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Abstract

®

CrossMark

Photometric stereo is an established three-dimensional (3D) imaging technique for estimating
surface shape and reflectivity using multiple images of a scene taken from the same viewpoint
but subject to different illumination directions. Importantly, this technique requires the scene to
remain static during image acquisition otherwise pixel-matching errors can introduce significant
errors in the reconstructed image. In this work, we demonstrate a modified photometric stereo
system with perfect pixel-registration, capable of reconstructing 3D images of scenes exhibiting
dynamic behavior in real-time. Performing high-speed structured illumination of a scene and
sensing the reflected light with four spatially-separated, single-pixel detectors, our system
reconstructs continuous real-time 3D video at ~8 frames per second for image resolutions of
64 x 64 pixels. Moreover, since this approach does not use a pixelated camera sensor, it can be

readily extended to other wavelengths, such as the infrared, where camera technology is

expensive.
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Introduction

Three-dimensional (3D) imaging is a heavily explored
research field that supports a wide range of applications such
as object and face recognition, robot navigation, surface
mapping and medical operations. A variety of different
techniques have been developed, each with different advan-
tages and drawbacks dependent on the specific application
[1-9]. Stereo imaging [10-14] is perhaps the most well-
known technique, which uses multiple images obtained
simultaneously from different viewpoints to reconstruct a 3D
scene. However, the associated image processing, in part-
icular the arduous step of performing pixel correspondence,
can be problematic and computationally intensive. In contrast,
photometric stereo, first introduced by Woodham [15], uses a
single viewpoint and multiple lighting directions. This

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 3.0 licence. Any
further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOIL

2040-8978/16,/035203+-07$33.00

method reconstructs 3D images by defining the surface nor-
mals according to measured intensity differences between
images taken with the different incident lighting directions
[16-20]. Nevertheless, this photometric approach demands
that the scene remains completely static whilst the lighting
condition changes in order to prevent surface reconstruction
errors, which limits its scope in real-time applications. Whilst
various methods [21-24] have been proposed for improving
the accuracy of different 3D shape recovery algorithms, it
seems there has been relatively less work on eliminating the
underlying problems associated with sequential acquisitions.

One state-of-the-art approach for solving pixel-matching
errors is spectrally multiplexed photometric stereo, where a
scene is photographed with a camera system configured to
measure multiple spectral channels [25]. This approach uses
two cameras aligned co-axially with a beam splitter and
spectrally filtered using two different bespoke dichroic filters,
in conjunction with three spatially-separated, white-light
sources with unique spectral profiles. This approach captures
per-pixel photometric normals and full color reflectance
simultaneously, and requires no time-varying illumination.

© 2016 IOP Publishing Ltd  Printed in the UK


mailto:ewayzhang@gmail.com
http://stacks.iop.org/JOPT/18/035203/mmedia
http://dx.doi.org/10.1088/2040-8978/18/3/035203
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/3/035203&domain=pdf&date_stamp=2016-02-29
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/3/035203&domain=pdf&date_stamp=2016-02-29
http://creativecommons.org/licenses/by/3.0

J. Opt. 18 (2016) 035203

Y Zhang et al

computer
mirror

Figure 1. Video-rate 3D imaging system. The system contains a digital micro-mirror device (DMD), a camera lens and four spatially
separated photodetectors (PD) fixed surrounding it. A white LED light source is used to illuminate the DMD chip and encoded into binary
light fields (0 s and 1 s). A mirror is adjusted manually inside a central 3D-printed mount so that the LED light is reflected to the right
direction on the DMD chip. The structured light patterns are projected through the lens onto the object. A plastic polarizer sheet is attached in
front of each photodetector (horizontally) and the camera lens (vertically) to eliminate the specular reflection on the object. Both
photodetectors and the LED light are controlled by a custom electric board (CEB). Each photodetector receives light scatted by the object to
give a signal of intensity value which is then sent to the computer through a data acquisition board (DAB) to form four 2D images. These 2D
images are analyzed using a photometric technique to give the 3D information of the scene.

