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Abstract

Eigenvalue problems are common in engineering tasks. In particular the prediction of structural stability
and dynamic behavior leads to large symmetric real matrices with profile structure, for which a set of
successive eigenvalues and the corresponding eigenvectors must be determined.

In this paper, a new method of solution for the eigenvalue problem for large real symmetric matrices
with profile structure is presented. This method yields the eigenstates in the sequence of the absolute
values of their eigenvalues. The profile structure is preserved during iteration, thus reducing the storage
requirements and the computational effort. Deflation of the matrix in combination with spectral shifts and
repeated preconditioning are used to accelerate the iteration. The method is capable of handling multiple
eigenvalues and eigenvalues of equal magnitude but opposite sign. For large matrices, less than one
decomposition of the matrix is required for each desired eigenvalue. The determination of the eigenvector
corresponding to a given eigenvalue requires one decomposition of the matrix.

Solution strategy

The solution strategy extends the well-known QR-method. The special eigenvalue problem (1) is
transformed to the diagonal form (2) by a sequence of similarity transformations. The diagonal
coefficients of� are the eigenvalues of (1). The eigenvectors of equation (2) are the unit vectors
��. The columns of the transformation matrix� therefore contain the eigenvectors of �.

� � � � � (1)
� �� � �� �� (2)
� �� �� � � Diagonalmatrix with the eigenvalues of � (3)
�� �� �� �� Eigenvector of � for the eigenvalue �� (4)

The transformation matrix � is determined stepwise by the decomposition of � into an or-
thonormal matrix�� and a right triangular matrix�� in each step �. The iterated matrix���� is
calculated according to (6).

�� �� �� �� with ��
� �� � �� �

�
� � � (5)

���� �� �� �� � ��
� �� �� (6)

The iteration process with (5) and (6) lets the iterated matrix ���� converge to diagonal form
[1]. The diagonal matrix� contains the eigenvalues of� in the sequence of their magnitudes in
descending order :

���� � ���� � � � � � ������ � ���� � ������ � � � � � ���� (7)



It is shown in [1] that the convergence of the method depends on the convergence of a left trian-
gular matrix � with diagonal coefficients 1 which in step � of the iteration has the form :
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The property ����� � � (� � �) in (7) lets �
converge to � in the general case. Eigenvalues
of equal magnitude but opposite sign will,
however, lead to block matrices on the diag-
onal, which must be diagonalized by Jacobi
rotations. Convergence is fastest in the last
row and column, since �� is the eigenvalue of
smallest magnitude.

The left and upper profile is denoted by �	���, the right and lower profile of� is 
	���. The profile
of � is called convex if � � � implies �	��� � �	��� and 
	��� � 
	���, respectively. In the
following it is assumed that the profile of� is convex.
The iteration procedure retains a convex profile structure of the coefficient matrix. This reduces
the storage requirements and the computational effort.

QR-Decomposition and RQ-Recombination

In step � Matrix �� is decomposed into the product of an orthonormal matrix �� and a right
triangular matrix ��. The decomposition is performed by reducing matrix �� stepwise to tri-
angular form with plane rotation matrices ���. Row � is used to drive the coefficients in rows
� � � � � to � � 
	��� to zero. The reduction is carried out column by column. Hence the gen-
erated zero elements in the predecessor columns are preserved. The process is continued until
matrix�� is an upper triangular matrix��.

The multiplication of � with the rotation matrix ��
��, which drives ��� to zero, affects only the

coefficients in rows � and � (Fig. 1). The transformations in column � extend from row � to row

	���. The right profile in row � is changed from 
	��� to 
	�
	����. Due to the convexity of the
matrix profile, the right profile in rows � � � � � �  
	��� remains unchanged. The transformation
of �� into a right triangular matrix�� is thus :

�� � ��� � � � ������� ��� � � � ������� � � � (8)

�� � � � � ��
������ � � � ��

�� �
�
������ � � � ��

�� �� (9)

The inverse multiplication of the decomposition product completes the transformation (6) :

�� � �� �� (10)

��
� �� ��

� �� �� (11)

���� � �� ��� � � � ������� ��� � � � ������� � � � (12)

The recombination for ���� starts with the right triangular matrix ��. Multiplication with ���

destroys only the zero in location �� �� of ��. Generally, multiplication with ��� destroys the
zero in location �� ��. All other zeros are preserved. The sequence of multiplications in (12) de-
stroys the zeros columnwise, starting with column �. In each column �, the zeros are destroyed
starting with row � � �, ending with row 
	���.
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Fig. 1: Decomposition and recombination of ��

Due to symmetry of matrix���� it is not necessary to compute the elements above the diagonal.
The shaded area marks the additional, temporarily used storage per row during decomposition.
Due to convexity of�, these values are not required for the recombination of��. The symmetry
of the matrix���� can be used to prove that�� and���� have the same profile. This discovery
extends the QR-method to profile matrices. It is used to reduce the computational effort and is
essential to the success of the Matrixiteration Method.

