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a b s t r a c t

In this paper, a stochastic homogenization method that couples the state-of-the-art computational multi-

scale homogenization method with the stochastic finite element method, is proposed to predict the statistics

of the effective elastic properties of textile composite materials. Uncertainties associated with the elastic

properties of the constituents are considered. Accurately modeling the fabric reinforcement plays an im-

portant role in the prediction of the effective elastic properties of textile composites due to their complex

structure. The p-version finite element method is adopted to refine the analysis. Performance of the pro-

posed method is assessed by comparing the mean values and coefficients of variation for components of the

effective elastic tensor obtained from the present method against corresponding results calculated by using

Monte Carlo simulation method for a plain-weave textile composite. Results show that the proposed method

has sufficient accuracy to capture the variability in effective elastic properties of the composite induced by

the variation of the material properties of the constituents.

© 2015 The Authors. Published by Elsevier Ltd.
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1. Introduction

Composites are increasingly popular in civil engineering due to

their ability to fulfil demands where conventional materials such as

concrete and steel cannot meet engineering requirements, includ-

ing long term durability or extreme large clear span/space. Among

composites, textile composites are preferable due to their low mate-

rial costs and labour requirements compared to traditional unidirec-

tional prepreg composites. Understanding the mechanical behavior

of composites is the primary step, and critical in the design of com-

posite structures. However, several factors, such as fiber yarn and ma-

trix properties, weaving/braiding architecture, yarn spacing (width)

and thickness (height), fiber packing density in the yarns, and overall

fiber volume fraction, influence the mechanical performance of fabric

composites. Furthermore, it is fundamental that uncertainty quantifi-

cation forms a key component of the structural assessment process.

Probabilistic-based methods are powerful tools in structural design

to enable consideration of uncertainties in the variability of the me-

chanical properties.
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Homogenization methods have proven to be capable of predicting

he mechanical properties of composites, and to be an efficient alter-

ative to time consuming and labour intensive experimental meth-

ds, particularly for complex architectures represented textile fabrics.

he most extensively used homogenization methods for textile com-

osites are analytical in nature. A family of methods has been based

n the fundamental works of Ishikawa and Chou (1982) and Chou

nd Ishikawa (1983) where three 1D analytical models for 2D woven

omposites, including ‘mosaic’, ‘fiber crimp’ and ‘bridging’ models,

ere developed. Subsequently, these methods were extended by Naik

1994) to consider two-dimensional crimp, in which the yarns of the

oven/braided fabrics were divided into slices using parallel planes

erpendicular to the fabric plane and along the fiber/yarn direction.

o overcome the limitations of 2D models for estimating through-

hickness properties (transverse moduli, E33, G13 and Poisson’s ratio

13 and ν23), a 3D model was proposed by Vandeurzen et al. (1996).

n the 1990s and early 2000s, extensive efforts were devoted to im-

rove the performance of these models in predicting effective me-

hanical properties of textile composites (Ivanov and Tabiei, 2001;

ankar and Marrey, 1997; Scida et al., 1999). A key assumption of the

nalytical methods is the iso-strain, iso-stress or mixed iso-strain/iso-

tress boundary conditions that is used to assemble different material

hases in order to predict the overall material properties. However,

ne important limitation of this assumption is the fact that it does not

onsider the mechanical interaction among the different solid phases.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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t is a well known fact that the strain field near the interface between

ifferent solid phases can be complex and may have a crucial impact

n the macroscopic response.

More sophisticated asymptotic homogenization methods have

een introduced. Gommers et al. (1998) applied the classic Mori–

anaka method to predict the effective elastic properties of vari-

us types of woven, knitted and braided fabric composites. Carvelli

nd Poggi (2001) and Peng and Cao (2002) proposed a dual ho-

ogenization method that estimates yarn properties by microscale

o mesoscale homogenization and textile composite properties by

esoscale to macroscale homogenization. The asymptotic homoge-

ization approach provides effective overall properties as well as lo-

al stress and strain values. However, considerations are usually re-

tricted to very simple microscopic geometries and simple material

odels, mostly at small strains.

In the last decade, the computational homogenization has been

xtensively developed to exploit its performance at predicting the

onstitutive properties of heterogeneous materials with arbitrary mi-

roscopic geometry and constituent behaviors (Kaczmarczyk et al.,

008; Kouznetsova et al., 2001; Michel et al., 1999; Miehe and Koch,

002; Perić et al., 2011). The method has been successfully applied

o the estimation of the effective properties of composites, but appli-

ations to textile composites are relatively scarce (Fillep et al., 2013;

ager and Pettermann, 2012; Stig and Hallstrm, 2012).

It is worth mentioning that these well established homogeniza-

ion schemes are based on the assumption that the mechanical prop-

rties of constituent materials are deterministic. Arising from var-

ous sources such as manufacturing process, assembly, and quality

ontrol limits, composite materials exhibit uncertainties in their ma-

erial properties, geometry, and fiber volume fractions, as examples

Sriramula and Chryssanthopoulos, 2009). Taking these uncertain-

ies into account in designing composite structures, such as through

he use of reliability-based structural design, is essential to ensure

hat the structures perform with sufficient safety during their ser-

ice. A primary task is to determine how these uncertainties af-

ect mechanical behavior, structural response, and structural per-

ormance. In the present study, we will consider the influence of

ncertainties in the material properties of the composite constituents

n the effective macroscopic material properties. The stochastic fi-

ite element method is one of the more widely used methods to

uantify uncertainty (Matthies, 2007). Kamiński and Kleiber (2000)

roposed a perturbation-based stochastic finite element method (PS-

EM) based homogenization method to undertake the stochastic

nalysis of composite materials with randomness in Young’s mod-

lus. Sakata et al. (2008b) extended the perturbation-based method

o consider both randomness in Young’s modulus and Poisson’s ra-

io, and Sakata et al. (2008a) considered the effect of uncertainty in

he fiber volume fraction by using an equivalent inclusion method.

o obtain higher order moments, for example skewness and kur-

osis, Kamiński (2007) developed a generalized perturbation-based

tochastic finite element that is able to consider up to 10th order ex-

ansion. The spectral stochastic finite element method (SSFEM) uses

he Karhurn–Loève expansion to discretize input of known random

elds, and a polynomial chaos expansion to represent the response

f unknown random fields such as displacement in solving standard

tochastic elastic problem (Ghanem and Spanos, 2003). Homogeniza-

ion theory is combined with the SSFEM to consider the influence

f uncertainties associated with the constituent material properties

n the effective material properties for unidirectional composites

Tootkaboni and Graham-Brady, 2010) or nonlinear composite mate-

ials (Clément et al., 2013), and geometric uncertainty (Clément et al.,

012).