However, reconstruction bias still occurs due to spectral
variations for scenes with distinct materials, such as human
faces.

Here we demonstrate an alternative approach, combining
photometric stereo with single-pixel imaging, which utilizes
an efficient real-time sampling scheme. Single-pixel imaging
[26-28] is a computational imaging technique that allows a
single-pixel detector to be used as an imaging device by using
a spatial light modulator to provide either time-varying,
structured detection of an image or by providing time-vary-
ing, structured illumination onto a scene. We have previously
shown that when using structured illumination it is the posi-
tion of the detector determines the apparent lighting condition
for the reconstructed image [1]. By using a small number of
single-pixel detectors in different spatial locations, multiple
images of a scene with different shading profiles can be
reconstructed with perfect pixel registration, even for moving
objects. By utilizing crossed polarizers it is possible to
observe the Lambertian surface reflectivity which allows the
surface normals to be estimated via photometric stereo tech-
niques and hence the recovery of 3D images. However, in our
original work, many thousands of projected patterns were
required leading to acquisition times in the order of several
minutes per single image [29, 30].

More generally, within the field of single-pixel imaging,
orthogonal and also pseudo-random bases have been employed
which significantly reduces the acquisition time, however, the
finite modulation rates of micro-electomechanical-systems

technology, typically ~20kHz, places restrictions on the
achievable frame rates even for relatively low resolution
images. A few studies [31-35] have aimed to improve the
imaging speed by using compressive sensing which utilize
‘a priori’ knowledge of the scene, such as sparsity in the
spatial frequency domain. Some of the most impressive
results utilizing highly-compressed data demand intensive
computational processing to recover an image, which does
not lend itself well for applications that demand video-
rate operation. A variety of alternative compressed sensing
schemes have been developed in recent years to enable
compressed sensing for large image resolutions. In this work
we employ one of these compressive strategies, known as
evolutionary compressed sensing [36], in order to demon-
strate continuous real-time 3D video at ~8 frames per second
for image resolutions of 64 x 64 pixels, equivalent to a
speed-up of 4 times compared to a conventional raster-scan-
ning sampling strategy.

Methods

Custom single-pixel system design

The application programming interface is written as a
dynamic-link library file which provides a convenient inter-
ference between of control software and accessory light
modulator package (ALP) driver. Patterns are first loaded
from the controlling software to the ALP board RAM in
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Figure 2. Comparison of 3D reconstructions of a static object using structured illumination with different resolutions. With illumination
resolutions of 32 x 32, 64 x 64, and 128 x 128 Hadamard pattern pairs, the corresponding frame rate with our 3D imaging system are:

8.7 Hz, 2.4 Hz, and 0.5 Hz.

sequence. The display time can also be adjusted manually
through the control software, which in this experiment is set
to be 50 us as the minimum. Besides the high speed projec-
tion, another important feature of the ALP is that it provides
synchronization trigger signals in reference to its display.
That is, when one pattern gets displayed, there is a trigger
signal released from digital micro-mirror device (DMD)
control circuit to the DAQ input which then triggers a series
of data acquisition. Signals are acquired after every trigger
signal, and the sample numbers are determined by the display
time and sampling rate. The DAQ used here is a National
Instrument portable USB DAQ (NI USB-6221/16) with a
maximum acquisition rate of 250 kHz for all channels. As
there are four channels employed, sampling rate for each
channel is set to 62.5 kHz. Given that each pattern is dis-
played for 50 us, there are approximately three samples
acquired for each pattern.

