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Abstract 

Analysis of thermal systems on the basis of the second law of thermodynamics has recently gained considerable 

attention. This is, in part, due to the fact that this approach along with the powerful tools of entropy generation and 

exergy destruction provides a unique method for the analysis of a variety of systems encountered in science and 

engineering. Further, in recent years there has been a surge of interest in the thermal analysis of conductive media 

which include solid structures. In this work, the recent advances in the second law analyses of these systems are 

reviewed with an emphasis on the theoretical and modelling aspects. The effects of including solid components on 

the entropy generation within different thermal systems are first discussed. The mathematical methods used in this 

branch of thermodynamics are, then, reviewed. This is followed by the conclusions regarding the existing challenges 

and opportunities for further research. 
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Nomenclature   

sfa
 

interfacial area per unit volume of porous media, 
1m−

 sT  temperature of the solid phase of the porous medium, K  

pc
 specific heat at constant pressure, 

-1 -1J Kg K⋅ ⋅  t  time, s  

sfh  
fluid-to-solid heat transfer coefficient, 

-2 -1W m K⋅ ⋅  
fu  velocity of the fluid in the porous medium, -1m s⋅  

J  current density, 
2amp m−⋅  X  dimensionless axial distance 

k  
thermal conductivity of solid material, 

-1 -1W m K⋅ ⋅  
x  axial distance, m  

efk  
effective thermal conductivity of the fluid ( )fkε , 

-1 -1W m K⋅ ⋅  

y  vertical distance, m  

esk  

effective thermal conductivity of the solid 

( )( )1 skε− , 
-1 -1W m K⋅ ⋅  

Greek symbols  

sN ′′′  dimensionless local entropy generation rate σ  electric conductivity, 
1 1m− −Ω ⋅  

Q  
Dimensionless volumetric internal heat generation 
rate 

ε  porosity 

q
 

Volumetric internal heat generation rate, 
-3W m⋅  

κ  permeability, 2m  

fS ′′′  
local entropy generation rate within the fluid phase 

of the porous medium, 
-3 -1W m K⋅ ⋅  fµ  fluid viscosity, 

-1 -1Kg m s⋅ ⋅  

sS ′′′
 

local entropy generation rate within the solid phase 

of the porous medium, 
-3 -1W m K⋅ ⋅  effµ  effective viscosity of porous medium, 

-1 -1Kg m s⋅ ⋅  

T  temperature, K  θ  dimensionless temperature 

fT  
temperature of the fluid phase of the porous 

medium, K  
ρ  fluid density, 

-3Kg m⋅  

 

 

1. Introduction 

Multidisciplinary efforts to achieve better control of the heat transfer rates in thermal systems are currently of 

significant academic and industrial interest [1]. This mainly stems from the rapidly growing concerns about energy 

efficiency in a wide range applications spanning from industrial to domestic appliances [2]. Further, the introduction 

of micro and bio-heat transfer and energy technologies has set new challenges for the thermal energy optimization 

[3][4][5]. Fundamentally, heat transfer has close ties with the first law of thermodynamics and this is, effectively, 

the only thermodynamic principle used in conventional heat transfer analysis. The second law of thermodynamics 

provides a measure of entropy generation rate, or irreversibility, within a system or process, and as a result, impacts 

the efficiency of the heat transfer process. Over the last few decades, there has been an increasing awareness about 

the influence of irreversibility on energy interactions [6]. This has led to the formulation of exergy analysis and the 

definition of exergetic efficiencies as an addition to the conventional energy efficiency approach [2][6][7]. Although 
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initially developed for thermo-mechanical processes, the concept of exergy was extended to chemical systems as 

well [8], and it is now being applied to the problems in ecology, environment and economy [9][7]. Central to the 

conduction of exergy analysis is the calculation of entropy generation, which then determines the rate of exergy 

destruction [10][6]. This evaluates the level of degradation of energy and therefore introduces the concept of energy 

quality [11]. The first law analysis, however, does not recognize the variations in energy quality and only conducts 

an energy accounting [12]. This difference is the principal reason for the veracity of second law analyses when 

compared to those, which are solely on the basis of the first law of thermodynamics. 

Application of second law analysis in thermal engineering, provides the possibility of optimizing a given system or 

process on the basis of the energy quality, which is very different from a first law analysis [13]. For example, it is 

well documented that the heat transfer in heat exchangers can be enhanced using various profiles of extended 

surfaces [14,15], or by optimizing the volume flow rate or the heat transfer coefficient [16]. However, design of a 

specific fin on the basis of the minimum entropy generation [17] results in different configurations compared to 

those obtained by the classical optimization methods [16]. This is also true when one is applying the concept of 

entropy generation to optimize the temperature field in electronic devices [18]. These types of thermodynamic 

analyses, i.e., the entropy generation and exergy analyses of a system, have been interestingly further extended to 

exergetic analysis of the human body [19][20]. Even for the human body, the obtained results from the energetic and 

the exergetic analyses were quite different to each other [19], which leads researchers to re-consider thermal systems 

by using the perspective of the second law of thermodynamics. This has been extended further to the consideration 

of the second law of thermodynamics over the first law for mechanical analysis in solid structures [21][22]. For 

instance, Baneshi et al. [21] used maximum entropy generation criterion to calculate the worst case scenario for 

mechanical systems under thermomechanical loads. 

In reality, all thermal processes include some level of irreversibility, primarily due to the existence of temperature 

gradients. This renders an exergetic efficiency loss and results in reducing in the energy quality. In heat transfer 

processes, entropy generation has been reported in conduction [23][24][25][26], convection [27–29], radiation 

[30][31], and/or any combination of these modes of heat transfer [32][33]. Further, there are other sources of 

irreversibilities such as viscous dissipation [27–29] and magnetic fields [34]. Initiated by the seminal works of Bejan 

[35,36], several studies have been conducted on the minimization of entropy generation [37–41] [10][12] [42]. To 

date, there has been a significant focus on exergetic processes in forced and free convection [37–41] [10][12][42]. 

However, much less attention has been paid to the entropy generation in heat conductive media [43–45]. Given that 

solid structures are found in, nearly all thermal systems, this field has major potentials to grow, and is still far from 

maturity. Perhaps more importantly, after the introduction of complex solid components into thermo-mechanical 

systems, such as composite and multilayer structures, the first and second law analyses of conductive systems has 

gained considerable attention [46][47][48]. Hence, obtaining further familiarity with the process of entropy 

generation in solid components and their modelling is clearly of interest. 

The current investigation presents a survey of the literature on the progress and challenges of the evaluation of 

entropy generation in primarily conductive systems. These include purely conductive problems and also those 
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convective-conductive problems in which conductive process have dominating roles. The review covers the physical 

aspects of entropy generation in these problems and also explains the mathematical tools that can be utilized for the 

analysis and modelling. It ultimately identifies the ongoing challenges and the areas of interest for future research. 

