program

ppst = reshapeTo km pps --reshaping data
pst = map (map p_sor) ppst --new program

where map p sor is an example of partial application.
Because ppst is a vector of vectors, the outer map takes a
vector and applies the function map p sor to this vector.

E. Parallelism Transformations

As a map is by definition a dependency-free operation, it
can in principle be executed in parallel on all elements of
the vector. It can of course also be executed sequentially, or
as a stream. This means that the original program has three
variants, one for each type of map, i.e. parallel, sequential
and pipelined. A transformed program with two nested maps
has nine variants. Each program transformed by reshaping the
data will have these nine variants. The number of transformed
program types is equal to the number of possible integer
divisions of the original type. In this fashion it is possible
to generate large numbers of safe program variants. In §IV we
discuss the cost-model we developed to evaluate the variants.
As part of our future work, we aim to limit the number
of program variants generated and evaluated, by developing
heuristics for constrained variant generation.

F. Reductions

The map higher-order function is limited to dependency-
free vector operations. To express dependencies in a reduction,
we can use the foldl higher-order function. In order to incor-
porate the computation for the global SOR error we change
the return value of the function p sor to a tuple that contains
two values, i.e. the pressure and the error from that iteration:

p_sor pt = (p_c+reltmp, reltmp*reltmp) where ...

We apply map and separate out the arrays using unzip
(which transforms a vector of tuples into a tuple of vectors);
to obtain the cumulative sor err we sum rtsqs:

(ps,rtsqs) = unzip (map p_sor pps)
sor_err = sum rtsqs

Here , sum = foldl (+) 0. If we transform the type
of pps as before, the type of rtsqs will be transformed and
hence the fold operation will be transformed as explained in
[3]:

sor_err = foldl (foldl (+) 0) rtsqs

Compute

Device

(FPGA)

COMPUTE UNIT

Global Memory Interconnect

Lo
ca

l M
e

m
o

ry

In
te

rc
o

n
n

ec
t

PCIe Global Memory
Controller

Kernel Iteration
Control

Block Memory
Transfer Control

CORE

Stream
Control

Core_Compute

PE
PE

PE PE PE

Local Memories
(On-chip Block

RAM)

Local Memories
(On-chip Block

RAM)

Local Memories
(On-chip Block

RAM)

CORE

Stream
Control

Core_Compute

PE
PE

PE PE PE

CORE

Stream
Control

Core_Compute

PE
PE

PE PE PE

Fig. 2. The TyTra-FPGA platform model abstraction, adapted from the
OpenCL platform model.

Furthermore, we could apply an additional type transfor-
mation to rtsqs as well. It is clear that the number of variants
will quickly become very large, but each of them will produce
the same result with a potentially different performance and
cost.

Now we will discuss the platform model abstraction for
the FPGAs that we use, the IR into which variants from Idris
can be compiled, and the cost-model used to evaluate the
performance and resource utilisation.

III. THE TYTRA PLATFORM MODEL AND IR LANGUAGE

Our platform model (Figure 2) is based on the generic
OpenCL platform model [4]. It is somewhat more nuanced than
OpenCL’s to incorporate FPGA-specific architectural features,
which is similar to how Altera-OpenCL deals with this [5].

The TyTra-IR is a strongly and statically typed language,
and all computations are expressed using Static Single Assign-
ments (SSA). It is based on the LLVM-IR, with extensions for
parallelism semantics suitable for an FPGA target. This gives
us a baseline for designing our language, and will allow us
to explore LLVM optimizations, as e.g. the LegUp [6] tool
does. The key semantic incompatibility between our IR and
LLVM-IR arises due to: first, our IR targeting a streaming data-
flow architecture, whereas LLVM-IR is designed to be neutral
representation for microprocessor targets; and second, our IR
having functions with added semantics to describe parallelism.

