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Abstract 

A major challenge in studying impact problems analytically is solving the governing 

equations of impact events, which are mostly in the form of nonlinear ODEs. This 

paper focuses on the solution of nonlinear models for impact problems in 

asymptotic cases, where local indentation is significant. The asymptotic cases 

consist of both half-space and infinite plate impacts, which cover a wide range of 

practical impact events. A so-called force-indentation linearisation method (FILM), 

first described in a previous study, is reformulated here in a more general form in 

order to broaden its scope of application. The generalisation of the FILM facilitates 

stable and convergent solutions even when complex nonlinear contact models are 

used to estimate the impact force. Simulations based on the FILM approach are 

validated using numerical solutions. 
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1. Introduction 

Many engineering structures made of metals or composite materials are used 

in environments where they are exposed to impact of freely flying projectiles. For 

example, impact of runway debris on an airplane body, object dropping on a car 

body or platform, impact of space structures by space debris, hailstone impact, 

etc. The low-velocity impact of a structure by a rigid projectile normally results in 

plastic deformation and/or damage of the structure [1 - 3], and this reduces the 

performance of the structure. For metallic targets, low-velocity impact results in 

plastic deformation, which gives rise to a permanent indentation at the end of the 

impact unloading. On the other hand, low-velocity impact of targets made of 

composite material results in plastic deformation of the matrix and damage of the 

fibre in the form of debonding, breakage, kinking, micro-buckling, etc. This means 

that models for analysis of low-velocity impact events should account for 

elastoplastic (post-yield deformation) effects i.e. plastic deformation and/or 

damage. 

The impact force and the local indentation during low- to medium-velocity 

impact are determined using quasi-static assumptions [1], and therefore estimated 

using an appropriate static contact model. Static contact models that account for 

elastoplastic effects have been developed for metallic targets [1, 2, 4 - 6] and for 

composite laminate targets [3, 7, 8]. Contact models can be divided into two 

general groups according to the compliance relationships used to model the various 

indentation stages, namely: Meyer type and non-Meyer type. Meyer type contact 

models are defined here as those in which the compliance relationships for all the 

indentation stages are expressed as [2]: 

                                                                         𝐹 = 𝐾𝑐𝛿
𝑞                                                                         (1) 
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where  𝐾𝑐 is the contact stiffness and 𝑞 ≥ 1 is a number defining the power law 

relationship between the contact force and indentation. Specific models can be 

derived from this general Meyer-type form by using a given parameter set. For 

example, the Hertz contact model is a specific form of Meyer contact model with 

𝐾𝑐 equal to the Hertzian contact stiffness and 𝑞 = 3/2. On the other hand, non-

Meyer type contact models use compliance relationships that cannot be expressed 

in terms of equation (1) in at least one indentation stage (usually the elastoplastic 

indentation stage). For example, the compliance model for the elastoplastic 

indentation stage of the contact model of Stronge [4], see equation (2), cannot be 

expressed in terms of equation (1). Hence, Stronge’s contact model is a non-Meyer 

type contact model. 

                              𝐹 = 𝐹𝑦  
2𝛿

𝛿𝑦
− 1  1 +

1

3.3
𝑙𝑛  

2𝛿

𝛿𝑦
− 1               𝛿𝑦 ≤ 𝛿 ≤ 𝛿𝑝                       (2) 

Other examples of non-Meyer type contact models include the elastoplastic 

contact models in references [1, 5, 9, 10]. Impact models incorporating non-Meyer 

type contact models usually take relatively complex forms and are therefore more 

challenging to solve [11]. 

Although the indentation response of metals during the elastoplastic loading 

stage is nonlinear [1, 2, 4, 8], some linear elastoplastic compliance models have 

been used to provide good predictions when compared with limited experimental 

measurements [2] and finite element results [12]. Linear elastoplastic compliance 

models are normally used to overcome computational difficulties associated with 

integrating impact models incorporating nonlinear elastoplastic contact models. 

Nevertheless, nonlinear elastoplastic contact models tend to be more reliable and 

more physically consistent than analogous linear approximations and are therefore 

required for proper theoretical analysis of half-space impacts. 
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Nonlinear elastoplastic contact models are usually of the non-Meyer type and 

despite the success and wide use of the latter for static indentation analyses [1, 4, 

10], studies in which such models have been used to investigate the response 

history of elastoplastic half-space impacts are scarce. A possible explanation is the 

computational challenge involved; an attempt by the current authors [11] to use 

Stronge’s non-Meyer type contact model [4] to investigate an elastoplastic impact 

event revealed convergence problems when using a cubic Hermit interpolation 

method in NDSolve function of Mathematica™. Such problems were avoided when 

using a Meyer-type contact model [6]. It can be concluded that there is a need 

either to develop Meyer type contact models for the elastoplastic loading stage, or 

alternatively, to develop more efficient and robust solution algorithms able to 

solve the highly nonlinear ODEs associated with non-Meyer type contact models. 

Addressing this latter goal is one of the main aims of this investigation. 

Analytical models for low-velocity impact of a target by a rigid spherical 

projectile are normally formulated using the equations of motion of the contacting 

bodies and a static contact model that accounts for the local indentation. In 

general, impact models for spherical impact of transversely flexible targets 

account for the vibrations of the target, local indentation and boundary 

conditions, and are reducible to a set of coupled nonlinear ODEs. In contrast, the 

impact models for spherical impact of transversely inflexible targets are in the 

form of single degree-of-freedom nonlinear ODEs. The geometrical features of the 

target relative to the spherical projectile may allow use of simplifying assumptions 

that leads to asymptotic impact models. Three geometric conditions are identified 

in the literature that can be modelled using asymptotic impact models [13, 14]. 

The first condition applies when the target is very thick compared to the size of 

the projectile. This means that the target is transversely inflexible and its 
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transverse oscillations can be neglected. This kind of impact event can be 

modelled as a half-space impact. The second condition is when the mass and size 

of the projectile is very small compared to the mass and planar dimensions of a 

transversely flexible target. In this case, the impact duration is shorter than the 

time it will take for the first reflected vibration wave to reach the impact zone. 

The implication is that the boundary conditions do not affect the impact response. 

The impact event can be modelled as an infinite plate impact and has been 

referred to as small mass impact [15] or wave-controlled impact [16]. The third 

condition is when mass of the projectile is larger than the mass of a transversely 

flexible target. The vibrations of the target occur quasi-statically and the impact 

response is influenced by the boundary conditions. The local indentation is 

negligible compared to the vibration amplitude of the target. The impact event 

can be modelled using the assumptions of quasi-static bending and the energy-

balance principle [16], and has been referred to as large mass impact [15]. 

All three asymptotic impact events are modelled using single degree-of-

freedom ODEs [16]. Of the three asymptotic impact events described above, the 

half-space and infinite plate response are characterised by significant local 

indentation, while the impact event with quasi-static bending response is 

characterised by negligible local indentation. Therefore, the half-space and 

infinite plate impacts can be referred to as ‘asymptotic impact events with 

significant local indentation’ and are the focus of this particular investigation. The 

models for asymptotic impact events with significant local indentation incorporate 

static indentation models, which are usually nonlinear compliance models, to 

estimate the impact force and account for the local indentation effects. Hence, 

the final models for half-space and infinite plate impacts are usually in the form of 

nonlinear ODEs, except for cases where linearised contact models are used to 
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estimate the impact force. The latter can be used for qualitative analysis [13, 14], 

but where quantitative estimates are required the use of linearised contact 

models, which are approximations to the actual contact behaviour, could lead to 

significant errors in the predicted response [13]. Since asymptotic impact events 

with significant local indentation occur in many practical situations, the solution to 

the models describing the response of these impact events is very important. 

Solution of the nonlinear models for asymptotic impact events with 

significant local indentation may be achieved by conventional numerical schemes 

such as the small-increment integration method [2] and the Newmark integration 

method [16], and by robust numerical integration solvers in computational 

software packages such as the NDSolve function in Mathematica™ [11, 17, 18]. 

Note that the NDSolve function solves a nonlinear ODE by means of an optimised 

algorithm that selects the best numerical method to use from a set of embedded 

conventional numerical schemes [17]. Hence, issues of stability and convergence 

associated with the various conventional numerical schemes occasionally arise in 

the output of the NDSolve function resulting in non-convergent solutions. Thus, the 

conditional stability of conventional numerical schemes make them challenging to 

use, and when convergence can be achieved, often require a large number of 

iterations to obtain accurate results.  

Recently, an analytical algorithm for the solution of nonlinear ODEs governing 

an elastoplastic half-space impact was developed [18]. The algorithm, which is 

called the Force-Indentation Linearisation Method (FILM), used closed-form 

solutions derived from piecewise linearisation of the nonlinear force-indentation 

relationship (compliance model) to determine the response of a half-space impact. 