2. Entropy generation in thermal systems with conductive parts 

The energy equation for a three-dimensional object that experiences internal heat generation/consumption is 

governed by the following formula. 

( ) 0k T qÑ Ñ + =&  (1) 

Calculation of the temperature field through this structure is the first step in obtaining the entropy generation rate. 

Depending on the nature of the thermal conductivity, the internal heat source and the boundary conditions, the 

temperature field can be found analytically or through numerical simulations. Regardless of the method of heat 

transfer analysis, the second law analysis can be conducted on this system to provide a ready-to-use relationship for 

determining the rate of entropy generation. Using the Classius-Duhem statement of the second law, the entropy 

balance equation may be written as [49][6]: 

d 1 1
d d d d

d
V A V V

s V q n A q V S V
t T T

¢¢¢= - · + +ò ò ò ò
r r &&Ñ . (2) 

Considering steady-state and applying the divergence theorem, the surface integral on the right hand side of the 

integral can be written in terms of the volume integral. That is, 

1
d d

A V

q
q n A V

T T

æ ö÷ç ÷· = Ñ · ç ÷ç ÷çè øò ò
r

r r
Ñ . (3) 

Using Eq. (3) to replace the surface integral with the right-hand side of Eq. (2), we obtain 

1
d d d 0

V V V

q
V q V S V

T T

æ ö÷ç ¢¢¢÷- Ñ · + + =ç ÷ç ÷çè øò ò ò
r

&& . (4) 

Since each integral in Eq. (4) is a volume integral, it follows that 

q q
S

T T

æ ö÷ç¢¢¢ ÷= Ñ · -ç ÷ç ÷çè ø

r
&& . (5) 

By consideration of a one-dimensional solid wall of thickness L, made of a material with thermal conductivity k(T) 

as illustrated in Fig. 1, the energy Eq. (1) can be simplified to [50][49] 
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d d
( ) 0

dx d

T
k T q

x

é ù
ê ú+ =
ê úë û

& . (6) 

Assuming one-dimensional heat transfer, which holds in the current configuration, and incorporating energy, Eq. 

(6), into Eq. (5), the following equation is obtained for the local entropy generation rate. 

2

2

( ) d

d

k T T
S

xT

æ ö÷ç¢¢¢= ÷ç ÷÷çè ø
& . (7) 

Equation (7) is one of the fundamental equations used in entropy related analyses in solid media. It is imperative to 

note that as demonstrated by Aziz and Khan [49], the internal heat generation in solid media does not explicitly 

appear in the entropy generation equation. 

In the pioneering work of Ibanez et al. [51] it was shown that entropy generation in a cooling process could be 

optimized by controlling the convective cooling parameters. The entropy generation in a process of heat conduction 

is a function of the temperature field [23,50]. It, therefore, depends upon the thermo-physical properties of the 

medium, internal energy generation, and the thermal conditions imposed on the boundaries of the medium. 

Following Ref. [51], a number of studies calculated the classical entropy generation in pure conduction processes or 

minimized that in the processes within the pure conductive environments. Strub et al. [52] analyzed entropy 

generation in a wall with a purely sinusoidal temperature boundary condition on one side and a constant temperature 

condition on the other side. Later, Al-Qahtani and Yilbas [53] used the concept of entropy generation to analyze the 

one-dimensional transient heat conduction during laser pulse heating. Recently, Ali et al. [54] extended this work to 

the pure analytical treatment of energetic and entropic analyses of a cylinder due to laser short-pulse irradiation. It 

was shown that the general behaviour of the entropy generation was similar to the temperature field. However, when 

a parameter varies, the variation on the temperature and entropy generation fields may not be similar [54]. Aziz and 

Khan [17] studied heat transfer and entropy generation analyses of convective pin fins with convective heating at the 

base and convective heat loss at the tip. The fluid friction at the base, lateral surface and tip of the fin were also 

included in the calculations [17]. 

Subsequent to the introduction of entropy generation in solid media [51] a number of studies contributed to the 

advancement of this field, see for example [55][52][53]. These investigations focused on various conductive media 

such as homogeneous structures, functionally graded materials and composite geometries [23][50]. The next step 

was to include solid systems in convective media which resulted in the investigation of conductive-convective 

media. This group of problems is different from the conventional convection problems by the fact that the overall 

heat transfer in a conductive-convective system is strongly dependent upon the conduction of heat in the solid 

components. Entropy generation analysis, then, found its way into porous thermal systems [56][57][58][59], as an 

important class of conductive-convective systems. 

In the following, the literature on these sub-categories is discussed. 
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2.1. Pure conductive media 

One of the first articles on entropy generation in solid media was authored by Bisio in 1988 [60]. He analyzed 

entropy generation in one-dimensional transient conduction in a system with time-dependent thermal boundary 

conditions. Here, the authors assumed that the thermal conductivity of the slab varies with the local temperature as 

well as the coordinate along the direction of the heat conduction [60]. Many investigators followed Bisio’s path and 

opted in favor of a thermodynamic analyses of conductive systems. The investigations of Ibanez et al. [51] and 

Kolenda et al. [55] were among these works. Ibanez et al. [51] considered entropy generation in a slab with uniform 

internal heat generation and different convective cooling conditions on the opposing faces of the slab. In this work, 

it was shown that the total entropy generation in the system can be minimized with the proper choice of the 

convective cooling parameters [51]. 

The work of Kolenda et al. [55] demonstrated that entropy generation in steady state conduction (one-dimensional or 

multidimensional) could be always minimized by placing heat sources in the conducting medium. Given this 

interesting conclusion, other researchers applied the second law of thermodynamics to conductive systems to 

analyze the entropy production within these structures [49][61][23]. These attempts led to the development of some 

contentions and debates. As an example, Aziz and Khan [49] conducted a theoretical analysis of entropy generation 

in heat generating solids and questioned the validity of some other entropy generation analyses of this problem. 

These authors mathematically demonstrated that the thermal energy sources do not explicitly appear in the entropy 

generation equation [49]. They therefore, concluded that the previous analyses, which considered internal heat 

generation as an extra source of irreversibility were incorrect [62][63]. In a subsequent study, Aziz and Khan [61] 

examined this new formulation of entropy generation [49] on all the three fundamental configurations, namely slabs, 

cylinders and spheres with constant boundary temperatures. 

Later, Torabi and Aziz [23] investigated the generation of entropy in an asymmetrically cooled hollow cylinder with 

temperature-dependent thermal conductivity, internal heat generation and radiation effects on the outside surface. 

They calculated the local and total entropy generation rates for this geometry. These authors [23] demonstrated that 

with a proper choice of the convection parameters, the total entropy generation could be minimized (see Fig. 2). 