The TyTra-IR code for a design has two components. The
Manage-IR sets up the streaming data ports for the kernel. It
corresponds to the logic in the core outside the core-compute
(See Figure 2). All Manage-IR statements are wrapped inside

the launch() method. The Compute-IR describes the data-
path logic. It works with streaming data abstractions. All
Compute-IR statements are in the scope of the main() func-
tion or other functions “called” from it. A detailed discussion
of the TyTra-IR syntax is outside the scope of this paper,
though an illustration is given for the SOR example in §II-C
and a more detailed discussion is available in [7].

IV. COMPILER’S COST MODEL AND CODE GENERATOR

We have designed the TyTra-IR specifically to enable
estimates of reasonable accuracy, which allow us to evaluate
design variants. Our compiler can calculate these estimates
directly from the IR without any further synthesis: the through-
put estimate, and the resource utilization for a specific Altera
FPGA device (ALUTs, REGs, Block-RAM, DSPs). It can also
emit synthesizeable Verilog code. Figure 3 illustrates the steps
taken by our compiler for cost-estimation and code-generation.

Parse: Memory objects, Stream objects
Accumulate: Resource estimates

Analyze: functions and determine conf'n
Estimate: throughput for conf'n type

TyTra Manage-IR &
Cost-model for

mem's and streams

Parse: Functions recursively, and SSA
instr's, implied offset buffers and counters
Accumulate: costs

TyTra Compute-IR &
Cost-model for SSA
instructions, offset

buffers and counters

Throughput
Cost-model

Generate Core(s):
- control-logic for streams
- buffers for stream-offsets

Import: primitive cores usedTyTra Primitive
Cores' Library

Generate: custom combinational blocks
 described by "comb" functions

Template for Custom
Combinational Blocks

Generate core-compute(s):
- Schedule SSA instructions
- Create data and control delay lines
- Connect functional units in a pipeline

Generate: Compute unit(s), with on-chip
memories and core(s) and
Configuration include file for design

Template for Pipeline
Core-Compute

Template for Core &
Offset buffers

Fig. 3. The TyTra back-end compiler flow, showing the estimation flow
(blue/first three stages) and code generation flow (yellow). This flow is subset
of the larger flow in Figure 1.

Our throughput performance measure is EWGT (Effective
Work-Group Throughput), defined as the number of times an
entire work-group (i.e. all work-items) executes the kernel ev-
ery second. Following is the generic expression which applies
to the entire design space and expressions for configurations
of interest can be derived from it.

EWGT =
L.DV

NR. {TR +NI .Nto.T. (P + I)}

Where: EWGT = Effective Workgroup Throughput; L =
Number of parallel lanes or threads on the FPGA; DV=

Degree of vectorization per lane; NR = Number of FPGA con-
figurations needed to execute the complete kernel for the entire
work-group; TR = Time taken to reconfigure FPGA; NI =
Number of instructions per Processing Element3; NTO =
Ticks taken by one instruction; T = FPGA clock period;
P = Pipeline depth; I = Number of work-items. This generic
expression can be reduced based on the FPGA configuration.
For the typical case of using an FPGA for HPC applications
where the FPGA implements one or more pipeline lanes of
the kernel, DV , NR and NI would all reduce to 1.

For estimating resource utilization, we observed that the
regularity of FPGA fabric allows simple cost expressions for
most instructions. These are then used by our compiler to
evaluate overall costs for the design. A certain amount of
uncertainty is introduced as our models do not take into
account the optimizations done by the synthesis tools, but the
estimate remain accurate enough to achieve the purpose of
making design choices. The novelty here is that through a
well-defined syntax at a low abstraction, the TyTra-IR exposes
the parameters in the cost-model expressions, which can be
extracted by our compiler. If we were to use a higher-level
language as an internal IR to represent the design variants, a
more thorough and time-consuming build would be required
(as used by e.g. the Maxeler tool flow [8]), which is not suitable
for comparing a large number of variants.