In almost all the existing studies, the stochastic finite element

ased uncertainty quantification methods are applied to investigate

elatively simple unidirectional composites with constituents com-

rising isotropic materials, whereas corresponding research on wo-
en textile composite is seldom found. Due to the complex geometry

f the fabric and the waviness of the yarn, the influence of uncer-

ainties in the microscopic material properties on the effective elastic

roperties may differ from those identified in unidirectional fiber re-

nforced composites. Furthermore, commonly used reinforcements,

.g. graphite fiber, are transversely isotropic or orthotropic, requir-

ng 5 or 9 independent material constants, and the composites may

omprise more than two material phases. For instance the warp and

eft tows may have different material properties. These features in-

roduce a greater number of random variables, meaning that the PS-

EM method may be more efficient than SSFEM in such cases due to

he description of the stochastic function (Spanos and Kontsos, 2008;

udret and Der Kiureghian, 2000).

In order to take the variability of material properties in meso-

cale constituents into consideration when predicting the effective

lastic properties of woven textile composite, a stochastic homog-

nization method is developed by integrating the stochastic finite

lement method with a multi-scale computational homogenization

ethod. The computational homogenization framework presented in

ichel et al. (1999), Kouznetsova et al. (2001), Perić et al. (2011), and

he perturbation based stochastic finite element method presented

n Kleiber and Hien (1992) and (Kamiński, 2013) are used as the ba-

is to develop a perturbation based stochastic multi-scale finite ele-

ent method (PSMFE). The first step of the method relies on the con-

truction of a probabilistic model of the microstructure. We then use

he unified approach proposed by Kaczmarczyk et al. (2008) to im-

ose the boundary conditions. Finally, we use the perturbation tech-

ique to approximate the stochastic function via a Taylor series ex-

ansion. The proposed approach is implemented in an in-house finite

lement modelling software MoFEM (Kaczmarczyk et al., 2014). The

ccuracy and the computational efficiency of the developed formu-

ation are demonstrated through numerical studies on a plain-weave

extile composite.

. Multi-scale computational homogenization theory

The computational homogenization method seeks to determine

he macroscopic material properties based on the mechanics of the

nderlying microstructure. There are three important assumptions:

i) the characteristic size of the microstructure is small compared

o that of the macrostructure; (ii) the volume average of the micro-

copic stress/strain must be equal to the macroscopic stress/strain;

iii) the volume average of the microscopic strain power must be

qual to the macroscopic strain power (so called Hill–Mandel condi-

ion). For a textile composite, the computational homogenization can

e realised in five steps: (1) Define the geometry of the Representa-

ive Volume Element (RVE); (2) Discretise the RVE and assignment

f material properties; (3) Apply a given macrostrain to the RVE us-

ng appropriate boundary conditions; (4) Solve RVE boundary value

roblem; (5) Determine the effective macroscopic properties using

he volume averaging theorem. Details of the computational homog-

nization method for heterogeneous materials adopted in this work

an be found in Michel et al. (1999), Kouznetsova et al. (2001), Perić

t al. (2011), Kaczmarczyk et al. (2008). In what follows we briefly

resent this computational homogenization scheme for determining

he effective elastic properties of a linear elastic textile composite

ith a suitably described RVE structure undergoing small strains fol-

owing the notation adopted by Perić et al. (2011).

Let x be the position of a point in the macro-continuum, and

n associated RVE be well defined in geometry. The domain of the

VE, �μ, is assumed to consist in general of a solid part, �s
μ,

nd a void part �v
μ: �μ = �s

μ ∪ �v
μ. For composites, the solid part

onsists of constituents of matrix, �m
μ, and of reinforcement �r

μ:

s
μ = ( ∪k

i=1
�m,i

μ ) ∪
(
∪l

j=1
�r, j

μ

)
with k denoting the number of dif-

erent matrices in the composite (usually 1) and l representing the
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Fig. 1. Schematic illustration of the composite volume.
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number of different fiber types (not infrequently 2, with glass and

carbon combined in the same composite). The multiscale structure is

schematically illustrated in Fig. 1 for textile composite.

2.1. Macro-to-micro transition

For a given macroscopic strain ε̄, the displacement field within

the RVE associated with a point x in the macro-continuum is defined

as

uμ(y) = ε̄(x)y + ũμ(y), uμ ∈ Kμ (1)

which is a sum of a linear displacement, ε̄y, and a displacement fluc-

tuation, ũμ. Kμ is the kinematically admissible displacement filed of

the RVE. In the following, y denotes the local coordinate of the RVE,

and the microscopic terms are described with subscript μ.

The microscopic strain field within the RVE is the symmetric part

of the spatial gradient of the microscopic displacement field and can

be expressed as

εμ(y) = ∇s
yuμ = ε̄(x) + ε̃μ(y) (2)

where where ∇s
y denotes the symmetric gradient operator with re-

spect to the microscopic coordinates and the microscopic strain fluc-

tuation field is

ε̃μ = ∇s
yũμ. (3)

Let us assume that the RVE domain �μ contains perfectly bonded

phases, the average strain theorem is thus applicable and the volume

average of the microscopic strain yields

ε̄(x) ≡ 1

Vμ

∫
�μ

εμ(y)dV = ε̄(x) + 1

Vμ

∫
�μ

ε̃μ(y)dV. (4)

where Vμ = ‖�μ‖ is the volume of the RVE. The identity Eq. (4) im-

plies that the estimate of the microscopic strain ε̃μ, or the displace-

ment fluctuation ũμ, needs to satisfy the constraint∫
�μ

ε̃μ(y)dV =
∫
�μ

∇s
yũμ(y)dV = 0. (5)

2.2. Micro-to-macro transition

The principle of virtual work establishes that the RVE is in equi-

librium if, and only if, the variational equation∫
�μ

σμ(y) : ∇s
yηdV −

∫
∂�μ

te · ηdA = 0 ∀η ∈ Vμ (6)
olds, where Vμ is an appropriate space of virtual kinematically ad-

issible displacement field of the RVE, η is virtual displacement field,

nd te is an external traction field exerted on the RVE boundary.

The second assumption, also known as the Hill–Mandel principle,

equires that

¯ : ε̄ = 1

Vμ

∫
�μ

σμ : εμdV (7)

ust hold for any kinematically admissible microscopic strain field,

μ.