Photometric stereo

The image appearance of an object varies based on the
lighting illumination, object orientation, object shape and its
reflectance. With a static object, the corresponding surface
orientation can be determined by analyzing the object images
under different illumination directions. Photometric stereo,
which is ideally for Lambertian surfaces, allows depth and
surface orientation to be estimated from multiple images of a
static object taken from the same viewpoint, but under dif-
ferent illumination directions. The appearance of a diffuse
object with a specular varying reflection may be modeled as
[37]:

k
Ip = Zpip[ﬁ(np, Lp, v)],

i=1

Where Ip is the pixel intensity at point p, k is a fixed value of a
linear combination of k basis materials, p' is a reflection
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Figure 3. Comparison of 3D imaging using evolutionary compressed sensing. The object was reconstructed at 128 x 128 pixel resolution
with five different compression ratios: 12.5%, 25%, 50%, 75% and 100%.

Table 1. Relative rms error comparison at 128 x 128 pixel
resolution. The corresponding relative rms error of 3D reconstructed
height data with five different compression ratios.

128 x 128 pixel resolution

Patterns used 12.50%  25% 50% 75% 100%
(Ground
truth)

Relative rms 3.586 3443 2229 1.571 0

€rror

coefficient that varies on the surface, f; is any reflectance map
as a function of the viewing direction v, n, is the surface
normal at that point, and Lp is the incident illumination field.

In general, this method requires those images taken
successively following the change of illumination directions.
In our system, we replace the lighting sources with single-
pixel detectors and the camera with a patterned lighting, in
which case those images are acquired simultaneously.

Basis-scanning with Hadamard matrices

To maximize sampling efficiency, an orthogonal series of 2D
binary patterns, derived from a Hadamard matrix [38], are
preloaded to onboard RAM on the DMD. For a Hadamard
matrix of order 4° (k > 0, integer), each row is reshaped into
a 2D array with 2° x 2* resolution and upscaled to fill the full
height of the DMD, resulting in complete series of 4* binary

patterns. For example, for complete sampling of a scene at a
resolution of 32 x 32 would require a series of 1024 reshaped
Hadamard patterns to be displayed and the corresponding
intensities measured by a photodetector.

Results

Before assessing the 3D video quality with our 3D imaging
system, we first considered fast 3D single-pixel imaging with
a static object. In the system, as illustrated in figure 1, we
combined a 3W white LED with a DMD of 1024 x 768
pixels, and a camera lens with a 24 mm focal length to deliver
structured illumination at a rate of 22 kHz. A data acquisition
board (DAB) was used to covert analog intensity measured by
four photodetectors into digital signals at a rate of 250 kHz
which subsequently were processed to reconstruct both 2D
images via computational imaging and a 3D image based on
photometric stereo. As used in other work with single-pixel
cameras, the Hadamard basis was chosen for providing
structured illumination, which yields better quality results
compared to raster scanning techniques that suffer from
poorer signal-to-noise [37]. In one investigation, we recon-
structed a static object (a skull model) at three different
resolutions: 32 x 32 pixels, 64 x 64 pixels and 128 x 128
pixels respectively, as shown in figure 2. As anticipated,
increasing the image resolution provides improvement to
image quality at the expense of the reconstruction frame-rate.
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Figure 4. Sample of a compressed video-rate 64 x 64 pixel resolution 3D frames in 1 s. Each 3D frame is produced based on 1024 patterns
(25% compression ratio) acquired at a frame rate of ~8 Hz for an object physically rotated about the z-axis.
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Figure 5. Sample of a 10s 128 x 128 pixel resolution 3D video frames. Each 3D frame is produced based on 4096 patterns (25%
compression ratio) acquired at approximately a frame rate of ~1 Hz for an object physically rotated about the z-axis and the 3D reconstructed
model rotated simultaneously about the y-axis on the front controller at an angle range of +30°.