The limitations associated with conventional numerical methods discussed above 

were found to be completely eliminated when using the FILM. In this prior work, 
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formulation and application of the FILM were limited to half-space impact events 

modelled using specific Meyer type contact models. It was suggested that future 

work could focus on extending the FILM to solve the response of half-space impact 

events modelled using non-Meyer type contact models. In this investigation, this 

prior suggestion has been implemented and additionally, the FILM has been further 

extended to solve the nonlinear ODEs governing infinite plate impacts. The goal is 

to demonstrate how the FILM can be used as an efficient and reliable algorithm, 

able to solve nonlinear ODEs governing asymptotic impact events involving 

significant local indentation. 

The remainder of the paper is structured as follows. In section 2, the concept 

of the FILM is formulated mathematically based on a general nonlinear contact 

model, which can be either Meyer type or non-Meyer type. Also, the distinction 

between the FILM and nonlinear FEA on one hand, and the FILM and conventional 

time-integration numerical schemes on the other hand is discussed. Section 3 

discusses the application of the FILM to solve the governing nonlinear ODEs of an 

elastoplastic half-space impact with impact stages incorporating either Meyer type 

or non-Meyer type models. A FILM solution for the governing ODE of a half-space 

impact stage modelled based on a modified Meyer-type contact law is presented. 

Furthermore, an illustration of how the generalised formulation of the FILM 

discussed in Section 2 can be used to solve the governing ODE of a half-space 

impact stage incorporating a non-Meyer type contact model is presented. Section 4 

discusses the application of the FILM approach to solve nonlinear ODEs governing 

infinite plate impacts and Section 5 discusses the conclusions of the paper.   
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2. Generalisation of the FILM 

The concept of the FILM is explained in reference [18] and briefly summarised 

here. Basically, the idea of the FILM is to discretise the nonlinear compliance 

model used to estimate the impact force into a finite number of segments, and to 

linearise each of these segments. The linearised segments are used to develop 

linearised response models that approximate the impact response for each 

discretisation. Hence, the closed-form solutions of the linearised response models 

provide approximate solutions of the impact response. In this section, the FILM is 

formulated based on a general nonlinear compliance model that can represent 

both Meyer type and non-Meyer type compliance models (see Figure 1). This 

general formulation allows for a broader application of the FILM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Piecewise discretisation of a general nonlinear compliance model. 
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2.1. Difference between FILM and conventional numerical schemes 

The FILM is based on continuous piecewise linearisation of the constitutive 

nonlinear force-displacement relationship describing the indentation process. A 

similar piecewise linearisation approach (i.e. tangent or secant stiffness approach) 

is normally used in FEA to solve the nonlinear equations governing static and 

dynamic processes [19, 20]. As a result, it is necessary to clarify the difference 

between the FILM and the tangent or secant stiffness approach used in nonlinear 

FEA. In nonlinear dynamic FEA, a load increment is assumed for each time 

increment and the corresponding actual increase in displacement is obtained 

through an iterative process, such as Newton-Raphson, modified Newton-Raphson 

or Riks-Wempner method [20], using a tangent or secant stiffness or a combination 

of both [19]. On the other hand, the FILM involves discretisation of the nonlinear 

force-indentation relationship using predetermined indentation increments. For 

each discretisation, a linearised force-indentation relationship is derived to 

approximate the nonlinear force-indentation relationship, thus leading to the 

formulation of linearised impact models for each discretisation. Accordingly, 

closed-form solutions of the linearised impact models are obtained to determine 

the time-dependent response for each discretisation. Therefore, in contrast to 

nonlinear dynamic FEA where an iterative process is used to determine the load-

displacement equilibrium, the FILM requires no such iterative process and the 

load-displacement equilibrium is inherent in its formulation. This is the case 

because the actual load increments corresponding to the predetermined 

indentation increments are used to formulate the linearised models for each 

discretisation. 
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Table 1: Qualitative difference between the FILM and conventional numerical 

schemes for solving nonlinear half-space impact models 

 FILM Conventional numerical schemes 

1 The force is discretised in terms of a 

dependent variable i.e. indentation. 

The force or variable of interest is 

discretised in terms of the 

independent variable i.e. time. 

2 Produces closed-form solutions used to 

approximate the actual solution. 

Produces numerical solutions used to 

approximate the actual solution. 

3 Closed-form solutions are derived 

analytically and do not require any 

iterations. 

Numerical solutions require iterations 

and an error condition to terminate 

the iterations. 

4 Each closed-form solution applies to a 

range of time of the impact duration. 

Each numerical solution applies to a 

discrete time of the impact duration. 

5 Requires very few discretisations of the 

impact force to obtain sufficiently 

accurate solutions; typically 5 to 10 

discretisations. 

Requires many discretisations of the 

impact force or variable of interest; 

usually multiples of 10 to hundreds. 

6 Produces solution with the same 

relative computational effort 

notwithstanding the complexity of the 

nonlinearity in the impact model. 

The computational effort increases 

with the complexity of the 

nonlinearity in the impact model. 

7 Easy to implement by hand calculation. Computer implementation is required. 

8 Inherently stable for solution of the 

nonlinear ODEs governing half-space 

impact. 

Conditionally stable for the solution of 

the nonlinear ODEs governing half-

space impact. 

9 Convergence of solution for half-space 

impact models incorporating non-Meyer 

type contact models is always 

guaranteed. 

Convergence of solution for half-space 

impact models incorporating non-

Meyer type contact models is not 

always guaranteed [11]. 

 

Having made the distinction between the FILM and the nonlinear FEA 

procedures, it is also important to distinguish between the FILM and the numerical 
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time-integration schemes that are normally used to solve nonlinear half-space 

impact models. The main differences between the FILM and the conventional 

numerical time-integration schemes are summarised in Table 1 and is intended to 

highlight why the FILM is preferable for the solution of half-space impact problems 

compared to the conventional numerical time-integration schemes. Although the 

FILM was originally formulated for the solution of half-space impact models, its 

application to solve nonlinear models of infinite plate impact is also examined 

later in this paper. 

 

2.2. Mathematical formulation of the FILM for a general nonlinear compliance 

model 

Assuming that 𝐹(𝛿) is a nonlinear function of 𝛿 as shown in Figure 1 and 

𝐹𝑖 = 𝐹(𝛿𝑖) where 𝑖 represents any point on the nonlinear force-indentation curve. 

Then from Figure 1, 𝐹01 = slope of 01    × (𝛿01 − 𝛿0) + 𝐹0 where 𝐹01 is the linearised 

force for the segment of 𝐹 𝛿  between point 0 and point 1. Hence,  

               𝐹01 =  
𝐹1 − 𝐹0

𝛿1 − 𝛿0

 𝛿01 − 𝛿0 + 𝐹0 =
𝐹(𝛿1) − 𝐹(𝛿0)

𝛿1 − 𝛿0

 𝛿01 − 𝛿0 + 𝐹 𝛿0                    (3𝑎) 

Similarly,  

                                             𝐹12 =  
𝐹 𝛿2 − 𝐹 𝛿1 

𝛿2 − 𝛿1
(𝛿12 − 𝛿1) + 𝐹(𝛿1)                                       (3𝑏) 

And generally,  

                                                𝐹𝑟𝑠 =  
𝐹 𝛿𝑠 − 𝐹 𝛿𝑟 

𝛿𝑠 − 𝛿𝑟
(𝛿𝑟𝑠 − 𝛿𝑟) + 𝐹 𝛿𝑟                                         (4) 

where 𝑟 = 0, 1, 2, 3, … , 𝑛 − 1 and 𝑠 = 𝑟 + 1 are the initial and end states of each 

segment respectively. During unloading 𝑟 = 𝑛, 𝑛 − 1, 𝑛 − 2, … , 3, 2, 1 are the initial 

states while 𝑠 = 𝑟 − 1 are the end states. 𝐹𝑟𝑠  is the linearised force for each 

segment and it can be rewritten as: 
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                                                           𝐹𝑟𝑠 =  𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐹 𝛿𝑟                                                    (5) 

where 

                                                                 𝐾𝑟𝑠 =
𝐹(𝛿𝑠) − 𝐹(𝛿𝑟)

𝛿𝑠 − 𝛿𝑟
                                                           (6) 

Supposing each segment has an equal indentation range i.e. ∆𝛿 = 𝛿𝑠 − 𝛿𝑟  is 

constant, then 𝛿𝑟  can be expressed for 𝑛 segments as: 

                                                              𝛿𝑟 = 𝛿0 +  𝑟 𝛿𝑛 − 𝛿0 /𝑛                                                        (7) 

When the linearised contact force (equation (5)) is substituted in the dynamic 

equation of a half-space impact, a linear differential equation is obtained from 

which closed-form solutions can be derived for each segment. This general 

formulation, combined with the energy balance principle [6], can be used to 

derive the complete solution of a rate-independent half-space impact irrespective 

of the nature of nonlinearity in the compliance model used to estimate the impact 

response. 