Accordingly, the macroscopic stress tensor, σ̄, is taken as the vol-

me average of the microscopic stress field, σμ, over the RVE:

¯ (x) ≡ 1

Vμ

∫
�μ

σμ(y)dV = 1

Vμ

∫
∂�μ

te ⊗ ydA (8)

By combining Eq. (6) with Eq. (7) and taking Eqs. (2) and (8) into

ccount, we can establish that Eq. (7) is equivalent to the following

ariational equation:

∂�μ

te · ηdA = 0 ∀η ∈ Vμ (9)

As a consequence of Eq. (9), the RVE equilibrium problem is to

nd, for a given macroscopic strain ε, a displacement fluctuation ũμ

uch that

�μ

σμ(y) : ∇s
yηdV = 0 ∀η ∈ Vμ (10)

ubjected to boundary conditions of Eqs. (5) and (9).

In this work, we consider that the constituents of the composite

re linear elastic materials. Therefore, we have

μ(y) = Cμ

(
ε̄ + ∇s

yũμ

)
. (11)

ith Cμ denoting the microscale material constitutive law. Under this

onsideration, the RVE equilibrium problem in Eq. (10) is equivalent

o solving the following linear variational equation for the field ũμ ∈
μ under a given ε,

�μ

∇s
yη : Cμ : ∇s

yũμdV = −
[∫

�μ

∇s
yη : CμdV

]
: ε̄ ∀η ∈ Vμ

(12)
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. Stochastic finite element implementation

.1. Boundary conditions in matrix form

The application of appropriate boundary conditions is a key fea-

ure in the solution of the RVE boundary value problem. In gen-

ral, there are several ways to apply the boundary constraints, but

hree of them are commonly considered in the literature and will

e considered in the present study; (1) linear displacement that as-

umes the displacement field on the boundary of the RVE satisfies

μ = ε̄y with ũμ = 0; (2) periodic boundary condition that assumes

he displacement fluctuations on the boundary of RVE are periodic,

˜ e+ = ũe− while the tractions are anti-periodic, te+ = −te−; (3) uniform

raction boundary condition that requires the kinematic constraint

n the RVE is minimal and the tractions on the surface of the RVE

re prescribed in terms of the macroscopic stress as te = σ̄ · n with n

he outward normal at the boundary surface. To impose these three

ypes of boundary condition, the generalized RVE boundary condi-

ion enforcement approach proposed by Kaczmarczyk et al. (2008)

as adopted with extension to 3D finite element method (FEM) im-

lementation. Accordingly, Eq. (5) is already satisfied with the choice

f linear displacement, periodic displacement and anti-periodic trac-

ion, and the constant traction boundary condition, and the task is

o impose Eq. (9), which is restated in terms of the microscopic dis-

lacement field and the macroscopic strain as

∂�μ

te · (uμ − ε̄y)dA = 0 (13)

nd written in matrix form as

u = Dε̄ = g (14)

here constraint matrix P and global coordinate matrix D are defined

y

=
∫
∂�

HNT NdA D =
∫
∂�

HNT XdA (15)

here H is a matrix associated with the type of boundary condi-

ion considered (see subsequent definitions), N is the standard shape

unction matrix and X is a position matrix evaluated at the integra-

ion points on the RVE boundary ∂�

= 1

2

[
2x 0 0 y z 0
0 2y 0 x 0 z
0 0 2z 0 x y

]
(16)

ith x, y and z calculated by using the known nodal coordinates and

hape functions associated with these nodes as

x1 · · · xng

y1 · · · yng

z1 · · · zng

]

=
[

x1nd xnd
2 xnd

3

y1nd ynd
2 ynd

3

z1nd znd
2 znd

3

][
N1 · · · Nng

N1 · · · Nng

N1 · · · Nng

]
(17)

here ng are the total number of Gauss points used in each triangular

lement on the boundary to perform numerical integration, and xnd
i

,

nd
i

and znd
i

are nodal coordinates. The terms N and X in Eq. (14) are

xed for a given RVE and the nature of the RVE boundary condition is

nly reflected in the terms of the H matrix, that assigns an admissible

istribution of nodal traction forces on the boundary of the RVE.

In the case of linear displacements, the tractions on the boundary

re not subjected to any constraint and H is the identity matrix. Con-

ersely, for the case of periodic boundary conditions, the tractions

hould be anti-periodic and the H matrix on opposite faces will be
+ = −H−. For the uniform traction boundary condition, the traction

ontributed by each point is prescribed as t = σ̄ · n, or in a matrix
orm,

ti] =

⎡
⎢⎢⎢⎢⎣

σxxnx 0 0
0 σyyny 0
0 0 σzznz

σxyny σxynx 0
σxznz 0 σxznx

0 σyznz σzyny

⎤
⎥⎥⎥⎥⎦

hus, as an example, H for a linear triangular element on the negative

-face (n = [nx, ny, nz] = [−1, 0, 0]) is

x =

⎡
⎢⎢⎢⎢⎣

−1 0 0 −1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0
0 0 −1 0 0 −1 0 0 −1
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

(18)

he same procedure is applied to obtain the subset of H for other

urfaces.

.2. Enforcement of the RVE boundary conditions

We now focus on the finite element solution of the RVE boundary

alue problem. Following standard notation, the finite element solu-

ion to the RVE boundary value problem converts to a constrained

uadratic programming problem:

in
u

{
1

2
uT Ku − uT F

}
subject to Pu − Dε̄ = 0 (19)

here K is the stiffness matrix, F is the load vector, P and D are the

reviously defined constraint matrix and coordinate matrix respec-

ively. A common method to solve this problem is to introduce La-

range multipliers λ associated with the constraint. The Lagrangian

s thus

= 1

2
uT Ku − uT F + λT

(Pu − Dε̄) (20)

or which the Euler conditions for a stationary point are expressed in

atrix form as

K PT

P 0

]{
u
λ

}
=
{

F
Dε̄

}
(21)

hich can then be written in a compact form for convenience as

K̂
]{û} =

{
F̂
}
. (22)

ote that, in the absence of body forces, F = 0

.3. Stochastic finite element formulation

Now consider randomness in the material properties of the con-

tituents and define b = {b1, b2, · · · , bn}T as an n-dimensional ran-

om vector, that, in the present case, comprises Young’s modulus,

oisson’s ratio, and shear modulus. In Eqs. (21) or (22), the stiff-

ess matrix K, being a function of the material properties, is thus a

tochastic function. The structural response, in terms of displacement

and Lagrange multipliers λ, is a stochastic function of the material

roperties.