To improve the frame rate we applied compressive sen-
sing algorithms. In choosing the optimal approach we noted
that typical images can be represented by a subset of Hada-
mard patterns instead of a complete pattern set, and con-
tinuing adjacent frames are nearly coincident to each other
with only slight variations. Hence we ordered the Hadamard
patterns based on their corresponding mean signal intensities
from the four photodetectors, and utilized the top-ranking
patterns to form 2D images. With this compressive sensing
algorithm, for each new frame we replaced a small percentage
(we chose 10% patterns in this experiment) of low-ranking
patterns among the top-ranking patterns with the ones that
were randomly selected from the remainder of Hadamard
patterns. For each frame, these four 2D images were com-
bined using photometric stereo techniques to obtain 3D
images. This evolutionary approach to the selection of a
subset of Hadamard patterns is a compromise approach to
maintain a high frame-rate without decreasing the spatial
resolution.

With implementation of this photometric algorithm, we
reconstructed the object at 128 x 128 pixel resolution by
using five different numbers of pattern pairs: 16 384 pattern
pairs, 12288 pattern pairs, 8192 pattern pairs, 4096 pattern
pairs, and 2048 pattern pairs, equivalent to 100% (zero-
compression), 75%, 50% 25% and 12.5% compression ratio
(see figure 3), and compared the relative root-mean square
(rms) errors of the height value in those 3D images to the zero
compression result (see table 1). The 3D reconstruction with
zero-compression in this figure is the same as the 3D recon-
struction of 128 x 128 pixel resolution in figure 2. The result
shows that, as expected, the rms error of the object’s height
value increases when using less pattern pairs (higher
compression).

In figure 4, we present a sample of real-time compressed
64 x 64 pixel resolution 3D video frames in 1s. Each 3D
frame is produced based on 1024 patterns (25% compression
ratio), which equals to the same amount of patterns for a zero-
compression 32 x 32 pixel resolution 3D image
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reconstruction. The frame rate of this 3D video is 7.6 Hz,
approximately 4 times faster than the zero-compression
64 x 64 pixel resolution one. In figure 5, we demonstrate a
10s real-time 3D video frames reconstructed at 128 x 128
pixel resolution at a frame rate of 0.9 Hz, using 4096 Hada-
mard patterns (25% compression ratio). The object is physi-
cally rotated about the z-axis, whilst the 3D reconstructed
model is rotated about the y-axis at an angel range of [—30,
30] controlled by the system since we are fully aware of the
height map of the object. We notice that the frame rate in this
video is restrained due to the fact that the 3D reconstruction
process at 128 x 128 pixel resolution starts to play an
important role in overall time performance when the 2D
reconstruction time decreases with compressive sensing
algorithm.

Discussion and conclusion

We have experimentally demonstrated a video-rate 3D ima-
ging system based on photometric stereo and exhibiting
perfect pixel registration by utilizing a high-speed structured-
illumination and single-pixel detectors. As an extension of
our previous related work, we have now shown continuous
operation for 3D image reconstruction at image resolutions of
32 x 32, 64 x 64 and 128 x 128 pixels, with Nyquist-
sampling frame rates of 8.7 Hz, 2.4 Hz, and 0.5 Hz, respec-
tively. Additionally we have made use of sub-Nyquist sam-
pling (compressive sensing) to speed-up the frame rates for
64 x 64 and 128 x 128 pixel resolution images at the
expense of only a modest reduction in image quality, as
evidenced by a quantitative analysis. For 64 x 64 and
128 x 128 pixel 3D images, 25% compressive sensing pro-
vides increased frame rates of ~8 Hz and ~1 Hz respectively,
compared to Nyquist sampling. We note that at 128 x 128
pixel resolution, the total computational time for 2D and 3D
image reconstruction, as performed on an octa-core processor,
placed a limit on the achievable frame rate, however we
anticipate that this may be improved with other processing
hardware, such as dedicated high-performance GPU’s. Since
this 3D imaging approach does not rely on a pixelated camera
sensor and the operational bandwidth of DMD extends
beyond this visible, this technique can be applied at wave-
lengths where 3D imaging is prohibitively expensive.
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