Torabi and Zhang [50] addressed entropy generation rate problems in the regular and functionally graded material 

slabs with temperature-dependent internal heat generation and convective-radiative boundary conditions. In addition 

to the effects of convection, this study included those due to radiation. Figure 3 shows that radiation could have 

similar effects to convection as in the previous studies [23]. This figure also indicates that the total entropy 

generation rate can be minimized by optimizing the radiation. 

Given the increasing importance of the thermal analysis of composite multilayer structures this approach has 

recently gained increased significance. These types of structures are used extensively in manufacturing applications, 

largely due to their excellent mechanical and thermo-physical properties, when compared to those of conventional 

materials. Ka_ka and Yumruta_ [64] presented experimental and theoretical studies on the transient temperature and 

heat flow in multilayer walls and flat roofs. In addition, Amini-Manesh et al. [65] numerically demonstrated the 



7 

importance of using composite materials as a substrate, which significantly enhances the flame stabilization in a 

reactive nano-film. Conduction heat transfer is also of significance in composite media, due to widespread 

applications of composite structures in the electronics industry [66][67][68]. It follows that predictions of the 

temperature and entropy generation within composite structures are important for many industrial applications. As a 

result, in recent years there have been a significant number of attempts to examine composite and multilayer media, 

from the second law perspective. 

Torabi and Zhang [47] were among the first who investigated the generation of entropy in composite solid media. 

They considered one-dimensional steady conduction in a two-layer composite, hollow cylinder with temperature-

dependent thermal conductivity and constant temperature (case one) or pure convective cooling on the internal and 

external surfaces (case two). Figure 4 shows the configuration of the double-layer hollow cylinder in their study 

[47]. These authors [47] further assumed perfect thermal contact between the two layers and varied the internal heat 

generation in each layer of the material. Substantial differences between the total entropy generation rate for the two 

cases were observed [47]. This implies that, in general, consideration of a constant thermal boundary condition in 

place of the actual convective boundary condition, cannot be adequately justified. Further, the current investigation 

indicates that in addition to the different values for the total entropy generation rate in the two investigated cases, the 

trend could sometimes be different. For example, by increasing the interface radius, the total entropy generation rate 

is increased in the first case. However, through a  similar variation of the interface radius, the total entropy 

generation rate may decrease or increase in the second case [47]. More recently, by considering imperfect thermal 

contact resistance (TCR), Torabi et al. [48] extended the analyses of Ref. [47] to entropy generation analysis for the 

three fundamental double-layer solid structures previously investigated in Ref. [61]. It was observed that the 

existence of TCR could lead to an interesting phenomenon within the composite media, in which increasing the 

TCR reduces the total entropy generation rate. Hence, neglecting TCR in entropy generation simulation in 

multilayer materials can cause overestimation of the total entropy generation rate [48]. 

The investigations presented and discussed here, considered only a fraction of the general problem and there exists a 

handful of structures and conditions, which still need to be analyzed. For instance, the second law analyses of 

multilayer composite structures with more than two layers have yet to be conducted. Because the TCR has been 

shown to have a substantial influence upon the entropy generation in composite structures [48], the temperature 

jumps are speculated to play a similar role within the interface of conductive-convective systems. Further, velocity 

slip is expected to have a strong impact on the entropy generation rate within the system. Rigorous investigations of 

these effects remain as future research tasks. 

The above discussion mainly has considered the steady-state processes. The number of transient analyses of entropy 

generation in pure conductive configurations is very limited. This is mainly due to the inherent difficulty of these 

analyses, which transform the ordinary differential equations into partial differential ones. A study of transient 

entropy generation analysis has been recently performed by Ali et al. [54]. This investigation opted in favour of 

transient entropy generation rate in a cylinder under laser-pulse heating [54]. Here, as mentioned in the introduction, 

a purely analytical solution was developed to obtain the temperature field. The calculated temperature field was then 
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incorporated into the entropy generation formulation. However, due to the complexity of the derived mathematical 

formulation, the local entropy generation is difficult to be integrated over the entire geometry, and hence the total 

entropy generation has not been reported. 

A summary of the recent investigated geometries and the employed solution methods, which will be discussed in 

section 3, has been provided in Table 1. 

2.2. Conjugate heat transfer systems 

The thermal aspects of the problem of conjugate heat transfer have been already reviewed [69][70]. As stated 

previously, entropy generation in convective systems has been the subject of intensive research for a relatively long 

time [42][71]. However, less attention has been paid to the media that contain both the conductive and convective 

constituencies. This is also true for conjugate conduction-radiation heat problems. Recently, this approach has been 

investigated by a number of researchers through the application of the second law to a number of convective-

conductive or conductive-radiative media. Here, the process of entropy generation in these systems is considered, 

and a particular attention is paid on the role of the solid phase in this process. 

Ibáñez and Cuevas [72] considered the fluid flow, heat transfer and entropy generation rates within a parallel wall 

microchannel, under a uniform transverse magnetic field. The magnetic field produced the Lorentz force and this 

was assumed to generate a fully developed flow [72]. The conjugate heat transfer problem in an MHD flow between 

two parallel solid walls of finite thicknesses, was analyzed from an optimization perspective. The principal objective 

in this investigation was to better understand the influences of the thermal conductivity of the fluid and channel wall, 

on the entropy generation [72]. This investigation demonstrated the existence of optimal values of these quantities, 

which result in the minimum entropy generation rates [72]. Later, these analyses were repeated for a viscous flow 

between parallel solid walls of finite thickness [45]. It was concluded that by the incorporation of wall dissipation in 

the evaluation of entropy generation in natural or forced convection, the channel wall thickness can be optimized 

[72][45]. This conclusion was also true for the optimization of the wall to fluid thermal conductivity ratio [72][45]. 

These findings are therefore of importance in the design of heat transferring devices [45][72]. 

In a recent study, Ibáñez et al. [73] extended the investigation of Refs. [45][72] to entropy generation analysis in a 

microchannel by considering the uniform heat flux boundary conditions and hydrodynamic slip between the channel 

walls and the fluid. This study illustrated the possibility of finding an optimum value of the heat flux, slip length, 

wall to fluid thermal conductivity ratio and Peclet number to minimize the global entropy generation rate. Further, as 

shown in Fig. 5, Ibáñez et al. [73] concluded that by fixing all other parameters and increasing the wall to fluid 

thermal conductivity ratio, the optimum rate of the global entropy generation increases. 

Several other recent articles investigated the entropy generation in conjugate convective-conductive systems 

[74][75]. Torabi et al. [74] analyzed the first and second laws of thermodynamics within a cylindrical system. 

Nanofluid flow was considered between the inner and outer walls and these two solid structures were further 

included in the model. Temperature-dependent thermal conductivities, for solid materials, were assumed. Constant, 
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but uneven, values of internal heat generations were incorporated into the energy equation of the solid parts. In a 

separate study, Torabi and Zhang [75] modeled temperature and entropy generation within a cylindrical system. 