Using the perturbation technique (Kamiński, 2013; Kleiber and

ien, 1992), an arbitrary stochastic function, ϕ(b), can be approxi-

ated via a second-order Taylor series expansion as:

(b) = ϕ(b̄) + ε
n∑

i=1

[
Dbi

ϕ(b̄)
]
δbi + ε2 1

2

n∑
i=1

n∑
j=1

[
Hbibj

ϕ(b̄)
]
δbiδbj

(23)
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Fig. 2. Three dimensional rotation.
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where b̄ is the mean value of the random vector b, δbi denotes the

variation around mean value of the ith random variable,
[
Dbi

(ϕ)
]

and[
Hbib j

(ϕ)
]

denote the first- and second-order partial derivatives of

( · ) with respect to bi, and ε is a scalar representing a given small

perturbation.

By extending the stochastic functions F̂ and û in Eq. (22) to the

forms of Eq. (23), substituting into Eq. (22), and equating terms of

equal orders of ε, we arrive at the following zeroth-, first- and second-

order equations:

• The zeroth-order[
K̂
]{

û
}

=
{

F̂
}

(24)

• The first-oder

n∑
p=1

{[
K̂
]{

Dbp
û
}

+
[
Dbp

K̂
]{

û
}}

= 0 (25)

• The second-order

n∑
p=1

n∑
q=1

{[
K̂
]{

Hbpbq
û
}

+
[
Dbp

K̂
]{

Dbp
û
}

+
[
Hbpbq

K̂
]{

û
}}

= 0

(26)

In the present study, we consider material properties as random

variables. The block related to stiffness matrix, [K], of the microstruc-

ture in the compact matrix,
[
K̂
]
, is function of material properties. It

can be expressed as

K =
∫
�s

μ

BT
CμBdV, (27)

and its first- and second-order partial derivatives are[
Dbp

K
]

=
∫
�s

μ

BT
[
Dbp

Cμ

]
BdV, and

[
Hbpbq

K
]

=
∫
�s

μ

BT
[
Hbpbq

Cμ

]
BdV. (28)

where B is the strain-displacement matrix, and Dbp
Cμ and Hbpbq

Cμ

are the first- and second-order partial derivatives of the material

constitutive matrix. Hence, the expression of
[
K̂
]

and its first- and

second-order partial derivatives can be written as:[
K̂
]

=
[

K PT

P 0

]
,
[
Dbp

K̂
]

=
[

Dbp
K 0

0 0

]
,

and
[
Hbpbq

K̂
]

=
[

Hbpbq
K 0

0 0

]
. (29)

Computing Eqs. (24–26) successively, the zeroth order compact

displacement vector
{

û
}

can be derived from Eq. (24). With this at

hand, the first order partial derivative of the compact displacement

vector
{

û
}

with respect to the material properties b, i.e.
{

Dbp
û
}
, is

determined from Eq. (25). Note that Eq. (25) is solved for each com-

ponent of
{

Dbp
û
}

independently. Finally, Eq. (26) is solved to deter-

mine the second order partial derivative of the compact displacement

vector
{

Hbpbq
û
}
, once again solving for each term independently.

3.4. Fiber yarn/tow direction computation through potential flow

theory

To assemble the global stiffness matrix K, the complex structure of

fabric reinforcement of the textile composite causes some difficulty to

introduce its contribution when transforming from the material prin-

cipal coordinate system to the global coordinate system. Commonly,

the yarn directions can be calculated from the yarn path, which is

normally known to establish geometry modelling. However, it is not

robust enough to use for deformed yarns with varying cross-sections.
n MoFEM (Kaczmarczyk et al., 2014), an automated approach based

n potential flow theory is used to identify the yarn direction. The

rinciple is to treat each yarn as a invicid, incompressible and irrota-

ional flow with the same the boundary surface as the yarn. In fluid

ynamics, the flow can be described by a velocity potential function,

. The velocity field of the flow is the gradient of φ with components

n Cartesian coordinate expressed as:

x = ∂φ

∂x
, vy = ∂φ

∂y
, and vz = ∂φ

∂z
(30)

or incompressible flow, the velocity potential function satisfies

aplace’s function, substituting in the relationship between potential

nd velocity we arrive at,

2φ = ∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0 (31)

olving Eq. (31) determine the velocity of the flow that represents

he yarn direction for our case. To transform the material response

etween local yarn direction and global axes, the axis of rotation is

xpressed as J = v × ei, where ei is the unit vector representing the

lobal x-, y- or z-axis, and the angle of rotation is calculated by

(θ,ψ,ϕ) = cos−1
(

vei

‖ v ‖
)

i = 1, 2, 3. (32)

ith the rotation angle � and axis of rotation J at hand, the rotation

atrix R, which relates original coordinate system to transformed co-

rdinate x
′ = Tx (see Fig. 2), can be obtained according the orthog-

nal transformation criteria (Filleppa and Haugen, 2005). Then the

tress tensor transformation matrix Tσ and strain tensor transforma-

ion matrix Tε can be established by the relationship between original

oordinate system and transformed coordinate system, and therefore

he transformed stiffness matrix transformation matrix,Ĉ, can be cal-

ulated Ĉ = Tσ CT−1
ε (Slawinski, 2010).

. Statistics of the effective elasticity tensor

The objective of a homogenization procedure is to determine the

ffective elastic moduli, C̄. In the computational homogenization

pproach no explicit form of the constitutive behavior on the the

acrolevel is assumed a priori, so that the tangent modulus has to

e determined numerically by the relations between the macroscopic

tress, σ̄, and the macroscopic strain, ε̄.
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Table 1

Geometrical parameters of the woven textile RVE, unit:

μm.

Term Symbol Barbero Scida

Warp direction a1 920 600

Warp yarn spacing ag1 170 20

Weft direction a2 920 600

Weft yarn spacing ag2 170 20

Waviness amplitude a3 250 50

RVE length l 3680 2400

RVE width w 3680 2400

RVE thickness h 500 100

t

f

E

a

C

5

d

f

r

o

u

v

e

5

(

t

t

r

S

c

T

p

o

t

g

r

n

1

o

t

o

a

C

o

i

w

2

T

r

T

Given that the solutions from Eq. (21) or (22) for u and λ satisfies

he equilibrium, the work done by the tractions on the displacements

s equal to the work of the generalized tractions on the generalized

isplacements:

T t = (Dε̄)
Tλ (33)

ith reference to Eq. (8), the macrostress vector can be expressed in

erms of the Lagrange multipliers λ and matrix D:

¯ = 1

Vμ
DTλ (34)

Straightforwardly, the effective moduli can be computed in its dis-

retised form, using previous averaged stress expression Eq. (34), in

he following way:

¯ = σ̄

ε̄
= 1

Vμ

DTλ

ε̄
(35)

n practice, it follows from the above equation that the effective ma-

erial stiffness, C̄, can be determined efficiently by first factorising K̂

nd then solving Eq. (22) six times for every strain mode, with ε̄ a

nit vector.