Since the matrix � is symmetric, the transformed matrix ���� is also symmetric. The upper
profile of � is preserved in the transformations (10) to (11), the lower profile is preserved by
symmetry. It follows from (12) that the coefficients of ���� on and below the diagonal do not
depend on the temporarily stored coefficients of� (Fig.1). The coefficients above row � need not
be computed in column � of����. After all coefficients of���� on and below the diagonal have
been computed, the coefficients above the diagonal are determined with the symmetry condition
��� � ���.

Deflation, Preconditioning and Complexity

Deflation : Assume that in step � the off-diagonal elements in the last row and the last column
of matrix �� have converged to zero. Then the last diagonal element ��� is a good approxima-
tion for eigenvalue ��. Matrix �� can be shifted by ���. Since the last row and column then
contain only zero elements, they can be discarded to deflate the matrix. In order to accelerate
the convergence of the iteration, the spectrum of � is shifted before iteration in the last row and
column has converged. Let the decomposition of the given matrix be � � ���� with � and
� defined in (1) and (2). Then a spectral shift � leads to the modified eigenvalue problem (13)
with the decompostition (14).

� �� � �� � � � � with � � �� � (13)

� � � �� � � � �� � � � � � �� � � � �� � � � � (14)
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A shift by � modifies the coefficients in matrix � and accelerates the iteration in the last rows and
columns significantly :


� � 
��

�
�� � �

�� � �

��

� 
��

�
��
��

��

(15)

It is a good strategy to shift as close as possible to the next eigenvalue. Therefore in the presence
of multiple eigenvalues the smaller of the two last diagonal elements is chosen as shift parame-
ter. To avoid overshifting the convergence of the diagonal element must be checked after each
QR-step. If necessary, the shift must be modified.

Preconditioning : A preconditioning process is used to enhance diagonal dominance and a de-
scending order of the approximate eigenvalues on the diagonal of � at an early stage of the
iteration. Similarity transformations with orthonormal matrices 	� are stepwise performed to
those parts of size 	 of � which have a mutually constant upper and lower profile.

=  A
p

For this purpose matrix� is subdivided into column ranges
in such a way that the upper profile and lower profile is con-
stant within each column range. Each column range leads to
a block matrix on the diagonal of�. The rows and columns
associated with the block are transformed with an orthonor-
mal matrix 	� which is selected so that the transformation
of the block is a diagonal matrix��.

�
���

� � 	� �� 	
�
� (16)

Complexity : Let matrix� have dimension � and an average bandwidth �. The triangular matrix
�� is computed with 4 multiplications in each of ��	� columns for �� coefficients, thus a total of

��� multiplications. The recombination �� � �� is computed with 4 multiplications in each
of ��	� columns for �� coefficients, thus a total of ���� multiplications. The computation of �
eigenvalues thus requires approximately ���� multiplications.
The complexity of the preconditioning is not significant since the order 	 of the submatrices is
small. The similarity transformation for one block requires �	�� multiplications. The compu-
tational effort for 	� is of order O�	��. The total effort for a complete preconditioning of � is
approximately �� of the effort of a QR-step.

Computation of the eigenvectors

The eigenmatrix
 is the limit of �� in (8). If the eigenmatrix is formed during the iteration the
effort is O������ � �����, the storage requirements is O����. The effort is reduced by computing
the eigenvectors �� corrsponding to a �-fold eigenvalue �� with the shifted matrix � � �� ���

which has a �-fold eigenvalue zero. Reducing� to an upper triangular matrix� according to (9)
yields the information to build the � eigenvectors �� corresponding to the �-fold eigenvalue ��.


 � ��� � � � ������� ��� � � � ��������� �� (17)

By evaluating the product in (17) from right to left, only the last � columns of
 need to be com-
puted and stored. The computation of the eigenvectors is therefore independent of the number of
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computed eigenvalues. The complexity for computing the eigenvectors for a �-fold eigenvalue �
is approximately 
 � � �.

Numerical Examples

The vibration of a thin square plate is characterized by a large number of multiple eigenvalues.
Moreover large parts of the total eigenvalue spectrum are clustered. Thus, this problem is re-
garded to be a severe test case for the new method.