Their model considers the inner solid cylinder, the MHD flow between the inner and outer cylinders and the outer 

hollow cylinder [75]. Thermal conductivities of the solid materials were assumed to be temperature-dependent while 

that of the fluid was considered constant [75]. These studies [74][75] demonstrated that due to the almost constant 

temperature within the inner solid layer of the rotating cylinder, this layer might not participate in the entropy 

generation. Nonetheless, the outer layer greatly affects the local and total entropy generation rates. 

Currently, there is a shortage of information on the conjugate radiation-conduction heat transfer relationship and the 

associated entropy generation. To date, the only investigation in this area is the work of Makhanlall and Liu [32]. 

This investigation, included a second law analysis of a solid-liquid phase change systems involving both conduction 

and radiation [32], and assumed that both phases were semi-transparent and that the liquid motion does not occur 

within the system, as the material properties are identical for both phases. By calculating the entropy generation, the 

exergy destruction due to the conduction and radiation modes of heat transfer could be calculated [32]. Makhanlall 

and Liu [32] concluded that, although often neglected, radiation heat transfer plays an important role in the exergy 

destruction. Future research on the second law analysis of conductive-convective-radiative systems is expected to 

provide further insight into the influences of these combined modes of heat transfer upon the generation of entropy. 

For the sake of completeness the above review has been tabulated in Table 2. 

2.3. Porous media 

It is well understood that porous solids can greatly facilitate heat transfer rates [76][77]. This is due to the dual 

influences of the solid medium on increasing the effective thermal conductivity of the composite solid-fluid 

medium, and also providing an extensive heat transfer surface area [77]. This has led to the wide application of 

porous materials in a variety of processes spanning from cooling technologies to bio-heat transfer [78]. However, 

the excellent heat transfer characteristics of porous media are associated with significant impedance of the flow. As 

a result, there have been considerable efforts on thermo-hydraulic optimisation of heat transfer processes in porous 

media, see for example Refs. [79][80][81][82]. A challenge before this approach is the multiplicity of possible 

optimisation criteria. For instance, optimisation can be on the basis of Nusselt numbers (defined at different 

locations across the system), temperature profiles or pressure drop. It is not immediately clear which of these is the 

most suitable criterion. Further, these features of the system are strongly interconnected and varying one would 

change the others [79]. This may highly obscure the optimisation process and even cause confusions. One possible 

remedy for this situation is the introduction of a single optimisation criterion, which includes all the pertinent 

thermal and hydrodynamic effects. The total entropy generation clearly provides such criterion. The irreversibilities 

encountered in heat transfer processes within porous media are, generally, due to the transfer of thermal energy 

across finite temperature difference and the viscous dissipation of the flow kinetic energy. The former, usually, 

occurs by conduction of heat within the solid matrix or convective and radiative heat exchanges between the solid 
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and fluid phases [77]. The latter is due to the interactions occurring between the viscous flow and the solid matrix, 

and the extended contact surface area, between the moving fluid and the solid surface [76][83][84]. 

To model this situation, the method of representative elementary volume is often employed [76] and a system of 

equations that describe the transport of momentum and thermal energy are solved [76][77]. Depending upon the 

pore scale Reynolds number either of Darcy, Darcy-Brinkman or Darcy-Brinkman-Forchheimer equations are 

employed [76]. Consideration of local thermodynamic equilibrium divides the thermal energy transport into two 

major sub-categories. Local thermal equilibrium (LTE) greatly simplifies the problem and renders a single 

differential energy equation for the composite medium [77]. However, this approach ignores the generation of 

entropy as a result of heat exchanges between the solid and fluid phases. A more accurate approach releases the 

assumption of local equilibrium and establishes the local thermal non-equilibrium (LTNE) condition, and hence 

considers the irreversibility of local heat exchanges within the medium [78][85]. The generation of entropy due to 

the flow of fluid and heat in porous media has been investigated by a number of authors. In these works, usually, the 

problem of heat transfer is solved first and the resultant temperature and hydrodynamic fields are used to calculate 

the rates of entropy generation. The relative significance of heat transfer irreversibility (HHI) and fluid flow 

irreversibility (FFI) are measured by the so-called Bejan number defined as Be=HHI/(HHI+FFI) [10].Generation of 

entropy in porous media under natural convection has been studied most extensively. However, investigations of 

entropy generation under forced convection are less frequent. For conciseness reasons, the following discussion and 

review mostly concern the forced convection of fluid through a porous solid. The reader is referred to Ref. [71] for 

the survey of literature on entropy generation in free and mixed convection within porous media. Further, some very 

recent examples of investigations in this area could be found in [86][87][88][89]. Hooman and Ejlali [56] 

numerically solved the Darcy-Brinkman model and the LTE energy model for a fully filled porous pipe under 

developing condition. They calculated the rate of entropy generation and Bejan number for this configuration [56]. 

The effects of viscous dissipation on the temperature fields and entropy generation in a fully filled channel were 

investigated by Hooman and Haji Sheikh [90]. They conducted an extensive numerical study and demonstrated that 

viscous dissipation decreases the Nusselt number in the developing and developed regions of the flow conduit under 

isothermal wall heating [90]. In an attempt to provide optimization guides for the fully filled porous channels, 

Hooman et al. [57] analytically solved the Darcy-Brinkman model and the LTE energy equation. They considered 

three different boundary conditions on the external surface of the channel, and provided expressions for the Nusselt 

and Bejan numbers and rates of entropy generation. This analysis was later extended to the developing flows by 

considering a simple Darcian flow with the LTE condition and under constant temperature boundary condition [91]. 

A parametric study was conducted which demonstrated that entropy generation rate inversely correlates with the 

Peclet number and is directly related to Brinkman number [91]. The problem of entropy generation in a fully filled 

porous channel under fully developed condition was also considered by Mahmud and Fraser [92]. They considered 

constant but dissimilar wall temperatures and conducted analytical and numerical studies on the heat transfer and 

entropy generation characteristics of the system [92]. This investigation was later extended to unsteady cases by 

Kamish [93]. Further, through linearization of the governing equations, the unsteady heat transfer, fluid flow and 

entropy generation through a metal foam was investigated analytically by Mahmud et al. [94]. In a separate work, 



11 

Mahmud and Fraser [95] calculated the rate of entropy generation during the natural convection of heat in a porous 

cavity under magneto-hydrodynamic effects. Hydro-magnetic effects were, also, considered in the problem of 

entropy generation in a channel fully filled with porous media and under mixed convection [96]. Entropy generation 

rates in partially filled conduits were calculated by Morosuk [97], who demonstrated that the maximum rate of 

entropy generation occurs on the porous-fluid interface. In this work, the behavior of entropy generation rate was 

mainly attributed to the hydrodynamic characteristics of the problem [97]. Entropy generation minimization has 

been used as a design criterion in porous heaters by Shakouhmand et al. [98]. They calculated the optimal porosity 

for a fully filled porous conduit and demonstrated that the optimum matrix porosity increases with the Reynolds 

number [98]. More recently, Mahdavi et al. [99] conducted a numerical study on the partially filled conduits and 

calculated the flow field, Nusselt number and entropy generation rates. They considered two configurations in which 

porous insert is either placed at the core of the pipe or is attached to the inner wall [99]. Their results highlighted the 

effects of the placement of porous material in the conduit on the heat transfer and entropy generation rate [99]. They 

also demonstrated that the thermal conductivity ratio can dominate the level of heat transfer enhancement [99]. 