.1. Stochastic expression of effective elastic moduli

Since the micro-structure displacement u is function of material

roperties, and the effective elastic tensor, C̄, is thus a stochastic

unction when considering material properties as random variables.

t can be approximated by the perturbation technique using a second-

rder Taylor series expansion, as,

C̄(b)
]

=
[
C̄(b̄)

]
+ ε

n∑
r

[
Dbr

C̄(b̄)
]
δbr

+ ε2 1

2

n∑
r

n∑
s

[
Hbrbs

C̄(b̄)
]
δbrδbs (36)

here the first- and second-order partial derivative terms
[
Dbr

C̄(b̄)
]

nd
[
Hbrbs

C̄(b̄)
]

can be calculated by using Eqs. (25, [26,35]).

.2. Mean and covariance

Given the approximation for C̄(b) in Eq. (36), the mean value of

he elasticity moduli is expressed as[
C̄(b)

]
=
∫ +∞

−∞
C̄(b)g(b)db

=
∫ +∞

−∞

{[
C̄(b̄)

]
+ ε

∑
r

[
Dbr

C̄(b̄)
]
δbr

+ ε2 1

2

∑
r

∑
s

[
Hbrbs

C̄(b̄)
]
δbrδbs

}
g(b)db (37)

here g(b) is the probability distribution function, that is assumed in

his paper to be Gaussian. Furthermore, the covariance is expressed

s

ov
([

C̄(b)
]

r
,
[
C̄(b)

]
s

)
=
∫ +∞

−∞

{[
C̄(b)

]
r
− E
[
C̄(b)

]}
×
{[

C̄(b)
]

s
− E
[
C̄(b)

]}
g(b)db (38)

Observing the following

+∞

−∞
g(b)db = 1,

∫ +∞

−∞
δbg(b)db = 0,

and

∫ +∞
δbrδbsg(b)db = COV(br, bs) (39)
−∞
he second-order approximation of the mean value and covariance

or the reduced stiffness matrix is thus calculated as:[
C̄(b)

]
=
[
C̄(b̄)

]
+ 1

2

n∑
r

n∑
s

[
Hbrbs

C̄(b̄)
]

· COV(br, bs), (40)

nd

OV
([

C̄(b)
]

r
,
[
C(b)

]
s

)
≈

n∑
r

n∑
s

[
Dbr

C̄(b̄)
][

Dbs
C̄(b̄)

]
· COV(br, bs)

+ 1

4

n∑
r

n∑
s

n∑
t

n∑
w

[
Hbrbs

C̄(b̄)
][

Hbt bw
C̄(b̄)

]
E[brbsbt bw]. (41)

. Numerical example

The analysis of two plain weave textile composites is used to

emonstrate the method described in the preceding sections. The ef-

ective elastic properties and their statistics are predicted. The accu-

acy of the proposed method is evaluated by comparing the statistics

f effective elastic properties against corresponding values obtained

sing a Monte Carlo simulation (MCS) method. Relations between the

ariations of input variables and statistics of the effective elastic prop-

rties are also investigated in terms of sensitivity analyses.

.1. Geometric modelling and meshing of RVE microstructure

Two RVE microstructures with plain weave fabric reinforcement

Barbero et al., 2005) and (Scida et al., 1999) are selected to evaluate

he applicability of computational homogenization scheme for tex-

ile composites, comparing with experimental and/or existing model

esults. These two models are named the Barbero model and the

cida model here after. The Barbero model is based on photomi-

rograph measurements of geometrical parameters and the Mori–

anaka asymptotic homogenization method has been applied to

redict the effective elastic parameters (Barbero et al., 2005). The ge-

metrical parameters of the Scida model was also obtained by pho-

omicrography, and experiments were conducted to obtain the lon-

itudinal and transversal Young’s moduli and the in-plane Poisson’s

atio. An analytical model was developed, based on classic thin lami-

ate theory, to estimate the effective elastic properties (Scida et al.,

999). Both models are characterized by the same idealized peri-

dic microstructure model proposed by Barbero et al. (2005), with

he yarns’ cross-sections and the path of the yarns taking the form

f the sinusoidal functions F(x, y) = A(x) · sin(B(x) · y + C(x)) + D(x)
nd F(x, y) = A(y) · sin(B(y) · x + C(y)) + D(y), with coefficients A, B,

and D determined from the geometric parameters. The geometry

f the plain weave composite is shown in Fig. 3 and comprises four

nterlaced fiber yarns. It is described through the periodic length of

arp and weft yarns, 4a1 and 4a2, respectively, waviness amplitude

a3, and spacing between adjacent warp or weft yarns, ag1 and ag2.

herefore, the dimension of the RVE is 4a1 × 4a2 × 2a3. These pa-

ameters are illustrated in Fig. 3 and their values are listed in Table 1.

he RVE consists of an isotropic epoxy matrix and carbon fiber yarns
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ag1
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2a3

Warp
 1

Weft 1
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Fig. 3. Geometry of the RVE and the finite element mesh of the reinforcement.

Table 2

Material properties of carbon fiber yarn and epoxy matrix, (moduli in GPa).

Fiber yarn Matrix

Property Barbero Scida Property Barbero Scida

Axial modulus Ez 160.755 58.397 Modulus Em 3.4 3.4

Transverse modulus Ep 19.489 20.865 Poisson’s ratio νm 0.35 0.35

Axial Poisson’s ratio νz 0.28 0.241

Transverse Poisson’s ratio νp 0.415 0.386

Axial shear modulus Gz 7.393 8.465
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that are assumed to be transversely isotropic material. The warp and

weft yarns are made of identical material. Although the volume of

the yarn is not entirely occupied by fibers due to the flow of epoxy

through the fibrous preform during infusion, the yarn is considered

as a solid volume in this work in order to focus our attention on mate-

rial properties. A total of seven independent material parameters are

used to describe the matrix and yarn and their values are presented

in Table 2.

With geometrical parameters and the mathematical formulation

for the idealized periodic microstructure model available, the 3D ge-

ometric models of Barbero model and Scida model are created using

CUBIT, which is a software toolkit for two- and three-dimensional fi-

nite element meshes and geometry preparation developed by San-

dia National Laboratories in the United States of America. The cross-

section curves and the yarn path curves describing the warp and weft

yarns are constructed with the sinusoidal function model proposed

by Barbero et al. (2005) and geometric parameters listed in Table 1.