The code-generator creates a dataflow architecture on the
FPGA, with a pipeline of primitives as well as customized
functional units, and exposes ILP by scheduling operations in
parallel where possible. Streams are automatically created that
connect these one or more pipelines to on-chip memories data
for the streams. Our preliminary work on the cost model and
code-generator is limited to working with on-chip memories
of the FPGA.

V. USING THE COMPILER ON THE SOR EXAMPLE

For proof-of-concept of our cost model and prototype back-
end compiler, we hand-coded in the TyTra-IR some design
variants of the SOR kernel as discussed in §II. Figure 4 shows
the translation of the SOR kernel to TyTra-IR configured as
a single pipeline. The Manage-IR which declares the memory
and stream objects is not shown. Note the creation of offsets
of input stream p in lines 6-9, which create streams for the
six neighbouring elements of p. These offset streams, together
with the input streams shown in lines 2-4 form the input
tuple referred to in §II-C. This tuple is fed into the datapath
pipeline described in lines 10-15. Figure 5 shows the kernel’s
realization as a pipeline as described by this code.

The same SOR example can be expressed in the IR to
represent thread-parallelism by adding multiple lanes, cor-
responding to a reshaped data along 4 rows, as shown in
Figure 6. This is one of the many possible variants generated
in the high-level Idris code through type transformations, as
described in §II-E.

A. Evaluating TyTra-IR Design Variants using the Cost-Model

Figure 7 shows evaluation of variants generated by reshap-
ing the input streams – implying a different configuration on

3For pipelined cores on the FPGA, a PE is always configured for one
instruction.

code4paperSORc2.tirl Page 1

 1 ; **** COMPUTE-IR ****
 2 @main.p = addrSpace(12) ui18,
 3 !"istream", !"CONT", !0, !"strobj_p"
 4 ;...[more inputs]...
 5 define void @f0(...args...) pipe {
 6 ;stream offsets
 7 ui18 %pip1=ui18 %p, !offset, !+1
 8 ui18 %pkn1=ui18 %p, !offset, !-ND1*ND2
 9 ;...[more stream offsets]...
 10 ;datapath instructions
 11 ui18 %1 = mul ui18 %p_i_p1, %cn2l
 12 ui18 %2 = mul ui18 %p_i_n1, %cn2s
 13 ;..[more instructions]...
 14 ;reduction operation on global variable
 15 ui18 @sorErrAcc=add ui18 %sorErr, %sorErrAcc
 16 }
 17 define void @main () {
 18 call @f0(..args...) pipe }
 19
 20Fig. 4. Abbreviated TyTra-IR code for the SOR kernel configured as a single

pipeline lane.

_

+

+

Stream Control

_

Offset Buffers

*

*

*

*

*

*

∆

∆

∆

+

+

∆

∆

∆

+

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

+

*
const

*
sorError_Accumulator

+

*

Stream Control

p_new SorError

cn1 p rhs cn2s cn2l cn3s cn3l cn4s cn4l

Fig. 5. Illustration of the pipelined dataflow of the SOR kernel generated
by our compiler. Only pass-through pipeline buffers are shown; all functional
units have pipeline buffers as well. The blocks at the top refer to on-chip
memory for each data.

the FPGA – and costing the corresponding IR description. If
data is transported between the CPU and device every time a
new call to SOR is made, then beyond 4 lanes, we encounter
the host communication wall; any increase in number of lanes
will not improve performance unless the communication-to-
computation ratio decreases by doing more kernel iterations
per invocation of SOR. Alternatively, if the all the data is made
available in the device’s global memory, i.e. the DRAM on the
device board, then the communication wall moves to about 16
lanes. We encounter the computation-wall when we cross six
lanes, where we run out of LUTs on the FPGA. However, we
can see other resources are hugely underutilized, and some
sort of resource-balancing can lead to further performance
improvement.

