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Abstract 

Structural features of polyoxometalates (POMs) —versatile inorganic clusters of academic and technological interest— are 
discussed in the present article. POMs are, in general, very regular structures presenting a high symmetry in most cases. 
Distortions are, however, important for some electronic and magnetic properties. We herein discuss some particular geometric 
features that are crucial for the theoretical treatment and comprehension of well-known experimental phenomena. For instance, 
we have been able to understand and rationalize the geometrical distortions present in molybdenum POMs. Moreover, we can 
affirm that these geometrical distortions are caused by a pseudo Jahn Teller effect.   In what concerns NMR chemical shifts, we
present a discussion on the importance of geometry for the correct description of the signals and the key role played by the 
interatomic distances. Finally, a study on the adsorption of Keggin clusters on silver surfaces shows how the POM structure 
looses its regular shape to adapt to that new situation.   
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1. Introduction 

The term polyoxometalate (POM) congregates a vast family of inorganic compounds built upon the aggregation 
of early transition metals and oxygen into close-packed clusters.  Since the early XIXth century, and especially in 
the last fifty years, more diverse and increasingly complex POM clusters have been reported.  At present, POM 
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compounds with high added-value have applications in fields as diverse as medicine,[i-ii] catalysis [iii-vi] or 
magnetism[vii-x] among many others.  The development of innovative compounds and a deeper knowledge of their 
electronic structure has put POMs in a prominent position in the area of Inorganic Chemistry.[xi] Understanding of 
the chemistry governing the aggregation of the fundamental building blocks, combined with the search of more 
complex structures, has put POM chemistry in between the molecular and the nano worlds.  Some of the structures 
characterized are crystals, so the structural possibilities actually range from the small Lindqvist M6O19

2- (M = W, 
Mo or Nb) or the typical Keggin XM12O40

q- anions (M = W, Mo and X = typically a p-block element), to the 3D 
packing of wheel-like POMs made of about fifty tungsten atoms each (see Figure 1).  Although the synthesis and the 
characterization by spectroscopic methods are leading the advances in this field, Computational Chemistry has 
gained relevance in the last two decades, during which several theoretical research groups have published relevant 
data. Due to the (increasingly) large size of POM structures, together with the presence of abundant transition metal 
centers, computational studies are (with still rare exceptions) restricted to the application of density functional 
theory (DFT) methods. DFT puts together sufficient accuracy and modest calculation times, thus being the preferred 
tool for studying the geometry, the electronic structure and some derived properties.  Among the topics that have 
been studied by means of DFT methods we find isomerism, protonation, reduction energies, NMR chemical shifts, 
encapsulation processes and electronic spectra among others.[xii]  Correlated ab initio methods have also been 
applied for the study of magnetic properties.  These methods are much more expensive than DFT ones, though more 
accurate, and simplifications are often introduced, such as fragment approaches to reduce the size of the system 
computed.[xiii-xv] 

In the present paper we discuss relevant structural issues of POMs, notably concerning inherent distortions, such 
as the ones observed in molybdates, as well as deformations of regular structures produced by crystal packing or the 
environment in general and the implications these have upon the theoretical study of NMR chemical shifts. Finally, 
we present some preliminary results on the adsorption of a Keggin cluster on a silver surface, namely, the adsorption 
mode and the effects it has upon the geometry of the POM.   

Figure 1.  Increasingly complex POM structures: the PW12O40 Keggin anion (top-left), the wheel-shaped K8P8W48O184 cluster 
(bottom-left), and the basic cubic arrangement of {Mn8K8P8W48O184}6 wheel-shaped units that form crystals. (Color code: red 
octahedra are WO6 units; purple tetrahedra are PO4

3- units; orange octahedral Mn  and purple sphere K+ cations).