A solid volume can be created by sweeping the cross section surfaces

along the path curves. Hence, four interlaced yarn volumes are gener-

ated with two of them for warp and the other two for weft. Although

the mathematical model provides a perfect common surface between

interlaced warp and weft yarns, overlapping has been found that is

unrealistic and results in meshing errors. To avoid the overlapping

problem, a small gap is introduced between weft and warp yarns by

slightly increasing the waviness amplitude a3 for yarn path curves

but keeping the a3 unchanged when creating cross section curves.

The generated 3D geometric models are then discretized using 4

node tetrahedral elements and the mesh operation in CUBIT. Given

the need for periodic boundary conditions for the computational ho-

mogenization, the resulting mesh should be perfectly symmetrical

between opposite boundary surfaces. For instance, the meshes on the

+x surface should match with those on the −x surface. Hence, the
ositive boundary surfaces, +x, +y and +z are meshed first with tri-

ngular element and then the meshes are copied to the correspond-

ng negative boundary surfaces −x, −y and −z. The RVE is then finally

eshed into tetrahedral elements based on these meshed surfaces.

he RVE of the Barbero model has been discretized into 12,148 four-

ode tetrahedral elements consisting of 5346 elements for the yarns

nd 6802 elements for the matrix, with a total of 2454 nodes, while

he RVE of Scida model has been discretized into 20,053 tetrahedral

lements with 8101 of them for the yarns and 11,952 for matrix.

.2. Application of the computational homogenization for woven textile

omposites

The meshed models of the RVEs are imported into the MoFEM fi-

ite element programme. As previously noted, the wavy yarns leads

ifficulty to introduce their contributions to assemble global stiffness

atrix when transforming from the material principal coordinate

ystem to the global coordinate system, especially for transisotropic

aterials such as carbon fiber, and the potential flow theory approach

s adopted in the present study to automatically identify yarn direc-

ions. A potential flow calculation is thus run first for the fabric re-

nforcement. Constant pressure is applied to each yarns as shown in

ig. 4a, and the flow velocity can be calculated from Eq. (31). Using

hese calculated flow velocities (see Fig. 4b), the yarn directions can

e calculated from Eq. (32). With the obtained direction of yarn ele-

ents, RVE homogenization calculation is ready to be conducted on

oFEM.

Before considering stochastic analysis, first the applicability of

he computational homogenization method for textile composite is

emonstrated. Two verification studies are performed. The first study

s designed to demonstrate that the proposed method can capture

he waviness feature of textile composite by comparing results for an
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(a) Applying constant pressure to each yarn

(b) Potential flow

Fig. 4. Fiber direction - calculated through potential flow theory.
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Table 3

Comparison of the predicted effective elastic properties for composites

with straight and crimp yarn (moduli in GPa).

EEP Single Cross Interlace

Straight Crimp Straight Crimp Straight Crimp

Ex 24.64 15.35 26.85 19.59 50.02 32.17

Ey 5.06 5.04 26.81 19.69 50.02 32.16

Ez 4.67 4.57 6.90 6.53 9.64 9.21

Gyz 1.43 1.44 2.09 2.13 2.60 2.69

Gxz 1.47 1.52 2.08 2.10 2.60 2.69

Gxy 1.67 1.67 2.79 2.78 3.92 4.02

νyz 0.47 0.45 0.446 0.465 0.426 0.426

νxz 0.344 0.397 0.446 0.465 0.426 0.426

νxy 0.332 0.298 0.085 0.100 0.064 0.108
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VE reinforced by crimp yarns with those for an RVE reinforced by

traight yarns. Three patterns of reinforcement are considered from

ingle yarn to four interlaced yarns, see Fig. 5. Results are listed in

able 3 for an RVE under periodic displacement and anti-periodic

raction boundary conditions. The effective engineering properties
(a) Single - straight (b) Cross - s

(d) Single - crimp (e) Cross -

Fig. 5. Architecture of
re recovered from the computationed homogenization method es-

imated effective moduli in Eq. (35) by using the equations listed in

ppendix A. By observing the results of the estimated C̄, the tex-

ile composite is treated as an orthotropic material. For the single

arn case, the longitudinal modulus, Ex, significantly decreases from

4.64 GPa for a straight yarn to 15.35 GPa for a crimped yarn due

o the waviness of the yarn. The other terms are almost unchanged.

or crossed yarns, the transverse modulus has a significant increase

or both the straight and crimp yarns, while the other terms have

light increase. As expected, the stiffness for the crimp yarn structure

s smaller than for straight yarns. For the interlaced yarn case, the

ffective material properties have significantly increase again with

he contribution from additional two yarns comparing with the cross

ase.

In the second verification study, the effective engineering pa-

ameters predicted by the adopted computational homogenization

ethod are compared with experimental and/or numerical results.

he results are listed in Table 4. The reference numerical results for

oth models are taken from (Barbero et al., 2005), where both models

ave been analyzed using the Mori–Tanaka asymptotic homogeniza-

ion method. For the Scida model, the experimental results reported

re from Scida et al. (1999). For the computational homogenization,

he results for the three boundary conditions of linear displacement

Disp.), periodic (Per.), and constant traction (Trac.) are given in the

able. From these results it can be seen that the model predicts

oduli values that are within or very near the published standard

eviation.
traight (c) Interlace - straight

crimp (f) Interlace - crimp

reinforcement.
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Table 4

Comparison of predicted and reference effective elastic properties (moduli in GPa).

EEP Barbero model Scida model

Barbero Comp. homo. Measured Barbero Comp. homo.

Disp. Per. Trac. Disp. Per. Trac.

Ex 41.106 37.028 32.560 21.051 24.8 ± 1.1 24.900 23.060 22.807 20.204

Ey 41.107 37.013 32.565 21.111 24.8 ± 1.1 24.900 23.060 22.807 20.210

Ez 9.807 9.725 9.304 7.828 8.5 ± 2.6 10.400 9.263 9.002 8.176

Gyz 3.077 3.119 2.720 2.435 4.2 ± 0.7 2.910 2.750 2.500 2.351

Gxz 3.077 3.116 2.720 2.436 4.2 ± 0.7 2.910 2.750 2.500 2.351

Gxy 3.574 4.417 4.066 3.899 6.5 ± 0.8 4.380 5.149 4.784 4.711

νyz 0.437 0.448 0.426 0.454 0.28 ± 0.07 0.345 0.377 0.373 0.391

νxz 0.437 0.449 0.426 0.454 0.28 ± 0.07 0.345 0.377 0.373 0.391

νxy 0.059 0.077 0.107 0.129 0.1 ± 0.01 0.130 0.144 0.144 0.160

Table 5

Relative percentage difference on mean value between the proposed method and MCS for different material properties (%).