 

3. Impact of a half-space target by a rigid spherical projectile  

A half-space target is one that has an infinite thickness. It is an analytical 

idealisation that can be used to represent very thick targets impacted by 

projectiles with relatively small size and mass. Such targets are considered to be 

transversely inflexible and their vibrations are negligible, if any. Therefore, the 

local indentation is determined by the displacement of the projectile. The impact 

energy is essentially used for local indentation of the target as other possible 

forms of dissipations such as elastic waves, sound and friction can be safely 

neglected for low- to medium-velocity impacts [1]. Half-space impact conditions 

are normally used in experiments and finite element analysis to determine the 

response during dynamic indentation e.g. coefficient of restitution and contact 
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time [9, 21, 22] and the material properties of the target e.g. dynamic yield [4, 

23]. The impact response of a half-space target struck by a rigid spherical impactor 

is modelled by a single degree-of-freedom motion as shown in equation (8). 

                                                                      𝑚𝛿 + 𝐹 = 0                                                                       (8) 

where 𝑚 is the mass of the projectile; 𝛿 is the indentation, which is equal to the 

displacement of the projectile; the initial conditions are 𝛿 0 = 0 and 𝛿  0 = 𝑉0; 

𝐹 = 𝐹 𝛿 ≥ 0 is the impact force, which is estimated from a static contact model. 

 

3.1. Half-space impact modelled using a generalised Meyer type contact law 

and solved using the FILM 

Big-Alabo et al [18] applied the FILM to derive solutions for two examples of 

half-space impact modelled using specific Meyer type contact models i.e. the 

Hertz contact model for elastic impact and the contact model of Majeed et al [8] 

for elastoplastic impact. In this section, a FILM solution is derived for the response 

of a half-space impact stage that is modelled based on a general Meyer type 

contact law (see equation (1)), rather than specific instances of the latter. This 

FILM solution has the important advantage that it eliminates the need to develop a 

FILM solution from first principle, for each specific Meyer type contact model 

considered. 

Meyer’s law is considered the general form for most static contact models 

[2]. A modified form of Meyer’s law incorporating post-yield effects can be written 

as: 

                                                               𝐹 = 𝐾𝑐 𝛿 − 𝛿0 
𝑞 + 𝐹0                                                            (9) 

where 𝛿0 and 𝐹0 are the indentation and contact force at the onset of a loading or 

unloading stage. During elastic impact response 𝛿0 = 0 and 𝐹0 = 0, while for post-

elastic impact response, 𝛿0 ≠ 0 and 𝐹0 ≠ 0. Therefore, the model for a half-space 
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impact governed by a Meyer type contact law accounting for post-yield effects can 

be written as: 

                                                          𝑚𝛿 + 𝐾𝑐 𝛿 − 𝛿0 
𝑞 + 𝐹0 = 0                                                  (10) 

The FILM need only be applied when 𝑞 ≠ 1 i.e. when equation (10) is nonlinear. If 

𝑞 = 1, then equation (10) is linear and closed-form solutions can be obtained 

directly without need for the FILM or any other numerical integration scheme. 

Substituting equation (9) in equation (5), 

            𝐹𝑟𝑠 =  
𝐾𝑐 𝛿𝑠 − 𝛿0 

𝑞 − 𝐾𝑐 𝛿𝑟 − 𝛿0 
𝑞

𝛿𝑠 − 𝛿𝑟

 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐾𝑐 𝛿𝑟 − 𝛿0 
𝑞 + 𝐹 𝛿0                 (11) 

From equation (7), 

                                                    𝛿𝑠 − 𝛿𝑟 = 𝛿𝑟+1 − 𝛿𝑟 =  𝛿𝑛 − 𝛿0 /𝑛                                           (12) 

Note that 𝛿𝑛  is the indentation at the end of the loading or unloading stage 

considered (see Figure 1), and 𝛿𝑛  is obtained from the energy balance algorithm 

[6] when it is equal to the maximum indentation, otherwise it is obtained from the 

contact model used to estimate the impact response. Substituting equations (7) 

and (12) in equation (11), and after algebraic simplifications, the linearised 

contact force for each discretisation can be written as: 

                                          𝐹𝑟𝑠 = 𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐾𝑐 𝛿𝑟 − 𝛿0 
𝑞 + 𝐹0                                           (13) 

where 

                                            𝐾𝑟𝑠 = 𝑛𝐾𝑐 𝛿𝑛 − 𝛿0 
𝑞−1   

𝑠

𝑛
 
𝑞

−  
𝑟

𝑛
 
𝑞

                                             (14) 

Substituting equation (13) in equation (8), the governing equation for the impact 

response of each discretisation is given by: 

                                         𝑚𝛿 𝑟𝑠 + 𝐾𝑟𝑠𝛿𝑟𝑠 = 𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑐 𝛿𝑟 − 𝛿0 
𝑞 − 𝐹0                                      (15) 

Equation (15) is a non-homogeneous linear differential equation and the complete 

solution can be readily obtained as: 

                                                        𝛿𝑟𝑠 = 𝑅𝑟𝑠 Sin 𝜔𝑟𝑠𝑡 + 𝜑𝑟𝑠 + 𝐶𝑟𝑠                                             (16) 
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Taking the first derivative of equation (16), the velocity profile is given by: 

                                                         𝛿 𝑟𝑠 = 𝜔𝑟𝑠𝑅𝑟𝑠 Cos 𝜔𝑟𝑠𝑡 + 𝜑𝑟𝑠                                                (17) 

where 𝑅𝑟𝑠 =  𝐴𝑟𝑠
2 + 𝐵𝑟𝑠

2  1/2; 𝐶𝑟𝑠 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑐 𝛿𝑟 − 𝛿0 
𝑞 − 𝐹0 𝐾𝑟𝑠 ; 𝜔𝑟𝑠 =  𝐾𝑟𝑠 𝑚 ; 

and 𝜑𝑟𝑠 = tan−1 𝐵𝑟𝑠 𝐴𝑟𝑠  − 𝜔𝑟𝑠𝑡𝑟. Using equations (16) and (17), 𝐴𝑟𝑠 = 𝛿 𝑟/𝜔𝑟𝑠 and 

𝐵𝑟𝑠 = 𝛿𝑟 − 𝐶𝑟𝑠 . The constants 𝐴𝑟𝑠  and 𝐵𝑟𝑠  depend on the initial conditions, 𝛿 𝑡𝑟 =

𝛿𝑟  and 𝛿  𝑡𝑟 = 𝛿 𝑟, where 𝑡𝑟  is calculated as [17]: 

                                        𝑡𝑟 =  
π

2
± ArcCos  𝛿𝑟 − 𝐶𝑟𝑠 𝑅𝑟𝑠  − 𝜑𝑟𝑠 /𝜔𝑟𝑠                                  (18) 

Since the displacements at the boundaries of each discretisation are known 

i.e. 𝛿𝑟 = 𝛿0 +  𝑟 𝛿𝑛 − 𝛿0 /𝑛, then one initial condition is already available. The 

second initial condition is determined by substituting equation (18) in equation 

(17). In equation (18), the trigonometric term in the numerator is negative during 

the loading stage and positive during the restitution stage. The sign change in this 

term during the restitution stage accounts for the fact that the contact force is 

reversed. At maximum conditions, this term vanishes so that 𝑡𝑚 =  𝜋/2 − 𝜑𝑟𝑠 𝜔𝑟𝑠 . 

Equation (18) is used to determine the time boundaries for each discretisation, and 

then, equations (16), (17) and (13) are used to extract data points for the 

indentation, velocity and force histories within the time boundaries. 

Equations (13, 14, and 16 – 18) constitute the FILM solution for a half-space 

impact modelled using a general Meyer type contact law. To adapt this solution to 

the case of a specific Meyer type contact model, the constants 𝛿0, 𝐹0, 𝛿𝑛, 𝐾𝑐 and 𝑞 

are defined from the contact model and used to re-evaluate equations (7) and 

(14), and the expression for 𝐶𝑟𝑠 . For example, during elastic impact of a spherical 

impactor on a half-space target 𝛿0 = 0, 𝐹0 = 0, 𝛿𝑛 = 𝛿𝑚 , 𝐾𝑐 = 𝐾𝑕  and 𝑞 = 3/2. 

Substituting these values into equations (13, 14, and 16 - 18) the FILM solution for 

elastic half-space impact derived in reference [18] is obtained.  
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To further demonstrate the application of the FILM solution derived for the 

response of a half-space impact modelled using a general Meyer type contact law, 

the contact model of Big-Alabo et al [6] is used to estimate the impact force 

during the elastoplastic impact of a mild steel slab struck by a spherical tungsten 

carbide ball. Although this example is qualitatively similar to the elastoplastic 

impact example investigated in reference [18], it is included here in order to 

clearly demonstrate the application of the FILM solution in equations (13, 14, and 

16 - 18). Furthermore, the elastoplastic loading stage of the example investigated 

in reference [18] was modelled using a linear Meyer type compliance model, 

whereas the elastoplastic loading stage of the present example is modelled using a 

nonlinear Meyer type compliance model. 