2. Distortions in Polyoxometalates 

2.1.1. Intrinsically Distorted Polyoxometalates 

POMs are metal oxide clusters that can range in size from the subnano- to the micrometer scale.  For instance, 
the Lindqvist anion with the formula [M6O19]2- (in which M=Mo, W, …) has a size of < 1nm and a polyoxometalate 
cluster containing 368 molybdenum atoms ({Mo368} the ‘Blue Lemon’), with a size of 5.4 nm –comparable to a 
protein– demonstrates the fascinating flexibility of POM chemistry in terms of structural complexity. The way the 
MO5 and MO6 building blocks assemble is, with few exceptions, the most regular possible, producing highly 
ordered aggregates that are thus very symmetrical.  Consequently, only very few nonequivalent metal and oxygen 
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positions exist in a given compound. In the case of the -XM12O40 Keggin anion, for example, the twelve metal sites 
are equivalent with Td point group symmetry.  The ideally symmetric structures of POMs are, in many cases, 
distorted in crystalline phase.  The origin of such distortions is the close interaction with counterions, the crystal 
packing, the presence of solvent molecules trapped during crystallization, etc.  These are sources of distortion with 
an origin not directly related to the structure (physical or electronic) of the POM.  However, among the subclass of 
polyoxomolybdates, an intrinsic symmetry loss have been observed and studied.  This feature, known as alternating 
bond length (ABL) distortion, becomes especially interesting if we stress that it is not present in polyoxotungstates.  
Also, an effect of such symmetry decrease is the appearance of chirality due to the loss of certain symmetry 
elements.   

It is well known that polyoxomolybdates are more labile and flexible than their homologous tungstates, 
conferring to the former a higher reactivity in general.  ABL distortion is, however, a quite intricate phenomenon 
that deserves some insight.  First, it is apparently restricted to structures with interpenetrating MnOn ringlike motifs, 
as in Lindqvist (n = 4), Keggin (n = 6) and Dawson (n = 8) anions. The presence of distorted molybdate clusters 
featuring ABL has actually been observed for a long time[xvi-xx] but just recently explained thanks to a theoretical 
work.[xxi]  DFT calculations driven on a set of POM structures have shown that the distorted forms get more 
favoured energetically than symmetrical ones as larger and more negatively charged clusters are considered.  
Computed values for the series PMo12O40

3-, SiMo12O40
4- and P2Mo18O62

6- can illustrate this point.  ABL distortions 
(d(Mo-O)long and d(Mo-O)short) are shown in Table 1 for Mo6O19

2-, XMo12O40
q- and X2Mo12O40

q- structures.   

Table 1. Computed shortest and longest Mo–O bondsa, for the edge-, corner-, and belt corner-sharing Mo–O–Mo bridges in 
Lindqvist, Keggin and Dawson polyoxomolybdates.b

d(Mo-O)long and d(Mo-O)short Mo6O19
2- PMo12O40

3- S2Mo18O62
4- P2Mo18O62

6-

Mo–Oedge 1.918–1.997 1.889–2.007 1.885–2.042 1.885–2.046 

Mo–Ocorner – 1.863–2.030 1.845–2.084 1.842–2.097 

Mo–Ocorner’ – – 1.819–2.110 1.817–2.117 
[a] In angstrom. [b] Lindqvist, Keggin and Dawson anions feature one, two and three types of bridging Mo-O bonds, respectively.

First, we want to stress the great agreement between experimental and computed structural parameters.  
Secondly, the energy difference between distorted and symmetrical is in accordance with the observed chiral 
properties of the anions discussed.   The data demonstrate (i) that between two isostructural anions, the most charged 
is more distorted, and (ii) between two different anions with similar charge density, the biggest is more distorted. 
The responsible for the distortions observed is a pseudo-Jahn-Teller vibronic instability.  The net effect upon the 
structure is that the expected O–Mo–O bond lengths, very similar (or equal by symmetry) in idealized structures, 
become O···Mo-O.  This phenomenon can be viewed as a concerted migration of metal centres off the center of the 
MO6 octahedron.  The vibronic coupling takes place between a given vibrational normal mode and an electronic 
transition, giving rise to minima in the potential energy surface. So, for the species featuring ABL distortion, it 
exists an imaginary frequency that indicates the way into which the cluster distorts.  Among the cases studied 
theoretically, it is worth showing that for the symmetrical (Oh) Mo6O19

2- Lindqvist anion (the smallest POM of the 
series herein discussed), a normal mode analysis shows a triply degenerate imaginary frequency of 81i cm-1,
indicating that this structure is not a minimum.  In contraposition, the octahedral W6O19

2- structure shows an 
analogous normal mode at 112 cm-1, which corresponds to a minimum in the potential energy surface.  