C11 C12 C13 C22 C23 C33 C44 C55 C66

Em −0.0374 −0.0586 −0.1161 −0.0373 −0.1160 −0.1098 −0.0396 −0.1137 −0.1157

νm 0.0638 0.3496 0.4754 0.0641 0.4751 0.2689 0.0117 0.0359 0.0359

νp −0.0124 −0.0567 −0.0632 −0.0124 −0.0632 −0.0192 0.0011 0.0055 0.0055

νz −0.0125 −0.0685 −0.0322 −0.0125 −0.0322 −0.0027 −8.27e−5 −2.04e−4 −2.07e−4

Ep −0.0290 0.0048 −0.0270 −0.0290 −0.0270 −0.0558 −0.0053 −0.0300 −0.0300

Ez −0.0901 −0.0885 −0.0386 −0.0902 −0.0385 −0.0023 −6.53e−4 −0.0075 −0.0075

Gz −0.0344 −0.0445 0.0041 −0.0344 0.0041 −0.0011 −0.1166 −0.0199 −0.0198

Table 6

Relative percentage difference on CV between the proposed method and MCS for different material properties (%).

C11 C12 C13 C22 C23 C33 C44 C55 C66

Em 1.4722 1.1155 1.3365 1.4700 1.3364 1.3802 1.4696 1.3529 1.3520

νm 24.6721 22.0496 21.7768 24.7736 21.7868 21.3662 −0.3313 −0.8463 −0.8569

νp 1.6609 1.5563 1.6135 1.6645 1.6147 1.7624 0.9049 1.0152 1.0136

νz 1.2531 1.2417 1.2118 1.2530 1.2118 1.2541 1.3176 0.8308 0.8283

Ep 1.1047 1.1006 2.1484 1.1049 2.1420 1.8045 2.2628 2.2603 2.2602

Ez 1.4243 1.2469 1.4080 1.4243 1.4064 1.4918 1.6464 1.4728 1.4504

Gz 1.5052 1.0548 1.6399 1.5052 1.6386 1.9713 1.2579 1.9432 1.9420

Fig. 6. Estimated mean values of components of effective elastic tensor under Ez vari-

ation.
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5.3. Accuracy of the proposed method for uncertainty quantification

To demonstrate the accuracy of the present perturbation-based

stochastic multi-scale computational homogenization method, a

comparison between the present approach and MCS with 5000 sam-

ples has been performed. The results for the RVE of the Barbero model

are also given in details for illustration purposes. Uncertainties in the

seven material properties of the composite material were considered

separately with coefficient of variation (CV) of 0.1 for each and mean

values as listed in Table 2, and the material properties are considered

to follow Normal distributions. Results are given in Fig. 6 and Table 5

for the mean value from Eq. (40) and Fig. 7 and Table 6 for the coef-

ficient of variation from Eq. (41). Since the influence of variation of

material properties on the mean value will be relatively small (see

Eq. (40)), we only show a comparison between the proposed method

and MCS for variation in the yarn longitudinal Young’s modulus. From

these results, it can be seen that the mean values estimated by the

proposed approach are in close agreement with those obtained from

MCS with relative percentage differences (RPD) of less than 1%. In

general, these figures indicate that CV of each component of the effec-

tive elastic tensor are accurately estimated by the proposed method.

The variation due to the randomness of Ez, νp, νz, Gz and Em are well

captured.

Nevertheless, it is worth noting that the variability in the com-

ponents of effective elastic properties, C12, C13, C22, C23 and C33,

arising from the uncertainty of νm are not well predicted as shown

in Table 6. A further study was conducted to explore the potential
easons for this by varying the CV of νm from 0.025 to 0.15. The

stimated CV of the effective elastic properties from the proposed

ethod have been compared with corresponding results obtained

y MCS with 5000 samples in terms of RPD. In general, the RPD
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Fig. 7. Comparisons between MCS and PSMFE on the estimates of CVs of components of effective elastic tensor due to variation in material properties.

Fig. 8. Relative percentage difference for CVs of components of effective elastic tensor

due to variation of νm .
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ecomes larger with increases of CV for νm as shown in Fig. 8. The

PDs for C44, C55 and C66 may be considered as acceptable, as less

han 5%. For the remaining terms, C11, C12, C13, C22, C23 and C33,

he CV of νm must be less than 0.05 to keep the RPD less than 5%.

he RPDs are around 30% when νm has CoV of 0.15. From a theoreti-

al viewpoint, the effective elastic properties are nonlinear functions

f νm. For instance, C11 has contribution from the isotropic material

hase Em(1−νm)
(1+νm)(1−2νm)

, whereas the second-order Taylor series expan-

ion to approximate the stochastic function has a slower rates of con-

ergence compared with the original function, especially when the

ariation is large. When the νm is close to 0.5, it results in division by

ero problem in Em(1−νm)
(1+νm)(1−2νm)

. For instance, 2, 16, 66 and 149 random
umbers in the 5000 samples for CV of 0.075, 0.1, 0.125 and 0.15 cases

re greater than 0.45.

.4. Sensitivity analysis

Another important issue in uncertainty analysis is to understand

ow the variation in the elastic properties of constituents affect the

tatistical features of the effective elastic properties. This can be ad-

ressed by conducting a sensitivity analysis, which is a by-product

f the proposed PSMFE method. Fig. 9 shows how the CV for the

aterial properties of the constituents influence the CV for different

omponents of the effective elastic tensor when using the three dif-

erent boundary conditions. The CVs of the material properties are

ssumed to be 0.1 to ensure the estimates of the CVs for the effec-

ive elastic properties are satisfactorily predicted as demonstrated

n the previous section. The response of the effective elastic prop-

rties varies with different material properties. From Fig. 9 some

bservations can be drawn: (1) Under different boundary condi-

ions, the key features of the variation for the effective elastic prop-

rties are similar; (2) The variation of C11 and C22 is most sensi-

ive to the variation of Ez; (3) The variation of C12, C13 and C23

re correlated with almost all material properties except for Gz,

nd they are significantly dependent on the variation of the ma-

erial properties of the matrix; (4) The variations of Em and νm of

he matrix have significant influence on the variation of C33; (5)

he variation of components C55 and C66 mainly depend on the

ariation of Em. Variation of Gz is the main source of uncertainty

or C66.