The contact model of Big-Alabo et al [6] has four loading stages; an elastic 

loading stage, two subsequent elastoplastic loading stages, followed by a fully 

plastic loading stage. Also, there is a single unloading stage that models the 

restitution from any of the loading stages. All of these stages are modelled using 

Meyer type compliance models. Details of the formulation of this contact model 

can be found in reference [6] and are not repeated here for brevity. The contact 

model is summarised as follows. 

            𝐹 =

 
 
 
 

 
 
 

𝐾𝑕𝛿
3 2                                                                                 0 ≤ 𝛿 ≤ 𝛿𝑦

𝐾𝑕 𝛿 − 𝛿𝑦 
3 2 

+ 𝐾𝑕𝛿𝑦
3 2 

                                           𝛿𝑦 ≤ 𝛿 ≤ 𝛿𝑡𝑒𝑝

𝐾𝑙 𝛿 − 𝛿𝑡𝑒𝑝  + 𝐾𝑕   𝛿𝑡𝑒𝑝 − 𝛿𝑦 
3 2 

+ 𝛿𝑦
3 2 

         𝛿𝑡𝑒𝑝 ≤ 𝛿 ≤ 𝛿𝑝

𝐾𝑝 𝛿 − 𝛿𝑝 + 𝐹𝛿=𝛿𝑝
                                                      𝛿𝑝 ≤ 𝛿 ≤ 𝛿𝑚

𝐾𝑢 𝛿 − 𝛿𝑓 
3 2 

                                                                 𝛿𝑓 ≤ 𝛿 ≤ 𝛿𝑚

           (19𝑎 − 𝑒)   

Equations (19a-e) represent the compliance model for the elastic loading, 

nonlinear elastoplastic loading, linear elastoplastic loading, fully plastic loading 

and unloading stages respectively. The contact parameters in equations (19a-e) are 

given as: 𝐾𝑕 = (4/3)𝐸𝑅1 2  where 𝐸 and 𝑅 are the effective modulus and radius 
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respectively, and are calculated as: 𝐸 =   1 − 𝜐𝑖
2 𝐸𝑖 +  1 − 𝜐𝑡

2 𝐸𝑡  −1 and 𝑅 =

 1 𝑅𝑖 + 1 𝑅𝑡  −1; the subscripts 𝑖 and 𝑡 stand for indenter and target respectively, 

and 𝜐 is the Poisson’s ratio; 𝛿𝑦 =  1.1𝜋𝑅𝑆𝑦/𝐾𝑕 
2
 where 𝑆𝑦  is the yield stress of the 

target; 𝐾𝑙 = 5.40𝐾𝑕𝛿𝑦
1 2 

; 𝛿𝑡𝑒𝑝 = 13.93𝛿𝑦 ; 𝐾𝑝 = 4.6𝜋𝑅𝑆𝑦 ; 𝛿𝑝 = 82.5𝛿𝑦 ; 𝐹𝛿=𝛿𝑝
=

70.0𝐾𝑙𝛿𝑦 + 47.6𝐾𝑕𝛿𝑦
3 2 

; 𝐾𝑢 = (4/3)𝐸𝑅𝑑
1 2 

; 𝛿𝑓 = 𝛿𝑚 −  3𝐹𝑚/4𝐸𝑅𝑑
1 2 

 
2 3 

 where 𝑅𝑑  is 

the deformed effective radius, and 𝑅𝑑 ≥ 𝑅; 𝛿𝑚  and 𝐹𝑚  are the maximum 

indentation and impact force, which are determined using the energy balance 

algorithm in [6]. The deformed effective radius is calculated as [24, 25]: 

                       

                                      𝑅𝑑 = 𝑅                          0 ≤ 𝛿𝑚 ≤ 𝛿𝑦

              𝑅𝑑 =   
𝛿𝑚 − 𝛿𝑦

𝛿𝑡𝑒𝑝 − 𝛿𝑦
 

3/2

+ 1 𝑅             𝛿𝑦 ≤ 𝛿𝑚 ≤ 𝛿𝑡𝑒𝑝

              𝑅𝑑 =  0.8  
𝛿𝑚 − 𝛿𝑡𝑒𝑝

𝛿𝑝 − 𝛿𝑡𝑒𝑝
 + 2 𝑅            𝛿𝑡𝑒𝑝 ≤ 𝛿𝑚 ≤ 𝛿𝑝

                                       𝑅𝑑 = 2.8𝑅                      𝛿𝑚 > 𝛿𝑝             
 
 
 

 
 
 

                        (20) 

 

Table 2: Properties of the tungsten carbide – mild steel impact system  

Material properties 

Mild steel slab: 𝜌𝑡 = 7850[𝑘𝑔/𝑚3]; 𝐸𝑡 = 210[𝐺𝑃𝑎]; 𝜈𝑡 = 0.30[−]; 𝑆𝑦 = 1.0[𝐺𝑃𝑎] 

Tungsten carbide impactor: 𝜌𝑖 = 14500[𝑘𝑔/𝑚3]; 𝐸𝑖 = 600[𝐺𝑃𝑎]; 𝜈𝑖 = 0.28[−] 

Other inputs: 𝑚𝑖 = 0.06074[𝑘𝑔]; 𝑅𝑖 = 10[𝑚𝑚]; 𝑅𝑡 = ∞; 𝑉0 = 0.25[𝑚/𝑠] 

 

The material properties of the tungsten carbide – mild steel impact system 

are shown in Table 2. A check using the energy balance algorithm [6] confirmed 

that the maximum indentation for this impact event is located in the nonlinear 

elastoplastic loading stage. Hence, the impact stages involved include: elastic 

loading, nonlinear elastoplastic loading and elastic unloading; all of which are 

modelled with nonlinear Meyer type compliance models (see equations (19a, b, 

and e)). Consequently, the FILM solution for the response of a half-space impact 
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modelled using a general Meyer type contact model (see equations (13, 14, and 16 

- 18)) can be applied to all of these impact stages, as will be shown next. 

Elastic loading response 

Based on equation (19a), 𝛿0 = 0; 𝐹0 = 0; 𝐾𝑐 = 𝐾𝑕 ; 𝑞 = 3/2; and 𝛿𝑛 = 𝛿𝑦. From 

the FILM solution, the following apply to the elastic loading response. 

𝐹𝑟𝑠 = 𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐾𝑕𝛿𝑟
3/2

;  𝐾𝑟𝑠 = 𝑛𝐾𝑕𝛿𝑦
1/2  𝑠/𝑛 3/2 −  𝑟/𝑛 3/2 ; 𝛿𝑟 = 𝑟𝛿𝑦/𝑛; 

𝐶𝑟𝑠 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑕𝛿𝑟
3/2 𝐾𝑟𝑠 . 

Nonlinear elastoplastic loading response 

Based on equation (19b), 𝛿0 = 𝛿𝑦 ; 𝐹0 = 𝐹𝑦 = 𝐾𝑕𝛿𝑦
3/2

; 𝐾𝑐 = 𝐾𝑕 ; 𝑞 = 3/2; and 

𝛿𝑛 = 𝛿𝑚 . From the FILM solution, the following apply to the nonlinear elastoplastic 

loading response. 

𝐹𝑟𝑠 = 𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐾𝑕 𝛿𝑟 − 𝛿𝑦 
3/2

+ 𝐹𝑦; 

𝐾𝑟𝑠 = 𝑛𝐾𝑕 𝛿𝑚 − 𝛿𝑦 
1/2

  𝑠/𝑛 3/2 −  𝑟/𝑛 3/2 ;  

𝛿𝑟 = 𝛿𝑦 +  𝑟 𝛿𝑚 − 𝛿𝑦 /𝑛; and 𝐶𝑟𝑠 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑕 𝛿𝑟 − 𝛿𝑦 
3/2

− 𝐹𝑦 𝐾𝑟𝑠 . 

The nonlinear elastoplastic loading response covers the indentation range 𝛿𝑦 ≤ 𝛿 ≤

𝛿𝑚 . Hence, the maximum indentation, 𝛿𝑚 , is determined in this loading stage and 

can be calculated using the energy-balance algorithm of [6]. Using this algorithm 

the maximum indentation for the present impact event is estimated from: 

                  
1

2
𝑚𝑉0

2 = 0.4𝐾𝑕𝛿𝑦
5 2 

+ 0.4𝐾𝑕 𝛿𝑚 − 𝛿𝑦 
5 2 

+ 𝐾𝑕𝛿𝑦
3 2 

 𝛿𝑚 − 𝛿𝑦                          (21) 

Unloading response 

The unloading response covers the indentation range 𝛿𝑓 ≤ 𝛿 ≤ 𝛿𝑚 . Based on 

equation (19e) 𝛿0 = 𝛿𝑓; 𝐹0 = 0; 𝐾𝑐 = 𝐾𝑢; 𝑞 = 3/2; and 𝛿𝑛 = 𝛿𝑚 . From the FILM 

solution, the following changes apply to the unloading response. 