Assumption of LTE is the common feature of all the preceding studies of entropy generation in porous media. 

Deviation from thermodynamic equilibrium implies higher levels of irreversibility. In such cases, entropy generation 

is not limited to those due to viscous dissipation and external heat transfer sources and, the internal heat exchange 

processes introduce an important mechanism of entropy generation. When LTNE model is employed for thermal 

analysis of a porous system, an extra energy equation is used in the analysis due to the heat exchanges between the 

fluid and solid phases of the porous medium [100]. This new equation, which is coupled with the energy equation of 

the fluid phase, provides information on the temperature of the porous solid structure of the system. The difference 

between the solid and fluid temperature and the resultant heat exchange between the two is a major source of 

entropy generation in the solid porous structure. Given this, it is surprising that there is currently a small number of 

studies on entropy generation in porous systems under the LTNE conditions. In a recent work, Buonomo et al. [58] 

conducted a study on porous filled micro channels through using LTNE model. They analytically investigated the 

hydrodynamic and thermal processes between two parallel plates filled with a porous medium [58]. Due to the 

microscale size of the channel and rarefaction effects of the gas flow under consideration, the first order velocity slip 

and temperature jump conditions at the fluid-solid interface were used [58]. This study provided analytical 

expressions for the velocity and temperature fields as well as the local and total entropy generation rates [58]. Torabi 

et al. [59] took an LTNE approach and investigated temperature distribution, Nusselt number, and local and total 

entropy generation rates within a channel partially filled with a porous material. The lower wall of the channel was 

exposed to a constant heat flux and the upper wall was assumed to be adiabatic. Viscous dissipation effects were 

incorporated into the energy equations and analytical solutions were developed for the velocity and temperature 

fields [59]. Further, Nusselt number and local and total entropy generation rates were evaluated and a temperature 

and Nusselt number bifurcation phenomena were observed [59]. Furthermore, for the first time, a bifurcation 

phenomenon regarding the entropy generation rate was reported by this work (Fig. 6) [59]. The bifurcation in some 

other heat transfer characteristics, such as heat flux or Nusselt number, is defined as a sudden jump from a positive 

value to a negative value or vice versa [59][101][102]. However, since the entropy production is a positive quantity, 
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by entropy bifurcation we mean that the value of entropy generation features a sudden jump [59]. Torabi et al. [100] 

considered the exothermic or endothermic feature of physical or physicochemical processes for entropy generation 

analysis of a channel partially filled with porous materials. Here, both local and total entropy generation rates have 

been investigated and illustrated. It was shown that, for a specific set of parameters, a certain thickness for the 

porous medium can be found such that the Nusselt number or the total entropy generation of the system can be 

optimized. Trevizoli and Barbosa [103] used the second law of thermodynamics to optimize a regenerator. One-

dimensional Brinkman–Forchheimer equation was used to describe the fluid flow in the porous matrix and LTNE 

equation model was employed to determine the temperatures in the fluid and solid phases [103]. By using finite 

volume method, cycle-average entropy generation due to axial heat conduction, fluid friction and interstitial heat 

transfer were calculated. Variation of the total entropy generation versus particle diameter and aspect ratio showed 

the second law optimization is dependent upon other parameters of the system [103]. In a series of recent works, 

Ting et al. [104][105] analytically examined the thermal characteristics and entropic behavior of a fully-filled porous 

channel saturated with nanofluid. Their investigated configuration was subject to fully developed flow and 

asymmetric thermal boundary conditions [104], and could also include internal heat generation within the solid 

phase [105]. These authors applied LTNE between the nanofluid and the solid structure and demonstrated that the 

addition of nanoparticles reduces the local temperature difference between these two phases [105]. It was shown that 

the existence of internal heat sources in the solid phase majorly affects the system irreversibility. In particular, this 

study showed that the internal heat generation in the solid phase could have destructive influences upon the second 

law performance of the system [105]. Table 3 provides a summary of the recent investigation on LTNE analysis of 

the entropy generation in solid porous structures experiencing forced convection of heat. 

In general, the analysis of entropy generation under non-local equilibrium in porous solids is still in its early stages. 

The previous heat transfer investigations [106][107][108][109] can be extended to the second law analyses. In 

particular, the bifurcation of entropy generation rate, deserves further attention as currently there is only a small 

number of studies of this phenomenon [58][59][100]. 

2.4. Thermoelectric systems 

The need for electrical power is constantly growing across the world. The economic and environmental concerns 

associated with the conventional energy sources for conversion to electric power generation has led scientist to new 

concepts such as thermoelectric systems [110]. An example of such devices is a thermoelectric cooler which works 

as a reversed heat engine operating between the two heat reservoirs [25]. These devices which are in a solid state 

have better efficiency compared with the conventional systems for low capacity power applications [111]. 

Importantly, their solid structure offers advantages such as noiseless operation and low-cost maintenance [24][110]. 

Due to the solid structure of these systems, Fourier heat transfer model is considered for the thermal analyses 

[112][113][114]. In general, the unsteady energy balance in thermoelectric devices is written as [113]: 



13 

( )
2T J

c k T J T
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ρ β
σ

∂
= ∇ ∇ + − ⋅∇

∂


 (8) 

The first, second, and third terms of the right hand side of Eq. (8) describe the heat conduction, Joule heating, and 

Thomson effect, respectively. However, when it comes to micro and nanoscales, more appropriate models such as 

Cattaneo-Vernotte are required [26]. Therefore, Eq. (8) may change to the following energy equation for the small 

scale devices under electrothermal effects [26]. 

( )
2 2

2

T T J
c k T J T

t t
τ ρ β

σ
∂ ∂

+ = ∇ ∇ + − ⋅∇
∂ ∂


 (9) 

where the first term on the left hand side of Eq. (9) accounts for the structure and size of the solid structure on the 

heat transfer equation. As mentioned above, another two main terms, which are Joule heating and Thomson effect, 

appear in the energy equations [112][113][114]. In a recently published article [115], yet another heat generation 

term called Peltier effect has been discussed through the formulations. The thermal analysis of these systems has 

been well investigated throughout the literature; see Refs. [116][114] for a review of this topic. However, 

thermodynamic analysis of these solid systems is rather limited [24][25] [26][114]. In all of these analyses [24][25] 

[26][114] the considered geometry has been treated one-dimensional fin-type [117], to eliminate multi-dimensional 

partial differential equations. These analyses can be performed for steady state [24][25] or transient [26] processes. 