.5. P-refinement of the RVE finite element mesh

P-refinement of the RVE finite element mesh is achieved by us-

ng the strategy proposed by Ainsworth and Coyle (2003) for tetra-

edral elements with hierarchic approximations. As shown in Fig. 10,

tetrahedral element can be described by 4 vertices (vi, i = 1, . . . , 4),

edges (e j, j = 1, . . . , 6), 4 triangular faces ( fk, k = 1, . . . , 4) and an
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Fig. 9. Sensitivity of CVs of components of effective elastic tensor with respect to variation of various material properties.

Fig. 10. Hierarchical finite element - an example of tetrahedral element.
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s
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interior tetrahedral body. The degrees of freedom for each sub-

element depend on the order of polynomial function of the shape

function as given in Fig. 10. The total degrees of freedom is then ob-

tained from the sum of the subelements. Thus, it is possible to in-

crease the level of approximation without changing the original fi-

nite element mesh. To illustrate the efficacy of p-refinement, a coarse

mesh with 6747 elements and a fine mesh with 12,093 elements

are considered with polynomial orders of approximation p = 1, 2, 3
as carried out. Results of the statistics of the effective elastic prop-

rties for the two meshes are shown in Fig. 11. We can observe

hat the mean value (see Fig. 11a) significantly changes when in-

reasing polynomial degree from p = 1 to p = 2, especially for the

oarse mesh. As expected, the mean value tends to converge to a

true value” with increasing polynomial order, which can be ob-

erved from Figs. 11a and 11 b, with the polynomial order increasing

rom p = 2 to p = 3.



X.-Y. Zhou et al. / International Journal of Solids and Structures 80 (2016) 368–380 379

Fig. 11. Efficiency of the p-version FE.
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. Conclusions

In this paper, a probabilistic homogenization method is proposed

or the prediction of the effective elastic properties of textile com-

osites when taking randomness of the elastic properties of the con-

tituents into consideration. A state-of-the-art computational ho-

ogenization scheme, which introduces a hierarchy of boundary

onditions at the microscale and allows for direct treatment of micro-

o-macro transitions, is adopted as the basis to develop the proba-

ilistic homogenization method. Accurate modelling the fabric rein-

orcement plays an important rule in the prediction of the effective

lastic properties of textile composites due to their complex struc-

ure. The p-version of the finite element method is adopted in the

resent study to refine the analysis. The second-order perturbation

ethod is adopted to estimate the statistics of the components of the

ffective elastic tensor with the randomness arising from the material

roperties at mesoscale. Numerical studies have been conducted to

emonstrate the capability of the proposed method in capturing vari-

bility in effective elastic properties for composites induced by ran-

omness of the constituents’ material properties. Plain-weave tex-

ile composites consisting of epoxy matrix and carbon fiber yarn have
een considered. A comparison with Monte Carlo simulation shows

hat the proposed probabilistic homogenization method could pro-

ide a reasonable prediction for the statistics of the effective material

roperties.
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ppendix A. Engineering constants

The stress-strain relations in xyz coordinate system are

εx

εy

εz

εxy

εxz

εyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= S̄

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx

σy

σz

σxy

σxz

σyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A.1)

here S̄ is the effective compliance matrix, which is the inverse of the

ffective elastic matrix, C̄, in Eq. (35).

Under uniaxial loading, σ x, Eq. (A.1) can be written as

εx = S̄11σx

y = S̄12σx

εz = S̄13σx

The effective Young’s modulus in x-direction is

x ≡ σx

εx
= 1

S̄11

(A.2)

he effective Poisson’s ratio, νxy and νxz, are

xy ≡ −εy

εx
= − S̄12

S̄11

νxz ≡ −εz

εx
= − S̄13

S̄11

Similarly, other effective engineering properties can be derived by

pplying uniaxial loading in the y and z directions, respectively, and

ure shear on the various coordinate planes. The results are summa-

ized as follows:

Ey = 1

S̄22

νyx = − S̄12

S̄22

νyz = − S̄23

S̄22

Ez = 1

S̄33

νzx = − S̄13

S̄33

νzy = − S̄23

S̄33

xy = 1

S̄44

Gxz = 1

S̄55

Gyz = 1

S̄
(A.3)



380 X.-Y. Zhou et al. / International Journal of Solids and Structures 80 (2016) 368–380

M

M

M

N

P

P

S

S

S

S

S
S

S

S

S

T

V

References

Ainsworth, M., Coyle, J., 2003. Hierarchic finite element bases on unstructured tetrahe-

dral meshes. Int. J. Numer. Methods Eng. 58 (14), 2103–2130.

Barbero, E.J., Damiani, T.M., Trovillion, J., 2005. Micromechanics of fabric reinforced
composites with periodic microstructure. Int. J. Solids Struct. 42 (9-10), 2489–

2504.
Carvelli, V., Poggi, C., 2001. A homogenization procedure for the numerical analysis of

woven fabric composites. Compos. Part A: Appl. Sci. Manuf. 32 (10), 1425–1432.
Chou, T.W., Ishikawa, T., 1983. One-dimensional micromechanical analysis of woven

fabric composites. AIAA J. 21 (12), 1714–1721.

Clément, A., Soize, C., Yvonnet, J., 2012. Computational nonlinear stochastic homog-
enization using a nonconcurrent multiscale approach for hyperelastic heteroge-

neous microstructures analysis. Int. J. Numer. Methods Eng. 91 (8), 799–824.
Clément, A., Soize, C., Yvonnet, J., 2013. Uncertainty quantification in computational

stochastic multiscale analysis of nonlinear elastic materials. Comput. Methods
Appl. Mech. Eng. 254 (0), 61–82.

Fillep, S., Mergheim, J., Steinmann, P., 2013. Computational modelling and homogeniza-
tion of technical textiles. Eng. Struct. 50 (0), 68–73.

Filleppa, C.A., Haugen, B., 2005. A unified formulation of small-strain corotational finite

elements: I. theory. Comput. Methods Appl. Mech. Eng. 194, 2285–2335.
Gager, J., Pettermann, H.E., 2012. Numerical homogenization of textile composites

based on shell element discretization. Compos. Sci. Technol. 72 (7), 806–812.
Ghanem, R.G., Spanos, P.D., 2003. Stochastic finite elements: a spectral approach.

Courier Dover Publications.
Gommers, B., Verpoest, I., Van Houtte, P., 1998. The Mori-Tanaka method applied to

textile composite materials. Acta Mater. 46 (6), 2223–2235.

Ishikawa, T., Chou, T.W., 1982. Stiffness and strength behaviour of woven fabric com-
posites. J. Mater. Sci. 17 (11), 3211–3220.

Ivanov, I., Tabiei, A., 2001. Three-dimensional computational micro-mechanical model
for woven fabric composites. Compos. Struct. 54 (4), 489–496.
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