𝐹𝑟𝑠 = 𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐾𝑢 𝛿𝑟 − 𝛿𝑓 
3/2

; 
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𝐾𝑟𝑠 = 𝑛𝐾𝑢 𝛿𝑚 − 𝛿𝑓 
1 2 

  𝑠/𝑛 3/2 −  𝑟/𝑛 3/2 ;  

𝛿𝑟 = 𝛿𝑓 +  𝑟 𝛿𝑚 − 𝛿𝑓 /𝑛; and 𝐶𝑟𝑠 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑢 𝛿𝑟 − 𝛿𝑓 
3/2

 𝐾𝑟𝑠 . 

Note that the unloading response has been discretised from the bottom-up, which 

is why the onset is at the point  𝛿𝑓 , 0  instead of  𝛿𝑚 , 𝐹𝑚  as might be expected. 

The bottom-up discretisation has been used for mathematical convenience and 

gives the same results as would have been obtained if the discretisation was 

performed from the top-down with the onset at  𝛿𝑚 , 𝐹𝑚 . Additionally, the sign 

change of the middle term in equation (18) during unloading makes the bottom-up 

solution consistent with the top-down solution. 

The above procedure of the FILM based on the contact model of Big-Alabo et 

al [6] was implemented in a customised Mathematica™ code to make independent 

predictions for the impact response of the tungsten carbide – mild steel impact 

system. The code was run using five discretisations in each of the impact stages 

and the closed-form solutions derived for each discretisation were used to extract 

data points for plotting of the impact histories. Figure 2 shows the results of the 

FILM approach compared with results obtained by direct numerical integration of 

the governing nonlinear ODEs for each impact stage; both results are in 

agreement. The numerical integration results were obtained by solving equation 

(8) and equations (19a, b, and e) together, using the NDSolve function in 

Mathematica™. In Figure 2, the blue lines represent the elastic response, the green 

lines represent the elastoplastic response, and the black lines represent the 

unloading response. This colour definition is used in subsequent figures, where 

applicable. 
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Figure 2: Elastoplastic impact response of tungsten-carbide – mild steel impact 

system. Lines – FILM solution; Markers – numerical solution. Contact model used: 

Big-Alabo et al [6]. 

 

3.2. Solution of half-space impact modelled based on a non-Meyer type contact 

model using the FILM 

In this section, the generalised FILM approach derived in Section 2 is applied 

to demonstrate how the response of a half-space impact stage modelled using a 

non-Meyer type contact model can be determined. Non-Meyer type contact models 

are contact models that cannot be expressed in terms of equation (1) or (9); 

examples include the elastoplastic loading models of Stronge [4] and Brake [5]. 

Experience indicates that conventional numerical integration schemes do not 

guarantee convergent solutions for half-space impact models in which non-Meyer 

type contact models are used to estimate the impact force [11]. This does not 

mean that impact models incorporating non-Meyer type contact models cannot be 

solved numerically, but that they are more challenging to solve because in some 

cases a numerical solution may not be found, see for example [11]. In contrast, the 
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FILM guarantees convergent solutions for half-space impact models incorporating 

non-Meyer type contact models, and produces the solution with the same relative 

ease as for half-space impact models incorporating Meyer type contact models. 

This is because the FILM uses closed-form solutions that do not diverge or oscillate, 

and the number of discretisations need not be increased to guarantee convergent 

solutions even when a more complex contact model is used to estimate the impact 

force. To demonstrate this, the FILM is used to solve the tungsten-carbide impact 

problem discussed in section 3.1 when the non-Meyer type contact model of 

Stronge [4] is used to estimate the impact force.  

For details of Stronge’s contact model, the reader is referred to reference 

[4]. In Stronge’s contact model the elastic loading stage is modelled using the 

Hertz compliance model (see equation (19a)), while the model for the elastoplastic 

loading stage uses a logarithmic function of indentation depth, see equation (2). 

The model for the unloading stage is the same as equation (19e), the only 

difference being the expression for 𝑅𝑑. Stronge [4] estimated the deformed 

effective radius as 𝑅𝑑 =  2𝛿𝑚/𝛿𝑦 − 1 𝑅. All three stages are modelled using 

nonlinear compliance models and therefore, the corresponding impact models 

require numerical solution. In the following analysis, the FILM approach is applied 

to determine the impact histories while using Stronge’s contact model to estimate 

the impact response. Note that the compliance models for both the elastic loading 

and the unloading stages are Meyer type models and the solution for the response 

of the corresponding impact stages, obtained using the FILM, are derived in Section 

3.1. It is only the elastoplastic loading stage that is predicted with a non-Meyer 

type compliance model. This is also the case with other non-Meyer type contact 

models [5, 9, 10]. 
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Elastic loading response 

The FILM solution for the elastic loading stage of the impact response is the 

same as in Section 3.1, since Stronge [4] also used the Hertz model to estimate the 

elastic impact response. 

Nonlinear elastoplastic loading response 

Using equations (2) and (8), the elastoplastic impact response based on 

Stronge’s model is given as: 

                                       𝑚𝛿 + 𝐹𝑦  
2𝛿

𝛿𝑦
− 1  1 +

1

3.3
𝑙𝑛  

2𝛿

𝛿𝑦
− 1  = 0                                     (22) 

Obviously, equation (22) is quite a complex nonlinear ODE and ordinarily would 

require solution via conventional numerical means. Instead, in this section the 

FILM is used to determine the impact response. For the elastoplastic impact event 

considered here, the nonlinear elastoplastic loading response covers the 

indentation range 𝛿𝑦 ≤ 𝛿 ≤ 𝛿𝑚 . Again, the maximum indentation, 𝛿𝑚 , is estimated 

using the energy-balance principle. Using equation (2), Stronge [4] derived the 

indentation work from the beginning of the elastic loading to any point in the 

elastoplastic loading stage as:  

                 𝑊 = 𝑊𝑦  0.47 + 0.53  
2𝛿

𝛿𝑦
− 1 

2

+ 0.189  
2𝛿

𝛿𝑦
− 1 

2

𝑙𝑛  
2𝛿

𝛿𝑦
− 1                     (23) 

where 𝑊𝑦 = 0.4𝐾𝑕𝛿𝑦
5/2

. Therefore, the maximum indentation of an elastoplastic 

impact can be determined based on Stronge’s model by equating the deformation 

work in equation (23) to the initial impact energy as follows: 

         
1

2
𝑚𝑉0

2 = 𝑊𝑦  0.47 + 0.53  
2𝛿𝑚

𝛿𝑦
− 1 

2

+ 0.189  
2𝛿𝑚

𝛿𝑦
− 1 

2

𝑙𝑛  
2𝛿𝑚

𝛿𝑦
− 1            (24) 

Based on Stronge’s elastoplastic model, 𝛿0 = 𝛿𝑦 ; 𝐹0 = 𝐹𝑦 = 𝐾𝑕𝛿𝑦
3/2

; and 𝛿𝑛 = 𝛿𝑚 . 
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Using equations (5) to (8) and (2), the linearised model for each discretisation of 

the elastoplastic response is derived as: 

                       𝑚𝛿 𝑟𝑠 + 𝐾𝑟𝑠𝛿𝑟𝑠 = 𝐾𝑟𝑠𝛿𝑟 − 𝐹𝑦  
2𝛿𝑟

𝛿𝑦
− 1  1 +

1

3.3
𝑙𝑛  

2𝛿𝑟

𝛿𝑦
− 1                      (25) 

where 𝐹𝑟𝑠 = 𝐾𝑟𝑠 𝛿𝑟𝑠 − 𝛿𝑟 + 𝐹𝑦  
2𝛿𝑟

𝛿𝑦
− 1  1 +

1

3.3
𝑙𝑛  

2𝛿𝑟

𝛿𝑦
− 1  ;    

𝐾𝑟𝑠 = 2𝐾𝑕𝛿𝑦
1/2  1 +

𝑛

6.6
  

2𝛿𝑠−𝛿𝑦

𝛿𝑚 −𝛿𝑦
 𝑙𝑛  

2𝛿𝑠−𝛿𝑦

𝛿𝑦
 −  

2𝛿𝑟−𝛿𝑦

𝛿𝑚 −𝛿𝑦
 𝑙𝑛  

2𝛿𝑟−𝛿𝑦

𝛿𝑦
   ; and 

𝛿𝑟 = 𝛿𝑦 +  𝑟 𝛿𝑚 − 𝛿𝑦 /𝑛. 

The solution to equation (25) can be expressed as equations (16) to (18) with   

𝐶𝑟𝑠 =
1

𝐾𝑟𝑠
 𝐾𝑟𝑠𝛿𝑟 − 𝐹𝑦  

2𝛿𝑟

𝛿𝑦
− 1  1 +

1

3.3
𝑙𝑛  

2𝛿𝑟

𝛿𝑦
− 1   . 

Note that the derivation of the FILM solution for this elastoplastic loading stage is 

made possible because of the general form in which the FILM has been formulated 

in Section 2. 