The convergence behavior of the method
is demonstrated with a simply supported
plate with a �� � �� mesh. This leads to
��� nodes and ���	 degrees of freedom.
The stiffness matrix of the plate has an
average bandwidth of �	 and �	� eigen-
states of the problem have multiplicity �.

All ���	 eigenvalues are determined
within ���
 cycles of iteration. Thus the
average number of cycles per eigenvalue
is ��� . The following diagram shows
the progression of the iteration.

cycle of iteration
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Fig. 2: Convergence of the iteration

The total storage requirement, the estimated numerical effort and the actual effort are shown in
Tab.1. To account for deflation the values are estimated with � � ��	 � ���	.

dimension : ���	
average bandwidth : �	
storage requirement (double) : 	�
 ���

total no. of reduction steps (estimated) : ���	�	 � ���

total no. of reduction steps (measured) : ���	�� � ���

total number of multiplications (estimated) : ������ � ����

total number of multiplications (measured) : ����� � ����

Table 1: Computational effort

In a second example only the smallest eigenvalues of a plate vibration are determined. The
example is chosen to compare the computational results and the accuracy of the Inverse Ma-
trixiteration with the conventional Lanczos subspace method. The example has ���	 degrees of
freedom and a mean bandwidth of 65 elements.

The �� smallest eigenvalues and error estimates are listed in Tab.2. The residual norm ��� �
���� � ����� in Columns 2 and 6 increases quite fast in the Lanczos computation but stays at
the same level throughout the computation with Inverse Matrixiteration. Columns 3 and 7 show
the difference between the Rayleigh quotient for the computed eigenvector and the computed
eigenvalue. In most cases this difference is smaller than �	���� with �	 � machine precision.
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Therefore these quantities can be regarded as zero. Column 4 indicates the cycle in which the
Inverse Matrixiteration converges to the eigenvalue.

1 2 3 4 5 6 7

���
��	
�������� ���
	
�
�

�
���

��
�
��

� �� cycle ����������� ������
�
�

�
���

��
�
��

� ��

1.26890544 3.43E-05 -1.41E-10 3 1.26890545 2.54E-10 -7.11E-13
3.16569289 4.03E-05 -3.06E-09 5 3.16569290 3.60E-11 -4.95E-13
3.16569289 2.89E-03 +6.12E-10 5 3.16569290 1.71E-10 +1.31E-13
5.03949639 8.71E-05 -1.28E-09 8 5.03949639 5.91E-06 -1.68E-13
6.28850889 5.95E-03 +3.54E-09 10 6.28850889 6.30E-02 +2.30E-09
6.29511868 6.91E-05 -1.08E-09 10 6.29511869 6.12E-09 -1.68E-13
8.13467966 9.62E-05 +2.57E-09 12 8.13467967 5.36E-05 +2.82E-12
8.13467966 4.79E-04 -4.90E-10 12 8.13467966 2.07E-02 +4.20E-12
10.65210300 8.55E-05 -2.15E-09 14 10.65210306 2.00E-02 +7.22E-09
10.65210299 2.71E-04 +2.09E-08 15 10.65359364 4.16E+01 +1.87E-12

Table 2: The 10 smallest eigenvalues and their errors determined with Inverse
Matrixiteration(1-4) and with a restarted Lanczos implementation using exact shifts(5-7)

The Lanczos iteration was restarted �� times. The implementation uses full reorthogonalization.
To detect the last double eigenvalue ���	 � ���
	�	��
�� it was necessary to increase the sub-
space to dimension ��. With smaller subspaces the iteration procedure was not able to determine
this eigenstate within the first 100 restarts. Tests with a larger number of multiple eigenvalues
failed in acceptable computation time. The influence of the largest eigenvalues could not be
dampened satisfactorily. The sequence of the computed eigenvalues was not ordered. The accu-
racy of the eigenvalues decreased rapidly after the ���� eigenvalue.

Conclusions

Inverse Matrixiteration is a suitable method for the computation of any number of eigenstates
of large profile matrices. The eigenvalues are determined in order of ascending magnitude. The
combination of preconditioning, shifting and deflation leads to good convergence in the presence
of multiple eigenvalues and of eigenvalues with equal magnitude but opposite sign.
The computational effort as well as the storage effort are reduced by the preservation of the con-
vex profile. The method permits the solution of the eigenvalue problem for large profile matrices
with acceptable numerical effort.

References

[1] P.J. Pahl, M. Ruess. Eigenstates of Profiled Matrices, Invited Lecture at SEMC Conference,
Cape Town, 2001

[2] M. Ruess, P.J. Pahl. Die Bestimmung von Eigenzuständen mit dem Verfahren der Inversen
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