An alternative point of view based on the sequence and energy of the molecular orbitals leads us to similar 
conclusions.  The ABL distortion may be related to the energy gaps observed between frontier orbitals in molybdate 
structures, notably the HOMO and the LUMO.  The frontier orbitals in typical symmetrical POMs have metal-
oxygen nonbonding  character.  From calculations it can be deduced that, upon distortion, the occupied ones get 
more Mo-O  bonding, and the unoccupied ones more Mo-O  antibonding, with a net stabilization of the system.  
Taking the undistorted structures and then comparing them to the fully distorted ones, it can be seen that smaller 
HOMO-LUMO gaps in undistorted forms produce larger -orbital mixing and, thus, larger ABL distortion.  
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Although tungstates are virtually out of the scope of ABL distortions, the largest structures containing Wn-On
loops can also be affected by this pseudo-Jahn-Teller phenomenon.  In particular, the Preyssler tungstate P5W30O110,
with idealized D5h symmetry, breaks its highest symmetry down to D5 to get stabilized by some 10 kcal mol-1 upon 
ABL distortion.  Why this polyoxotungstate and no other behave like that?  Larger POMs have smaller HOMO-
LUMO gaps, thus favouring -orbital mixing.  The Preyssler anion has one of the smallest HOMO-LUMO gaps in 
its symmetrical form among tungstates, explaining the observed concerted short-long O-W···O bonds in the 
equatorial region formed by W10O10 loops.  

2.1.2. NMR Chemical Shifts: Significance of Structure 

The performance of a nuclear magnetic resonance (NMR) analysis of the 183W nucleus in a POM provides direct 
information on tungsten environment.  Consequently is a great method for characterizing POMs both in solution and 
in solid state.  Prediction of NMR shieldings in POMs is a challenging problem and has been a classical subject of 
study in the recent years.  The initial DFT calculations for tungsten chemical shifts performed for small molecules, 
such as [WO4-xSx]2–, W(CO)6, WF6 and WCl6, [xxii-xxiii], lead to a roughly linear correlation between experimental 
and theoretical values.  This results push the scientific community towards the calculation NMR chemical shifts for 
large POMs, despite those initial attempts were unsuccessful due to large systematic error arising from the use of 
basis sets with effective core potentials (ECP) [xxiv].  Later, using classical functionals such as BP86 [xxv] and 
Slater basis sets of TZP (or similar)[xxvi], our group established a qualitative linear correlation between calculated 
and experimental shifts for a great number of POMs [xxvii].  But once more the results were far to be quantitatively 
acceptable.[xxviii]  Nevertheless precise 183W NMR chemical shifts were not obtained until Bagno and co-workers 
[xxix-xxx] shown the need to include spin-orbit (SO) corrections at zeroth-order regular approximation (ZORA) 
[xxxi]and solvent effects in the calculations.  Using this methodology the authors reported an average mean error of 
35 ppm in a series of POMs [xxix].  It is well known that NMR chemical shifts are sensitive to very minor geometry 
changes.  Thus, optimal geometries are necessary to accurately reproduce the experimental values.  

Here we would like to prove the relevance of the optimized structure in the calculation of 183W chemical shift. 
For this reason we will show the obtained results at several computational levels for -[SiW12O40]4–. Once 
determined the best approach, it is used to calculate chemical shifts for the less symmetrical anions, such as: -
[SiW12O40]4– (C3v), -[SiW12O40]4– (C2v) revealing three and four resonance lines, respectively. The structures for 
these anions are depicted in Figure 2. 

Figure 2. Polyhedra and ball-and-stick representation for several polyoxotungstates. –[SiW12O40]q- symmetry Td (a), –
[SiW12O40]4-, C3v (b) and –[SiW12O40]4-, C2v (c). Colors for the atoms (O: red, W: grey, X: black). The –[XW12O40]q- isomer is 
characterized by an assembly of four  edge-sharing triads W3. Octahedra highlighted in orange show 60º-rotation of 1 and 2 
triads, leading to  and  [XW12O40]q- isomers respectively. 
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However, for an experimental chemist or for a spectroscopist, it may be difficult to understand why to use 
optimized geometries to calculate chemical shifts when for a large number of the investigated POMs there are 
precise and accurate experimental data from X-ray and neutron-diffraction measurements. In order to test this 
hypothesis we have computed the 183W chemical shifts for a non-symmetrical X-ray structure of the -Keggin SiW12
anion (refcode in the Cambridge Structural Database: KIDWIE, R=0.0497)[xxxii], the results are presented in Table 
2.   