Similar to that discussed in the earlier subsections, when entropy generation in solid thermoelectric systems is 

considered, first the temperature field is obtained and consequently the thermal field is digested into the entropy 

formulation. Expectedly, that the entropy generation formulation consists of new terms which account for entropy 

generation due to Joule heating and Thomson effects [114]. Kaushik and Manikandan [24] provided some 

information regarding the geometry of the system for exergy analysis. With the exception of the cited articles there 

is no further thermodynamic optimization of thermoelectric solid systems. Hence, this topic needs further 

investigation and attention. Moreover, the transient energy analyses and consequently entropic analyses of 

nanoscales thermoelectric systems can be further analysed by using dual-phase-lag heat transfer models [118][119]. 

The most important contributions about thermodynamic analyses of thermoelectric systems have been tabulated in 

Table 4. 

3. Analysis methods 

In general, theoretical heat transfer modeling encounters one or more challenging partial differential equations, 

which could be coupled with each other. To solve these set of equations, the first step is to make reasonable 

simplifying assumptions. For instance, in solving energy equations within solid media unidirectional heat transfer is 

often considered to convert partial differential equation (PDE) into an ordinary differential equation (ODE) [120]. 

Let us consider a three dimensional wall (Fig. 7). The steady state energy equation without internal energy sources 

for this wall is given by [121] 
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If the four surfaces which are perpendicular to y and z axes are assumed to be well insulated, the heat merely 

transfers through x direction. Then Eq. (7) reduces to the following ODE [122]: 

d d
0

d d

T
k

x x
  =  

 (11) 

Although due to some nonlinearities involved within the problem (say k=k(T)), the obtained ordinary differential 

equation may not be readily solvable, they take less expenses to be tackled. 

Following this step, some mathematical manipulations may be necessary to decouple the equations. For example, 

the conduction energy equation in solid phase of porous media can be coupled with fluid phase energy equation in 

through convection terms. This occurs during the thermal analyses of porous systems under LTNE model (so-called 

two-energy equation model). Therefore, the following coupled equations may be considered [83][59]: 
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22
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k h a T T

y

∂
= − −
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where Eq. (12a) represents the energy equation in fluid phase and Eq. (12b) governs the heat flow through the solid 

phase of the porous system. As can be clearly seen in Eqs. (12a) and (12b), are coupled with each other through the 

term ( )sf sf s fh a T T−  which counts for the convective heat transfer between the two phases. By increasing the order 

of derivatives, these coupled equations are decoupled to yield a new set of differential equations. Interested readers 

may refer to the recently published papers on heat transfer and entropy generation in porous media using LTNE 

model [123][124][102][59]. In some cases this step helps providing exact analytical solution for the problem 

[83][59]. However, under more involved situations, application of numerical methods is unavoidable [32][125][48]. 

Numerical techniques, such as Newton-Raphson, bisection, secant or fixed-point iteration methods, can be applied 

to find the coefficients of the solution [50][48]. They can be, further, applied to the original energy equation together 

with boundary conditions [32][125]. In the latter case, finite volume or finite difference methods could be employed. 

Consequently, the obtained temperature distributions are digested into the entropy formulations. If the system is a 

purely conductive one, the provided entropy equation in Section 2 is used. Regarding systems with other heat 

transfer modes, the appropriate formulation for the entropy generation has to be considered. For example, if a porous 

system under LTNE model is investigated, the entropy formulas may be written as: 
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where Eq. (13a) and Eq. (13b) give local entropy generation rate in solid and fluid phases of the porous medium, 

respectively. A more comprehensive discussion can be found in Refs. [59][83][104][100][58]. 

Here, we briefly discuss the mathematical method used for the analysis of entropy generation in solid systems. 

3.1. Exact analytical methods 

It is often possible to find exact analytical solutions for the linear ordinary differential equations [14][121]. By 

taking this approach, along with the associated simplifying assumptions, the model may lack some realistic features. 

However, exact analytical solutions help developing a deep understanding of the behavior of the system under 

investigation. Importantly, the analytical results can be, further, used for validation of numerical tools. Analytical 

approach has been taken in a number of investigations of entropy generation in solid media [126][49][61], entropy 

generation in conjugate convection-conduction systems [72][45], and even for heat transfer and entropy generation 

within convective fins [17]. It should be noted that some energy equations for very fundamental geometries, such as 

the following discussed cooled homogeneous slab, which contain temperature-dependent parameters may be also 

solvable with exact analytical methods. An example of this can be seen in the interesting work of Aziz and Khan 

[61]. However, when dealing with the systems containing radiation effects [32][48], numerical methods are 

necessary to obtain the temperature distribution of the system and predict the entropy generation rate within the 

system. 

To make the given descriptions clearer, an exemplary problem is solved analytically in this section. We consider a 

homogeneous slab made of a material with temperature-dependent thermal conductivity, which is cooled 

asymmetrically. The slab generates heat with a constant rate. Figure 8 shows the configuration of the problem. 

Considering these assumptions, the one-dimensional non-linear energy differential equation within the slab can be 

expressed as: 

( )( )0

d d
1 0 0

d d

T
k a T T q x L

x x
 + − + = < ≤  

 , (14) 

with the following boundary conditions 

0

d
0

d x

T

x =

=  (15a) 
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These equations can be easily non-dimensionalized using the dimensionless parameters described in the literature 

[50][47]. Hence, the nondimensional form of the equations are written as 

( )( )d d
1 1 0 0 1

d d
Q X

X X

θα θ + − + = < ≤  
 (16) 

0

d
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d XX

θ
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=  
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1 cX
θ θ

=
=  (17b) 

Although the main energy equation for this problem is nonlinear, it can be still solved using exact analytical 

methods. In this case, the energy Eq. (16) is a nonlinear second order ODE, which can be easily solved through a 

change of variable ( d

d
v

X

θ
= ) and, therefore, transforming the original equation into a first order ODE, see Ref. 

[127]. Employing Maple 14, using the available boundary conditions and after some manipulation, the following 

relation can be used to describe the temperature of the slab: 
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2
2 21 2 1 2

2 2
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c c

Q
X Q

X

αθα α α α α αθ θ
θ

α

 
− + − + − + − + + 

 =  
(18) 

This formula can be then incorporated into the entropy generation relationship for the solid structure [50][47]. For 

the present one-dimensional problem, the volumetric entropy generation Eq. (5) can be written as: 

1xqd
S q

dx T T

′′ ′′′ = − 
 

   (19) 

Using Fourier’s law, for a slab with regular material Eq. (19) becomes 

1 1
( )

d dT
S k T q

dx T dx T
 ′′′ = − − 
 

   (20) 

By incorporating the energy equation, i.e., Eq. (14) in Eq. (20), the latter reduces to 

2

2

( )k T dT
S

T dx
 ′′′ =  
 

  (21) 

With the introduction of dimensionless variables, the dimensionless local volumetric entropy generation rate sN  for 

the slab with homogeneous material is given by 
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Here, it should be noted that, as discussed by Aziz and Khan [49], the internal heat generation will not appear in the 

entropy generation formulation. In fact, the effects of internal heat generation on the temperature formulation 

influence the entropy generation rate in an indirect way. Due to the analytic nature of this method, appropriate 

parametric values can be used to determine the temperature and local entropy generation rate as depicted in Fig. 9. 