Application of FILM solution to the unloading response 

Since Stronge’s model for the unloading stage is the same as equation (19e) 

the FILM solution for the unloading response in section 3.1 is applicable here. 

 

The above procedure of the FILM, derived for the various impact stages 

modelled using Stronge’s contact model, was implemented in a customised 

Mathematica™ code that was used to estimate the impact response of the tungsten 

carbide – mild steel impact event. The code was run using five discretisations in 

each of the impact stages and the closed-form solutions derived for each 

discretisation were used to extract data points for plotting the impact histories. 

Figure 3 shows the results of the FILM approach in comparison with results 

obtained by direct numerical integration using the NDSolve function. Again, the 

results of both methods are in agreement. 
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Figure 3: Comparison of the results of the FILM solution and numerical 

integration method. Lines – FILM solution; Markers – numerical solution. Contact 

model used: Stronge [4]. 

 

Table 3: Tungsten carbide – mild steel response results obtained using FILM 

 

 

A comparison of the estimates of some critical impact parameters estimated 

based on the contact models of Big-Alabo et al [6] and Stronge [4] is presented in 

Table 3. The results reveal that the contact model used to estimate the impact 

force can greatly influence the predictions of a half-space impact response. Given 

that the contact model of Big-Alabo et al [6] was found to predict experimental 

measurements of tungsten carbide sphere indenting a steel half-space better than 

Impact parameters 

Results 

Model of Big-Alabo 

et al [6] 

Stronge’s 

model [4] 

Impact duration [µs] 105.14 79.78 

Time at maximum indentation [µs] 55.57 43.24 

Permanent indentation [µm] 1.78 2.09 

Maximum indentation [µm] 9.45 7.44 

Maximum impact force [N] 513.41 657.29 

Final rebound velocity [m/s] 0.23 0.22 

Coefficient of restitution [-] 0.92 0.87 
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Stronge’s contact model [5, 6], this suggests that the impact response predicted 

using the contact model of Big-Alabo et al [6] is more reliable. 

 

4. Solution of the response of an infinite plate impact using the FILM approach 

During normal impact of transversely inflexible plates, which can be modelled 

using half-space assumptions, the flexural oscillations are negligible. The impact 

energy is primarily used for local indentation of the plate. The implication is that 

the impactor velocity is zero at maximum indentation, which also marks the end of 

the impact loading. These features of a half-space impact allow for the use of the 

energy-balance principle in estimating the maximum indentation during impact 

loading [16]. For normal impact of a transversely flexible plate the flexural 

oscillations of the plate cannot be neglected, and the interactions between the 

flexural oscillations and the local indentation determine the impact response. The 

response is dynamic and complex, making it impossible to use the energy-balance 

principle to determine the maximum indentation for a transversely flexible plate 

impact [16]. 

In order to determine the complete impact response using the FILM the 

indentation and impact force at the end of the loading must be known. The end 

conditions of the impact loading are used as the initial conditions for the unloading 

response. While it is possible to have this information from the energy-balance 

principle in the case of a transversely inflexible plate impact, it is not possible in 

the case of a transversely flexible plate impact. However, the impact loading 

during a transversely flexible plate impact ends when the impactor velocity is zero 

because the impact loading is due to the deceleration of the impactor. If the end 

indentation of the impact loading is chosen in advance, such that this assumed end 

indentation is definitely higher than the actual end indentation, then the condition 
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of zero impactor velocity can be used as a test condition to determine the actual 

end of the impact loading. In principle the maximum indentation of the 

corresponding elastic half-space impact is always greater that the actual end 

indentation of the transversely flexible plate impact and this can therefore be 

conveniently used as the assumed end indentation. 

The maximum indentation of a transversely flexible plate impact occurs when 

the relative velocity of the impactor and the plate is zero. For impact events in 

which the impact force history does not oscillate, the condition of zero relative 

velocity occurs only once and this is at the maximum indentation point. Hence, the 

zero relative velocity condition is sufficient to determine the point where the 

maximum indentation occurs when the impact force history does not oscillate. This 

does not mean that the zero relative velocity condition can be used to determine 

the maximum indentation in order to implement the FILM approach. Rather, the 

zero relative velocity condition can only be used as a test condition during 

implementation of the FILM approach to know when the maximum indentation is 

reached. The infinite plate impact is an example of a transversely flexible plate 

impact characterised by a non-oscillating impact force history, and its response 

can therefore be determined using the FILM. 

In cases where the impact force history oscillates, the zero relative velocity 

condition occurs more than once, making it necessary to have another condition to 

determine the maximum indentation point. Apparently, such a complementary 

condition is not known. Hence, the zero relative velocity condition is not sufficient 

to determine the maximum indentation when the impact force history oscillates. 

The oscillation of the impact force history is due to the influence of vibration 

waves reflected from the boundary. Thus, the FILM approach is more difficult to 

implement for a transversely flexible plate impact with an oscillating impact force 
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history, and for such cases, a suitable conventional numerical method should be 

used. Therefore, the FILM is recommended only for transversely flexible plate 

impacts with non-oscillatory impact force history e.g. infinite plate impacts. 

By definition, the infinite plate impact is a transversely flexible plate impact 

in which the influence of the boundary conditions on the impact response is 

negligible. Hence, the infinite plate impact is characterised by a non-oscillating 

impact force history since oscillations in the impact force history arise due to the 

influence of boundary conditions. As explained above the FILM can be used to solve 

the nonlinear ODE of an infinite plate impact with slight modifications. To 

demonstrate this, an elastic impact problem studied by Olsson [26] is re-examined 

here. The material and geometrical properties of the graphite/epoxy composite 

laminate plate and steel impactor used by Olsson [26] are given in Table 4. The 

infinite plate model for an orthotropic composite plate is a single ordinary 

differential equation given by [26]: 

                                                                𝛿 +
1

8 𝜌𝐷
𝐹 +

𝐹

𝑚
= 0                                                        (26) 

where 𝜌 is the mass per unit area of the plate [kg/m2], 𝐷 is the effective 

mechanical bending stiffness of the plate [Nm], 𝑚 is the mass of the impactor [kg] 

and 𝐹 is the impact force [N]. The effective stiffness is calculated as 𝐷 = [(𝐴 +

1)/2] 𝐷11𝐷22 where 𝐴 =  𝐷12 + 2𝐷66 / 𝐷11𝐷22. The 𝐷𝑖𝑗  constants are bending 

stiffness constants that are calculated from the material properties of the plate. 

Note that the theoretical model for the coaxial impact of a spherical mass and a 

dome-ended slender rod is provided in the form of equation (26) [2, 4].Hence, the 

FILM solution for equation (26) can be applied to the sphere-rod coaxial impact 

problem. 
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Table 4: Properties of the steel – laminate plate impact system [26] 

Material properties 

Graphite/epoxy (T300/934) plate: Lamination sequence = [0/90/0/90/0]s; 

𝜌 = 4.132 [𝑘𝑔/𝑚2]; 𝐷11 = 154.9 [𝑁𝑚]; 𝐷12 = 4.76 [𝑁𝑚]; 𝐷22 = 91.4 [𝑁𝑚]; 

𝐷66 = 8.97 [𝑁𝑚]; 𝑕 = 2.69 [𝑚𝑚]; 𝐴 = 200 × 200 [𝑚𝑚2]; 

Impactor (Steel): 𝑚 = 8.3 [𝑔]; 𝑉0 = 3 [𝑚/𝑠]; 𝑅𝑖 = 6.35 [𝑚𝑚] 

Other inputs: Effective contact modulus = 9.72 [𝐺𝑃𝑎]; 𝑅𝑡 = ∞ 

 

The impact force in equation (26) can be estimated using a static contact 

model and is a function of the local indentation i.e. 𝐹 = 𝐹(𝛿). Hence, substituting 

an appropriate static contact model in equation (26) would produce a differential 

equation in 𝛿(𝑡), the solution of which gives the local indentation history. The 

local indentation is expressed as: 𝛿(𝑡) = 𝑤𝑖 𝑡 − 𝑤(𝑡) where 𝑤𝑖 𝑡  and 𝑤 𝑡  are 

respectively the displacements of the impactor and the plate at the point of 

impact. The displacement of the plate at the point of impact is given by: 

                                                             𝑤(𝑡) =
1

8 𝜌𝐷
 𝐹 𝜏 

𝑡

𝑡0

𝑑𝜏                                                     (27) 

where 𝑡0 is the time at the onset of the impact stage considered, and 𝑡0 = 0 for 

elastic impact. 

The complete solution of the infinite plate impact model can be determined 

once the local indentation history is obtained from the solution of equation (26). 