Table 2. Calculated 183W chemical shieldings for SiW at TZP+SO+COSMO// Exp. level. [WO4]2- used as a reference 
is computed at TZP+SO+COSMO// QZ4P+COSMO level

p d so total cal exp exp cal

[WO4]2-

W1 

W2 

W3 

W4 

W5 

W6 

W7 

W8 

W9 

W10 

W11 

W12 

    X ( cal)       220.3 X ( cal) exp      116.5 

Along the discussion we have used the symbols TZP//TZP, TZP+SO// TZP, TZP //QZ4P, etc… For example, 
TZP//TZP means that NMR chemical shifts were computed with basis set TZP with the geometry optimized with 
the same basis set. Similarly, TZP + SO // QZ4P + COSMO means that the NMR calculations were determined with 
basis TZP including spin orbit corrections for the geometry optimized with basis QZ4P in aqueous solution. We 
have obtained twelve signals that expand in a range larger than 130 ppm (from –156 to –288 ppm) with an average 
value of –220 ppm. These results are very far from experimental value of –104 ppm and, as expected, they show that 
NMR experiments detect symmetrical structures with averaged parameters.  

Once it has been determined that NMR chemical shifts are sensitive to tiny structural changes, optimal 
geometries are necessary to accurately reproduce experimental values. Typically, the largest discrepancies between 
experimental and theoretical geometries are located at terminal M=O bonds, which are computed 0.05 Å longer, in 
average. The geometry for the -[SiW12O40]4– anion was optimised at several computational levels in order to check 
the relevance of the optimized structure in the calculation of the 183W NMR chemical shifts (see Table 3). Because 
of the Td symmetry of the -Keggin anion, all tungsten atoms are identical and give a single line in the range from 

177.9 to 107.9 ppm, being the experimental value 104 ppm.  The best 183W NMR signal is obtained at TZP+SO 
// TZP level, with an error exp cal of 3.9 ppm. So, the incorporation of the SO term is very important. Values when 
calculations incorporate the solvent effect are depicted at the three rightmost columns. In the latter case, the mean 
absolute error (MAE) decreases from 19.6 ppm (TZP+SO // TZP) to 9.3 ppm (TZP+SO+COSMO // 
QZ4P+COSMO).   
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Table 3 Computed chemical shifts for -[SiW12O40]4- Keggin anion.[a]
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[a] Chemical shifts relative to [WO4]2- computed at the same level, in ppm.  [b]The experimental value of -104ppm is measured in water.[xxxiii]  
For this series the COSMO calculations were performed using water as solvent. [c] Mean absolute error: MAE = | cal,i- exp,i|/N  calculated for a 
serie of -[XW12O40]q– Keggin anion, where X = B, Al, Si, P, Ga, Ge, As and Zn.[xxxiv]. 

In conclusion, the observed 183W NMR chemical shifts for the -Keggin POM can be well reproduced if the 
chemical shifts are computed with a middle-sized basis set (TZP quality), incorporating the SO corrections and the 
solvent effect, and also using a very precise geometry obtained with a large basis set (QZ4P quality) in aqueous 
solution. Once a procedure to compute reasonable tungsten NMR chemical shifts for POMs is established, we 
applied it for the less symmetrical - and -[SiW12O40]4– Keggin anions, see Table 4.  Decreasing the symmetry in -
[SiW12O40]4– results in the splitting of a single line into three lines with intensity ratio (1:2:1) and also a more 
negative shift for all lines. The  isomer displays four resonance lines (2:1:2:1) and, in that case, the solvent used is 
dimethylformamide  (DMF).  An analysis of the effect of the solvent on the chemical shifts can be found elsewhere 
[xxxiv]. 

As one can see in Table 4, it is worth doing the effort of optimising the geometry with an all-electron basis set of 
QZ4P quality.  The sequence of the shifts is adequately represented by calculations with small deviations (less than 
10 ppm) with respect to the experimental values.  

Table 4 Observed and computed chemical shifts for several polyoxoanions

Shift 

Anion Atom Calculated Experimental  exp cal  Ref. 

-[SiW12O40]4–  – – [xxxv] 

-[SiW12O40]4– WA – – [xxxvi] 

 WB – –

 WC – –

-[SiW12O40]4– WA – – [xxxvii] 

 WB – –

 WC – –

 WD – –

As a “take-home message” we would like to emphasize that any calculation of 183W chemical shifts requires a 
preliminary computational effort to determine very good geometries.  The highly symmetric -Keggin anion allows 
finding a strategy to compute precise chemical shifts. DFT geometry optimizations with a standard basis set of TZP 
quality provide structures that are not suitable to accurately reproduce the experimental 183W NMR signals.  
Geometry optimizations using all electron QZ4P basis sets significantly improve the chemical shifts.  We have 
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shown that spin–orbit corrections are also fundamental to obtain accurate shieldings for tungsten NMR chemical 
shifts. 