This analysis can be further extended to double-layer composite walls by incorporating another energy equation for 

the second wall and related boundary conditions at the interface of the two walls. The two walls, depending on their 

size and surface condition, may or may not be in perfect thermal contact with each other. This has been discussed 

thoroughly in a series of recent publication by Torabi and co-workers [128][47][48]. For example, if the imperfect 

thermal contact is valid for the interface of the two walls, the following boundary conditions, in addition to the outer 

layers boundary conditions should be employed [48]: 

( )( ) 1
1 2 2 2 1 1 1 0
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Where the right hand side of Eq. (23a) introduces a temperature jump into the system. For more information 

regarding the TCR and its effects on the temperature field of conductive systems, readers are encouraged to consult 

with the recently published articles in this regard [129][130][131]. 

3.2. Approximate analytical techniques 

In conduction problems the governing equation becomes nonlinear if the thermal conductivity of the material is 

temperature-dependent [23]. Similarly, the convection term becomes nonlinear due to the power law dependence of 

heat transfer coefficient on the temperature difference. The radiation term contains two nonlinearities, one due to the 

Stefan–Boltzmann law of radiation, and the second due to the fact that the surface emissivity is a function of 

temperature. Other nonlinear terms arise in the differential equation of the material by introducing temperature-

dependent internal heat generation [132][128]. Under most situations, even with one nonlinear term, the ODE 

describing the energy balance does not admit an exact analytical solution. The following energy equations have 

some of the above-mentioned characteristics and cannot be treated analytically [50][23]. 
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Consequently, a number of non-exact solution procedures can be used to address these types of problems. These 

methods which deliver a relation for the temperature distribution and, accordingly for the entropy generation within 

the material, are regarded as the approximate analytical techniques. They transfer the original nonlinear differential 

equation into an infinite number of simpler, analytically solvable differential equations. Since these tend to sum up a 

very large numbers of solutions, they are regarded as approximate solutions. When a reasonable number of 

transformed differential equations are solved and their results are added together, further differential equations are 

neglected. This imposes a truncated error in the results, which is an inherent characteristic of these techniques [133]. 

One of the powerful approximate methods, which has been used in heat transfer problems [134] and entropy 

generation analyses of solid media [23][135][128][50], is the differential transformation method (DTM). DTM is 

based upon Taylor series expansion, and is able to deliver highly accurate results in various challenging situations 

such as problems with convective-radiative boundary heat loss [23][135][50] and highly nonlinear internal heat 

generation [128]. Using such approximate methods can provide relations for the temperature and entropy generation 

along with a physical insight into the effective parameters. This is typically superior to the traditional numerical 

methods under many situations. This method transfers each term of the differential equation into a new term which 

is used in the series [23]. Afterwards, using the differential inverse operator, the final solution for the energy 

equation of the structure can be obtained. For example, consider the energy equation for the homogenous cooled 

wall in Ref. [50]. The energy equation is as follows: 

d d
(1 ( )) (1 ) 0

d d
Q

X X

θβ θ γ αθ + − + + =  
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Using the DTM technique and taking the differential transform of Eq. (26), the above equation is transformed to: 
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Now by varying parameter k  form zero, the values of ( )kΘ  are determined. Then, by the following equation 

which is called differential inverse transform function is used to obtain the final energy equation. 

0

( ) ( )
n

k

k

X X kθ
=

= Θ∑  (28) 

A more detailed discussion of this technique can be found in Refs. [136][137]. 
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When the convective aspects are incorporated into the system, the momentum and energy equations can be coupled 

[138][74][75]. In some cases, the velocity field can be directly incorporated into the energy equation [74]. More 

frequently, however, direct incorporation of the velocity into the energy equation result in an analytically unsolvable 

problem and therefore necessitates the use of numerical techniques [75][138]. To circumvent this barrier, a Tylor 

series of the velocity field is used. This makes the obtained temperature approximate, yet it has the advantage of 

producing an analytical relation for the temperature field. Recently, Mahian et al. [138] and Torabi and Zhang [75] 

used this procedure to obtain temperature distribution in convective media and accordingly incorporated these 

temperatures into entropy equations. The work of Mahian et al. [138] was performed in connection with purely 

convective systems, while Torabi and Zhang [75] investigated a conductive-convective system. 

3.3. Numerical simulations 

If the geometry is complicated and/or the energy equations, together with the boundary conditions involve strong 

nonlinearities, the use of numerical solution is mostly unavoidable. Further, numerical solutions are often used when 

energy and momentum equations are strongly coupled [99]. In these situations there are two main approaches to 

numerical solution of the equations. One method is to make use of commercial modelling software, customized for 

heat transfer and thermal systems. Two well-known of these are ANSYS Fluent and COMSOL Multiphysics. The 

other method is to develop a code in programing languages such as FORTRAN. One of the early investigation for 

the numerical entropy generation analyses of thermal systems, which involves heat conduction, has been done by 

Orhan et al. [139]. Here, finite control volume approach was used to predict the entropy generation rate for a phase-

change process in a parallel plate channel. In a recently published work by Makhanlall and Liu [32] FLUENT 6.3 

has been used to tackle the energy equations in a conductive-radiative environment. Under this setting, special 

treatment is needed to calculate the entropy generation rate within the system. This can be done by employing a 

feature of this software, called user defined functions. By adopting this approach, Makhanlall and Liu were able to 

provide local and total entropy generation and exergy destruction [32]. 

3.4. Combined analytical-numerical techniques 

The last major approach for the solution of conduction dominated problems is to employ analytical and numerical 

techniques simultaneously. In some situations, the general solution of the problem can be found analytically. 

However, due to complex boundary conditions, such as radiation, in many cases, a particular solution cannot be 

developed analytically. Hence, it is necessary to apply a numerical method to calculate the constant coefficients for 

the particular solution. This approach has received considerable attention recently, as it presents a solution approach 

for a large number of problems [74][48][140]. To determine the coefficients a system of equations must be solved. 

Commercial mathematical packages such as Maple or Wolfram Mathematica may be used for this purpose. In a 

series of work [74][48][140], Maple’s built-in fsolve command, which numerically approximates the roots of an 

algebraic function, was used in the second law analysis of various problems. This command employs numerical 

techniques, such as Newton-Raphson, bisection, secant and fixed-point iteration methods. Upon calculation of the 
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coefficients, by incorporating them into the analytical formulation for the general solution, the temperature field and 

consequently the entropy generation rates can be readily calculated. 