code4paperSORc1.tirl Page 1

 1 ; **** COMPUTE-IR ****
 2 @main.p0 = addrSpace(12) ui18,
 3 !"istream", !"CONT", !0, !"strobj_p"
 4 @main.p1 = ...
 5 @main.p2 = ...
 6 @main.p3 = ...
 7 ;...[other inputs]...
 8 define void @f0(...args...) pipe {...}
 9 define void @f1 (...args...) par {
 10 call @f0(...args...) pipe
 11 call @f0(...args...) pipe
 12 call @f0(...args...) pipe
 13 call @f0(...args...) pipe }
 14 define void @main () {
 15 call @f1(..args...) par }
 16
 17Fig. 6. Abbreviated TyTra-IR code for the SOR kernel configured with

multiple pipelines lanes corresponding to reshaped data.

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

EW
G

T
(W

o
rk

-g
ro

u
p

-E
xe

cu
ti

o
n

s
/

se
co

n
d

)

Th
o

u
sa

n
d

s

P
e

rc
e

n
ta

ge
 U

ti
liz

at
io

n
 o

f
R

e
so

u
rc

e

Number of lanes of kernel's execution pipeline

Regs Aluts BlockRAM DSPs GMem-BW Host-BW EWGT

Communication wall
(Host-streams)

Computation wall

Communication wall
(DRAM-streams)

Fig. 7. Evaluation of variants for the SOR kernel generated by changing the
number of kernel-pipelines. There are 16 data points for pressure along each
dimension. We assume the kernel repeats 10 times to converge.

We can also evaluate the impact of re-using data read from
the host into the device on-chip memory. This re-use effects
the extent to which we are exploiting the hardware parallelism
of the configuration on the FPGA. As shown in Host-IO series
of Figure 8, if the SOR kernel is repeated less than 16 times,
we are in the IO-bound zone, not fully utilizing the eight lanes
in the design. Further increase in the repetition of kernel brings
us into the computation-bound zone, where we can get better
performance by optimizing the design to use lesser or more
balanced resources, or possibly by moving part of the kernel
to a peer device. This transition from IO to compute bound
performance happens at a smaller lane-count IO is from the
device DRAM with a much higher bandwidth.

We have illustrated here how the TyBEC estimator can
be used to: evaluate many design variants and the trade-offs
involved, generate feedback for optimizations, and achieve a
near-optimal design point. We would like to highlight that the
estimator is very light-weight, and e.g. the evaluation of the
five design variants in Figure 7 takes a few seconds. It is
orders-of-magnitude quicker than e.g. the Maxeler flow that
takes tens of minutes to give preliminary resource estimates
for one variant.

0

100

200

300

400

500

4 6 8 10 12 14 16 18 20 22

P
e

rc
e

n
ta

ge
 B

an
d

w
id

th
 U

ti
liz

at
io

n

Number of SOR work-group iterations
Host IO Global-Memory IO

Communication wall
(DRAM-IO) Communication wall

(Host-IO)

Compute-bound
Compute-bound

IO-bound
IO-bound

Fig. 8. Evaluating the effect of number of work-group iterations, on whether
performance is IO or compute bound, for both host and DRAM IO scenarios
(pipeline lanes on FPGA fixed at 8).

Resource 1-lane (E) 1-lane (G) 4-lane (E) 4-lane (G)
ALUTs 239 164 148K 146K
REGs 725 572 76,628 77,260
BRAM(bits) 186K 186K 449K 682K
DSPs 9 12 36 24

Cycles/Kernel 1,746 1,742 436 446
EWGT 190K 222K 763K 488K

TABLE I. COST AND THROUGHPUT ESTIMATED FROM IR (E),
COMPARED WITH RESULTS FROM GENERATED (G) VERILOG CODE

SYNTHESIZED FOR A STRATIX-5 DEVICE, FOR 1-LANE AND 4-LANE
VARIANTS OF SOR KERNEL.