3. POMs adsorbed to surfaces 

From the point of view of material science, polyoxometalates (POMs) are difficult to process in order to obtain 
new devices.  However, they are easy to combine with other materials, such as polymeric matrices or inorganic 
substrates.[xxxviii]  This combination gives rise to compounds with interesting properties, mainly focused on 
catalysis. Other techniques to obtain composite materials using POMs are the fixation on metal surfaces [xxxix] or 
metal nanoparticles,[xl] directly or using an intermediate.  

The POM–surface interaction is known to be strong, so dipping metal electrodes in POM acidic solutions 
suffices to prepare self-assembled POM monolayers.  These monolayers are obtained not only spontaneously, but 
also imposing a specific potential. Several metal surfaces have been studied and compared by Gewirth and 
coworkers [xli-xliii] using -Keggin polyanions.  The experiments show the different behavior depending on 
whether gold or silver electrodes are used.  Moreover, STM images were obtained,[xliv] revealing that POMs are 
adsorbed in a high coverage situation, as shown in Figure 3. 

Figure 3. Representation of -SiW12O40
4- (Color code: red octahedra are WO6 units and purple tetrahedra are PO4

3- units) on 
Ag(111) (grey spheres) in a high coverage situation. 

Here, we report preliminary results on the adsorption of -SiW12O40
4- (SiW12) on Ag(111).  Despite the negative 

charge of SiW12, STM images reveal that they adsorb in a high coverage mode.  Cell 13 x 13 R13.90o is the one 
used in the present calculations,[xliv-xlv] on which only the adsorption via S4 axis of the polyoxometalate is allowed 
because of its size.  To describe the different adsorption sites we have used the nomenclature of Gewirth,[xlvi] 
which defines the active site regarding the position of the heteroatom (Si) in relation to the surface.  The POM 
decreases its symmetry from Td to C1 upon adsorption. 

After a rather exhaustive exploration we have found that the lowest-energy system corresponds to a situation in 
which the Si atom is on a bridge site.  Because of the POM-POM repulsion, it has been necessary to optimize the 
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relative disposition of the POM anions.  In general, we find that the intermolecular distances between two 
neighboring POMs tend to maximize.  In the isolated anion, the terminal tungsten-oxygen bond is usually described 
as a double bond whereas all the other tungsten – oxygen interactions have a single bond character.  After 
adsorption, the terminal W-O bonds that directly interact with the surface increase their bond length from 1.71 to 
1.81 Å, see Fig. 4.  The adsorption via a S4 axis also involves direct interactions between bridging oxygens and the 
surface, altering their bonds with the tungsten atom from values close to 1.93 Å in isolated anions [xlvii] to ~2 Å in 
the adsorbed anion.  This elongation induces an alternating short-long bond disposition for the neighboring W-O 
(bridging) bonds similar to that observed in isolated molybdates (Section 2). 

Figure 4. Selected bond distances for [SiW12O40]4- on a Ag(111) surface.

4. Conclusions 

In summary, we have shown some structural features of POMs related to intrinsic distortions, NMR chemical 
shifts and adsorption on surfaces. POMs are regular structures with high symmetry but distortions are, however, 
important for some properties. We have discussed some crucial geometric features related to the theoretical 
treatment and comprehension of some well-known experimental phenomena. On the one hand, the intrinsic 
geometrical distortions present in molybdates were rationalized and assigned to a pseudo-Jahn–Teller effect. Why 
molybdates and not tungstates display such distortion is a key point. Also how the POM size and negative charge 
affect this phenomenon are interesting issues addresses in the present paper. In what concerns NMR chemical shifts, 
we have shown the importance of geometry for the correct description of the signals and the key role played by the 
interatomic distances. Geometry optimizations using all electron QZ4P basis sets significantly improve the chemical 
shifts. The inclusion of spin–orbit corrections is also fundamental to obtain accurate shieldings for tungsten NMR 
chemical shifts. Finally, a study on the adsorption of Keggin clusters on silver surfaces shows how the POM 
structure looses its regular shape to adapt to that new situation. As preliminary conclusions, we have demonstrated 
that the adsorption of SiW12 on Ag(111) can be studied using DFT methods combined with periodic approaches. 
Several sites have been optimized and analyzed. In general, it can be assumed that the adsorption induces a 
significant distortion of the POM indicating chemisorption on the silver surface, and therefore there is a strong 
interaction between the surface and POM. 
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