4. Conclusion 

In recent years, entropy generation in solids has attracted considerable attention from the research community. The 

literature on entropy generation in thermal systems with solid structures was reviewed in the current work. The 

importance of the second law of thermodynamics in the analysis of these solid systems was presented and discussed. 

Following a concise mathematical discussion of the entropy generation in solid media, the literature pertaining to the 

entropy generation in pure conductive media, thermal systems with conjugate heat transfer and porous media, were 

reviewed. A relatively new technological manifestation of conduction dominated processes was detected in 

thermoelectric devices and the recent energy and exergy analysis in this field were reviewed. Subsequently, the 

review was extended to the solution method of the differential equations, required to address the most significant 

problems in this field. It was observed that there exists, significant potential for further research on the second law 

analyses of solid systems. Combined analytical-numerical and the numerical methods were identified as the 

techniques that offer the most attractive features for the foreseeable future of entropy generation modeling. 

Moreover, authors would like to emphasize that as mentioned thorough the review, the entropy generation studies 

for purely radiative systems are very rare [30][31]. Since the primary heat transport modes in electronic systems are 

conduction and radiation [141], there is an urgent need for the consideration of entropy generation in radiative 

environments. As it has been stated in Bright and Zhang investigation [31], the general entropy generation equation 

for a radiative environment is similar to a conductive system. However, the intrinsic feature of radiative 

environment especially at micro and nanoscales, involves phonon transport equations which may hinders the 

solution of energy equations. This challenging and yet exciting task remains before the research community to be 

tackled. 
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Fig. 1. Configuration of a solid wall with different modes of heat losses. 
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Fig. 2. Total entropy generation rate versus heat transfer rate in a hollow cylinder [23]. 
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Fig. 3. Total entropy generation rate versus conduction-radiation parameter for (a) homogenous slab and (b) FGM 

slab [50]. 
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Fig. 4. Configuration of double-layer composite hollow cylinder studied by Torabi and Zhang [47]. 
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Fig. 5. Total entropy generation rate versus slip length in a microchannel studied by Ibáñez et al. [73]. 
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Fig. 6. Total entropy generation rate versus porous thickness in a partially porous channel using LTNE model [59]. 
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Fig. 7. Configuration of a three dimensional cooled wall. 
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Fig. 8. Configuration of a cooled wall. 
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Fig. 9. Temperature distribution and local entropy generation rate for the cooled wall. 
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Table 1. Summary of the recent investigated pure conductive geometries 

Authors Geometry Boundary condition Solution method Main contribution 

Kolenda et al. [55] One-dimensional or multi-

dimensional walls 

Constant temperature Numerical One of the pioneering works 

Aziz and Khan [49] Wall Asymmetric convection Exact analytical Incorporation of internal heat source 

Aziz and Khan [61] Wall, hollow cylinder and 

sphere 

Inner and outer constant temperatures Exact analytical + 

numerical for some cases 

Incorporation of internal heat source + new 

fundamental geometries 

Torabi and Aziz [23] Hollow cylinder Inner convective, outer convective-

radiative 

Analytical DTM Analytical solution with radiation boundary condition 

Torabi and Zhang [50] Walls Convective-radiative at both sides Analytical DTM Incorporation of walls materials such as temperature-

dependent or spatial-dependent thermal conductivities 

Torabi and Zhang [47] Double-layer hollow 

cylinder 

Constant temperature for both inner and 

outer layers + convective cooling for both 

inner and outer layers (Two cases) 

Combined analytical-

numerical 

Composite cylindrical structure 

Torabi and Zhang [128] Double-layer wall Convective-radiative at both sides Analytical DTM Composite walls with radiation heat loss 

Torabi et al. [48] Double-layer wall, hollow 

cylinder and sphere 

Inner convective, outer convective-

radiative 

Combined analytical-

numerical 

Incorporation of imperfect thermal contact for the 

interface boundary condition 

Ali et al. [54] Cylinder Constant temperature Combined analytical-

numerical 

Transient heat transfer and entropy generation analyses 

of a cylinder 
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Table 2. Summary of the recent investigations in conjugate thermal systems 

Authors Geometry Modes of heat transfer Solution method Main contribution 

Ibáñez and Cuevas [72] Microchannel Conduction and convection Analytical A pioneering work about conductive-

convective systems 

Ibáñez et al. [45] Microchannel Conduction and convection Analytical Optimization of walls’ thickness 

Ibáñez et al. [73] Microchannel Conduction and convection Analytical Incorporation of slip boundary 

Torabi et al. [74] Cylindrical system Conduction and convection Combined analytical-

numerical 

Consideration of copper–water nanofluid 

Torabi and Zhang [75] Cylindrical system Conduction and convection Combined analytical-

numerical 

Consideration of magnetohydrodynamic 

flow 

Makhanlall and Liu [32] Square cavity Conduction and radiation Numerical A pioneering work about entropy 

generation in conductive-radiative systems 

Jejurkar and Mishra [142] Annular microcombustor Conduction and radiation Numerical A pioneering work about entropy 

generation in microcombustors 
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Table 3. Summary of the recent investigations in forced convection in porous systems using LTNE model 

Authors Geometry Boundary condition Fully or partially filled Solution method Main contribution 

Buonomo et al. [58] Channel Constant heat flux Fully filled Analytical First entropy generation investigation for 

LTNE model 

Torabi et al. [59] Channel Constant heat flux 

lower wall and 

adiabatic upper wall 

Partially filled Combined analytical-numerical Entropy generation study for partially filled 

channel 

Torabi et al. [100] Channel Constant heat flux Partially filled Combined analytical-numerical Incorporation of internal heat sources 

Trevizoli and Barbosa 

[103] 

A simplified passive 

regenerator 

Constant temperature 

and symmetry 

boundaries 

Fully filled Numerical Incorporation of oscillatory flow using a 

time-dependent pressure function 

Ting et al. [104] Channel Constant heat flux Fully filled Analytical Addition of nanoparticles to the fluid phase 

Ting et al. [105] Channel Constant heat flux Fully filled Analytical Addition of nanoparticles to the fluid phase 

and heat generation in solid phase 
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Table 4. Summary of the recent entropy generation investigations in thermoelectric solid systems 

Authors Geometry Steady or transient Solution method Main contribution 

Chakraborty et al. [114] Rectangular thermoelectric leg Steady Analytical A pioneer work on the entropy analysis 

Kaushik and Manikandan [24], 

Manikandan and Kaushik [25] 

Annular thermoelectric leg Steady Analytical Influence of Thomson effect and exergy analysis 

Figueroa and Vázquez [26]  Rectangular thermoelectric leg Transient Numerical Hyperbolic heat transfer analysis for small scale devices 
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