B. Performance of the Estimator

To evaluate the accuracy of our cost model, we used it on
two design variants. We then simulated and synthesized the
equivalent HDL code. Table I shows their comparison. There
is some difference in the EWGT estimate due to deviation
in underlying frequency estimate, but it can be seen that the
cycles/kernel estimate is much more accurate. These results
confirm our observation that an IR designed at an appropriate
abstraction will allow fast estimates of cost and performance
that are accurate enough to make design decisions.

VI. RELATED WORK

The use of type-transformations to generate design variants
for FPGAs the way we have described in this paper is, to the
best of our knowledge, an entirely original contribution, and
the key novelty of our work. However, there is considerable
related work from the perspective of TyTra-flow being a high-
level programming tool for FPGAs. MaxJ is a Java-based
custom language used to program FPGAs [8]. Our IR has been
informed by a study of the MaxJ language. However TyTra-IR
and MaxJ are at entirely different abstractions, with the latter
positioned to provide a programmer-friendly way to program
FPGAs. The TyTra-IR, being a compiler target, is fine-grained
and at a lower abstraction, allowing a much better observability
and controllability of the design. It also enables a light-weight
cost model.

Altera-OCL is an OpenCL compatible development en-
vironment for targeting Altera FPGAs [5]. A comparison of
OpenCL with TyTra-IR would come to similar conclusions
as arrived in relation to MaxJ. In addition, we feel that the

intrinsic parallelism model of OpenCL, which is based on
multi-threaded work-items, is not suitable for FPGA targets
which offer the best performance via the use of deep, custom
pipelines.

VII. CONCLUSION

We have shown our approach to automated exploration
of the design space of FPGA, and generating HDL code for
programming the chosen design variant. Starting with a high-
level functional language Idris, we demonstrated our method of
creating program variants through the use of higher-order func-
tions and type-transformations. These program variants map
to design variants for the FPGA, expressed in our custom IR
language, the TyTra-IR. It not only allows us to describe mul-
tiple design variants for the same problem, but also to directly
associate each variant with a cost for cost-driven optimization.
Using a Successive Over-Relaxation kernel taken from a real-
world weather simulator as an example, we illustrated the
generation of program variants using type-transformations in
Idris, expressing design variants in the TyTra-IR, and costing
different variants to evaluate trade-offs. We demonstrated the
accuracy of the cost-model by comparing against synthesis
figures. Our future work will look at automating the generation
of variants and translation to IR from Idris, and improving the
sophistication of the cost model for – among other things – a
more generic memory model that takes into account different
data access patterns.

ACKNOWLEDGEMENT

The authors acknowledge the support of the EPSRC for
the TyTra project (EP/L00058X/1).

REFERENCES

[1] C.-H. Moeng, “A large-eddy-simulation model for the study of planetary
boundary-layer turbulence,” J. Atmos. Sci., vol. 41, pp. 2052–2062, 1984.

[2] E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of Functional Program-
ming, vol. 23, pp. 552–593, 2013.

[3] W. Vanderbauwhede, “Inferring Program Transformations from Type
Transformations for Partitioning of Ordered Sets,” 2015. [Online].
Available: http://arxiv.org/abs/1504.05372

[4] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66–73, May 2010.

[5] T. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. Singh, “From opencl to high-
performance hardware on FPGAs,” in Field Programmable Logic and
Applications (FPL), 2012 22nd International Conference on, Aug 2012,
pp. 531–534.

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: High-level synthesis
for FPGA-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA International Symposium on FPGAs, ser. FPGA ’11.
New York, NY, USA: ACM, 2011, pp. 33–36. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950423

[7] S. W. Nabi and W. Vanderbauwhede, “An intermediate language
and estimator for automated design space exploration on fpgas,”
in International symposium on Highly Efficient Accelerators and
Reconfigurable Technologies (HEART2015), Boston, USA, 2015.
[Online]. Available: http://arxiv.org/abs/1504.045791

[8] O. Pell and V. Averbukh, “Maximum performance computing with
dataflow engines,” Computing in Science Engineering, vol. 14, no. 4,

pp. 98–103, July 2012.