The local indentation history is used to determine the impact force history from 

the static contact model that was initially substituted into equation (26), and the 

impact force so obtained is substituted into equation (27) to determine the 

displacement of the plate at the point of impact. Thereafter, the displacement of 

the impactor can be obtained from the solutions of the local indentation and plate 

displacement. Also, the velocities of the impactor and the plate can be obtained 

by differentiating the solutions of the respective displacements. 
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During elastic impact of transversely flexible composite plates, the Hertz 

contact model (a specific Meyer type contact model – see Section 3.1) can be used 

to estimate the impact force. Substituting the Hertz contact model in equation 

(26) the model for the elastic response of an infinite plate impact is derived thus: 

                                                     𝛿 +
3𝐾𝑕

16 𝜌𝐷
𝛿1 2 𝛿 +

𝐾𝑕

𝑚
𝛿3 2 = 0                                              (28) 

The initial conditions are 𝛿 0 = 0 and 𝛿  0 = 𝑉0. Equation (28) is a nonlinear 

differential equation and would normally require solution using numerical means, 

and depending on the numerical algorithm used, the solution may sometimes fail 

to converge or produce accurate results. Using the FILM, by substituting the 

linearised contact force from discretisation of Hertz contact model (see section 

3.1) into equation (26), the impact response model for each discretisation is: 

                                         𝛿 𝑟𝑠 +
𝐾𝑟𝑠

8 𝜌𝐷
𝛿 𝑟𝑠 +

𝐾𝑟𝑠

𝑚
𝛿𝑟𝑠 =

𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑕𝛿𝑟
3/2

𝑚
                                     (29) 

where  𝐾𝑟𝑠 = 𝑛𝐾𝑕𝛿𝑚
1/2  𝑠/𝑛 3/2 −  𝑟/𝑛 3/2 ; 𝛿𝑟 = 𝑟𝛿𝑚/𝑛; 𝑟 = 0, 1, 2, 3, … , 𝑛 − 1; 

𝑠 = 𝑟 + 1; and 𝑛 is the number of discretisations. Since the maximum indentation 

of the infinite plate model cannot be determined from the onset as explained 

above, the maximum indentation of the corresponding elastic half-space impact is 

used and the zero relative velocity condition is tested for each linearisation to 

determine the point when the actual maximum indentation is reached. This 

maximum indentation is less than that of the corresponding elastic half-space 

impact [26]. However, the impact loading ends when the impactor velocity is zero. 

This second condition is also tested to determine the end of the impact loading 

and to determine the initial conditions at the beginning of the unloading stage. 

Equation (29) can be rewritten as 

                                                      𝛿 𝑟𝑠 + 2𝜆𝑟𝑠𝜔𝑟𝑠𝛿 𝑟𝑠 + 𝜔𝑟𝑠
2 𝛿𝑟𝑠 = 𝑃𝑟𝑠                                               (30) 
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where 𝜆𝑟𝑠 = (1/16) 𝑚𝐾𝑟𝑠/𝜌𝐷; 𝜔𝑟𝑠 =  𝐾𝑟𝑠/𝑚; and 𝑃𝑟𝑠 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑕𝛿𝑟
3/2 /𝑚 are 

the damping constant, circular frequency and load of the linearised response, 

respectively. Equation (30) describes the response of an initially excited damped 

oscillator with a constant load. The solution depends on the value of the damping 

constant, 𝜆𝑟𝑠, i.e. whether the response is under-damped, critically-damped or 

over-damped. The complete solutions to equation (30) are comprised of the 

particular and homogeneous solutions for the different cases of damping and are 

given as: 

Under-damped  0 < 𝜆𝑟𝑠 < 1  

                                             𝛿𝑟𝑠 = 𝑅𝑟𝑠𝑒
−𝜆𝑟𝑠𝜔𝑟𝑠𝑡 Sin 𝜔𝑑𝑟𝑠 𝑡 + 𝜑𝑑𝑟𝑠  + 𝐶𝑟𝑠                                   (31) 

Critically-damped  𝜆𝑟𝑠 = 1  

                                                         𝛿𝑟𝑠 = 𝑒−𝜔𝑟𝑠 𝑡  𝐴𝑟𝑠 + 𝐵𝑟𝑠 𝑡 +𝐶𝑟𝑠                                               (32) 

Over-damped  𝜆𝑟𝑠 > 1  

                        𝛿𝑟𝑠 = 𝑒−𝜆𝑟𝑠𝜔𝑟𝑠 𝑡  𝐷𝑟𝑠𝑒
 𝜆𝑟𝑠

2 −1 
1/2

𝜔𝑟𝑠 𝑡 + 𝐸𝑟𝑠𝑒
− 𝜆𝑟𝑠

2 −1 
1/2

𝜔𝑟𝑠 𝑡 + 𝐶𝑟𝑠                      (33) 

where 𝜔𝑑𝑟𝑠 = 𝜔𝑟𝑠 1 − 𝜆𝑟𝑠
2  is the damped circular frequency of the under-damped 

response; 

𝑅𝑟𝑠 = 𝑒𝜆𝑟𝑠𝜔𝑟𝑠 𝑡𝑟   𝛿 𝑟 + 𝜆𝑟𝑠𝜔𝑟𝑠 𝛿𝑟 − 𝐶𝑟𝑠  
2

/𝜔𝑑𝑟𝑠
2 +  𝛿𝑟 − 𝐶𝑟𝑠 

2 
1/2

 is an initial-value 

constant that determines the amplitude of the homogeneous solution for the 

under-damped response; 

𝜑𝑑𝑟𝑠 = tan−1  𝜔𝑑𝑟𝑠  𝛿𝑟 − 𝐶𝑟𝑠  𝛿 𝑟 + 𝜆𝑟𝑠𝜔𝑟𝑠 𝛿𝑟 − 𝐶𝑟𝑠    − 𝜔𝑑𝑟𝑠 𝑡𝑟 is the phase angle of 

the homogeneous solution for the under-damped response; 

𝐴𝑟𝑠 =  −𝛿 𝑟𝑡𝑟 +  𝛿𝑟 − 𝐶𝑟𝑠   1 − 𝜔𝑟𝑠𝑡𝑟  𝑒
𝜔𝑟𝑠 𝑡𝑟  and 𝐵𝑟𝑠 =  𝛿 𝑟 + 𝜔𝑟𝑠 𝛿𝑟 − 𝐶𝑟𝑠  𝑒

𝜔𝑟𝑠 𝑡𝑟  are 

initial-value constants of the critically-damped response; 

𝐷𝑟𝑠 =  
𝜔𝑟𝑠  𝛿𝑟−𝐶𝑟𝑠   𝜆𝑟𝑠+ 𝜆𝑟𝑠

2 −1 
1/2

 +𝛿 𝑟

2𝜔𝑟𝑠 𝜆𝑟𝑠
2 −1 

1/2  𝑒 𝜆𝑟𝑠− 𝜆𝑟𝑠
2 −1 

1/2
 𝜔𝑟𝑠 𝑡𝑟  and  
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𝐸𝑟𝑠 =  
𝜔𝑟𝑠  𝛿𝑟−𝐶𝑟𝑠   −𝜆𝑟𝑠+ 𝜆𝑟𝑠

2 −1 
1/2

 −𝛿 𝑟

2𝜔𝑟𝑠 𝜆𝑟𝑠
2 −1 

1/2  𝑒 𝜆𝑟𝑠 + 𝜆𝑟𝑠
2 −1 

1/2
 𝜔𝑟𝑠 𝑡𝑟  are initial-value constants of 

the over-damped response; and 

𝐶𝑟𝑠 = 𝑃𝑟𝑠/𝜔𝑟𝑠
2 =  𝐾𝑟𝑠𝛿𝑟 − 𝐾𝑕𝛿𝑟

3/2 /𝐾𝑟𝑠  is the particular solution. 

Evaluation of the solutions, see equations (31 – 33), depend on the initial 

conditions, i.e. 𝛿 𝑡𝑟 = 𝛿𝑟  and 𝛿  𝑡𝑟 = 𝛿 𝑟. Since the indentation at the boundaries 

of each discretisation, 𝛿𝑟, is known, then the time at the boundaries of each 

discretisation, 𝑡𝑟, can be determined by substituting 𝛿𝑟𝑠 = 𝛿𝑟  when 𝑡 = 𝑡𝑟  in 

equations (31 – 33). Closed-form solutions for 𝑡𝑟  cannot be obtained from the 

resulting nonlinear equations and so 𝑡𝑟  is determined using conventional numerical 

methods for finding roots of nonlinear equations e.g. the Newton-Raphson method. 

Therefore, the application of the FILM to solve the infinite plate impact model is 

semi-analytical since the time at the boundaries must be obtained from an implicit 

formulation. This is in contrast to half-space impacts where the time at the 

boundaries is obtained from an explicit formulation and the FILM is completely 

analytical. 

The above procedure of the FILM, derived for elastic response of an infinite 

plate impact, was developed into a customised code that was used to solve the 

elastic impact response of the steel – composite laminate impact mentioned 

above. Results obtained from the FILM, and also via direct numerical integration of 

equation (28) using the NDSolve function, are plotted in Figure 4. Both results are 

in agreement and this shows that the FILM solution is accurate. Olsson [26] 

determined the force-time response for this example by numerically integrating 

the normalised form of equation (28). From the force-time plot, the maximum 

impact force and time duration are approximately 270.0 [N] and 245.0 [μs] 

respectively. The FILM approach gives corresponding results of 303.3 [N] and 261.1 
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[μs], whereas numerical integration using the NDSolve function gives 302.6 [N] and 

262.6 [μs]. Since the FILM and NDSolve solutions are in agreement and differ 

significantly from Olsson’s solution, this suggests that Olsson’s solution did not 

accurately converge; an observation that underscores the need for independent 

verification of numerical results even when a convergent numerical solution is 

obtained. The FILM can be used to fulfil this purpose. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparison of the results of the FILM solution and numerical 

integration method for elastic impact of [0/90/0/90/0]s graphite/epoxy 

(T300/934) composite plate. Lines – FILM solution; Markers – numerical solution. 

 

Since the time boundaries of the FILM solution for infinite plate response are 

determined numerically, much more than five discretisations is required to obtain 

accurate results. In simulating the FILM solution for the response of the steel – 

composite laminate impact, 𝑛 = 50 was used for descritisation of the assumed 

maximum indentation to ensure that accurate results were obtained. The zero 

relative velocity condition was satisfied at the 23rd discretisation. The actual 

maximum indentation obtained was 44.2 [μm] while the corresponding half-space 
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maximum indentation used for the discretisation was calculated as 96.0 [μm]. 

Once the actual maximum indentation was reached, the restitution algorithm of 

the FILM was used with 𝑛 = 20 to obtain the response from this maximum 

indentation to the end of the impact where the impact force is zero. Normally the 

restitution algorithm of the FILM should be applied at the end of the impact 

loading when the impactor velocity is zero. But in the present simulation it was 

applied at the point of maximum indentation to simplify the computations required 

in achieving the solution provided by the FILM; this did not affect the results 

because the model for loading and restitution are the same for elastic impact. 

The infinite plate impact response is characterised by a monotonic increase in 

indentation from the beginning of the impact response to the point of maximum 

indentation, and afterwards, it decreases monotonically until the end of the 

impact response. Therefore, in applying the FILM to determine the response of an 

infinite plate impact, the FILM solution for the last impact loading stage is applied 

until the maximum indentation is reached i.e. when the relative velocity is zero. 

Thereafter, the restitution algorithm of the FILM, which is based on the 

compliance model for the last loading stage, is applied until the end of the impact 

loading is reached i.e. when the impactor velocity is zero. From the point of the 

end of the impact loading, the restitution algorithm of the FILM, which is based on 

the restitution compliance model, is applied until the end of the impact response 

where the impact force is zero. 

Although the application of the FILM to the infinite plate model requires 

many discretisations to guarantee accurate results, the stability of the approach is 

independent of the number of discretisation i.e. the FILM is stable with few 

discretisations, such as 𝑛 = 10 (see Figures 5 and 6). The implication of the 

unconditional stability of the FILM is that convergent solutions can always be 
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obtained for the infinite plate problem irrespective of the contact model used to 

estimate the impact force.  

 

 

 

 

Figure 5: Convergence test for FILM solution of infinite plate impact response. nl 

= initial discretisation used to determine maximum point; nr = number of 

discretisation used from maximum point to end of impact. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Exploded view of the peak response area of Figure 5. 
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In the example just considered, the FILM solution was derived for an infinite 

plate impact event in which the impact force was estimated using a specific Meyer 

type contact model, i.e. the Hertz elastic contact model. In addition, the 

compliance model for the impact loading stage was the same as that of the 

unloading stage. This case study was used to demonstrate the formulation of the 

FILM solution for infinite plate impact. Nevertheless, the FILM solution for the 

infinite plate impact derived above can also be shown to be applicable even when 

a non-Meyer type contact model is used to estimate the impact force of an impact 

stage, and when different nonlinear compliance models are used to estimate the 

various impact stages involved. For such cases, equations (5 - 7) are used to make 

the necessary changes in the constants 𝑃𝑟𝑠 , 𝐾𝑟𝑠  and 𝛿𝑟, for each of the impact 

stages involved. During the impact loading phase, the test conditions for the point 

of maximum indentation and the end point of the impact loading are implemented 

in the last impact loading stage. For example, the test conditions are implemented 

in the second loading stage of an impact response involving two loading stages. 

The details of the end conditions are then used to determine the initial conditions 

of the unloading response. 

 

5. Conclusions 

Asymptotic impact conditions are used to simplify the analytical models for 

investigating the response of certain impact events. Asymptotic impact events are 

modelled using single differential equations [16]. Three asymptotic impact 

conditions are generally identified in the literature, namely: half-space impact, 

infinite plate impact and quasi-static bending impact. These three asymptotic 

cases are used to model and analyse a wide range of typical impact events and to 
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design impact experiments. Hence, the solution to the asymptotic impact models, 

which are realistically expressed in the form of nonlinear ODEs, is important.  

Half-space and infinite plate impacts are normally characterised by 

significant local indentation and these impact events have been referred to here as 

asymptotic impacts with significant local indentation. This paper deals with the 

solution of nonlinear models of asymptotic impacts involving significant local 

indentation, using the FILM approach. A novel and powerful solution algorithm, the 

Force Indentation Linearised Method (FILM), first introduced in reference [18], was 

reformulated in a more general form in section 2. This general formulation of the 

FILM enabled solutions to be found, even when non-Meyer type contact models 

were used to estimate the impact response. Solutions derived for half-space and 

infinite plate impacts were used as case studies to demonstrate the novel method; 

detailing how the FILM could be implemented to solve asymptotic impact events 

with significant local indentation. Results of the FILM solution were validated using 

results obtained from conventional numerical integration. It was shown that the 

FILM could solve the considered nonlinear impact models with the same relative 

ease irrespective of the complexity of the nonlinearity in the contact model used 

to estimate the impact force. 

The FILM algorithm for half-space impact does not oscillate or diverge and is 

therefore inherently stable. The implication is that the FILM algorithm will always 

converge to a solution, making it a preferable choice to the conventional 

numerical methods that are conditionally stable. The accuracy of the results 

obtained using the FILM depends on the number of discretisation used; which in 

turn determines the computational effort. For half-space impacts, the FILM is 

completely analytical and accurate solutions can be obtained with only a few 

discretisation of the nonlinear compliance model; typically five to ten. This means 
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that the results obtained using the FILM can be verified by hand calculation. For 

infinite plate impacts, the FILM is semi-analytical and compared to half-space 

impacts, requires more discretisation to obtain accurate results.  

Advantages of the FILM algorithm are its simplicity, inherent stability and 

rapid convergence. Perhaps its main advantage lies in its ability to solve the 

nonlinear model of an asymptotic impact involving significant local indentation 

with the same relative ease, irrespective of whether the impact force is estimated 

using a Meyer type or non-Meyer type contact model. This makes the FILM an 

interesting algorithm for implementation in commercial finite element software, 

such as ABAQUS. The result would be a robust and efficient algorithm for impact 

analysis. This implementation will be a goal for future research. 
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Nomenclature 

𝑚  Mass of impactor/projectile 

𝑛  Number of discretisations in the FILM 

𝑤𝑖 𝑡  Displacement of impactor during infinite plate impact 

𝑤(𝑡) Displacement of plate during infinite plate impact 

𝐷  Effective bending stiffness of an infinite plate 

𝐸  Effective contact modulus 

𝐹  Contact/impact force 

𝐹𝑚   Maximum contact force 

𝐹𝑝   Contact force at onset of fully plastic loading 

𝐹𝑟𝑠   Linearised impact force for discretisation between points 𝑟 and 𝑠 

𝐹𝑡𝑒𝑝   Contact force at transition point in the elastoplastic loading stage 

𝐹𝑢   Contact force during unloading 

𝐹𝑦   Contact force at yield point 

𝐾𝑕   Hertz contact stiffness 

𝐾𝑐  Contact stiffness 

𝐾𝑙  Linear contact stiffness during elastoplastic loading 

𝐾𝑝   Linear contact stiffness during fully plastic loading 

𝐾𝑟𝑠   Linearised contact stiffness for discretisation between points 𝑟 and 𝑠 

𝐾𝑢   Nonlinear contact stiffness during unloading 

𝑅  Effective contact radius 

𝑅𝑑   Deformed effective contact radius 

𝑆𝑦   Yield stress 

𝑉0  Initial approach velocity of impactor 

𝛿  Indentation 
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𝛿𝑓   Fixed or permanent indentation 

𝛿𝑚   Maximum indentation 

𝛿𝑝   Indentation at the onset of fully plastic loading 

𝛿𝑟   Indentation at boundary point, r, of discretisation in the FILM 

𝛿𝑟𝑠   Indentation history for discretisation in the FILM 

𝛿𝑡𝑒𝑝   Indentation at transition point in the elastoplastic loading stage 

𝛿𝑦   Indentation at yield point 

𝜌  mass per unit area of infinite plate 

𝜐  Poisson’s ratio 

 

 

 


