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Abstract

The Kyoto Protocol’s Clean Development Mechanism (CDM) is capable of incentivizing
the international transfer of environmentally sound technologies. Given that both countries
are expected to have similar incentives when managing the distribution of technology transfer
within the country, why does the sub-national patterns in allocation of projects with tech-
nology transfer differ across the two countries? Using comparable political-economic data
compiled for China and India, we offer an explanation for these differences. In China, where
the government regards the CDM as a tool for achieving sustainable development, technol-
ogy transfer is concentrated in provinces that need it the most and are most conducive to
receiving transfers (i.e., economically less developed, yet heavily industrialized provinces). In
India, where the government takes on a “laissez faire” approach to the CDM, neither level of
economic development nor that of industrialization affects clean technology transfer. In this
regard, although the incentives are similar, the capacity to pursue them are not comparable.
We test these hypotheses using data on CDM technology transfer across Chinese provinces
and Indian states during a six-year period from 2004 to 2010.
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1 Introduction

China and India are two of the most attractive hosts of climate mitigation projects implemented

under the Kyoto Protocol’s Clean Development Mechanism (CDM). The CDM allows indus-

trialized countries to procure carbon emissions credits at lower cost by working with project

developers in developing, host countries. Moreover, the CDM provides more opportunities for

the transfer of foreign clean technology to developing countries (Dechezleprêtre, Glachant, and

Ménière, 2008; Popp, 2011). For example, a Chinese project developer could acquire advanced

biomass combustion technologies from Sweden to increase the profitability of carbon abatement.

Although both China and India have tremendous potential for climate mitigation and have

incentives for promoting similar trends in CDM technology transfer distribution, regional pat-

terns of foreign technology transfer differ between the two countries. Across Indian states, the

numbers of projects implemented in a given year with and without technology transfer are highly

correlated (r = +0.64). However, this correlation is low across Chinese provinces (r = +0.20).1

Disregarding broad differences in the political and economic systems of China and India (e.g., In-

dia’s federal democracy and China’s one-party authoritarianism), there is not a readily available

explanation for why the patterns in CDM technology transfer should differ in these two similar

CDM host countries.

Understanding technology transfer to China and India is important because of their status

as two major emerging economies. China, with about 130-195 million people living in poverty,

lacks sufficient financial resources to successfully undergo the transition to a low carbon econ-

omy without external technological assistance (Chen and Ravallion, 2008). Thus, the role of

international mechanisms, such as the CDM, that transfer advanced technologies is critical for

this transition (Wang, 2010). Similarly, India’s economy has dramatically expanded during the

last decade, and the country’s carbon dioxide emissions are concomitantly increasing. Without

improved access to clean technology, it would be implausible for India to curtail the rise in its

carbon dioxide emissions.

To explain why the distribution of projects with foreign technology transfer differs between

1See the research design section for data sources.
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the two countries of interest, we consider differences in national policy. The Chinese government

has an active agenda for using the CDM to promote economic development in less developed

provinces (Benecke, 2009), while the Indian government lacks a coherent national strategy for the

CDM (Ganapati and Liu, 2009). China’s commitment to this agenda allows it to direct technology

transfers to less developed provinces with a lot of mitigation potential in the industrial sector.

In contrast, India lacks a national policy for guiding technology transfers to areas that need

them the most. More generally, the Chinese government’s greater capacity to direct sub-national

governance allows it to use the CDM for achieving development-related goals to a greater extent

than the Indian government.

Empirically, we explore the sub-national distribution of CDM projects with clean technol-

ogy transfer in China and India during the 2004–2010 period. Our main empirical innovation is

the compilation of strictly comparable sub-national data for key variables, including economic

wealth and industrial capacity, in both China and India. Since our explanation has unambiguous

implications for the sub-national determinants of CDM technology transfer in the two countries,

it can be tested through an empirical investigation of how these determinants differ between

China and India. If the explanation is valid, technology transfers to China should be concen-

trated in provinces where they contribute the most to economic development, while technology

transfers to India should not depend on their expected contribution to the national economy.

We show that while economic wealth is negatively associated with CDM technology transfer

in China, the association between Chinese industrial capacity and CDM technology is positive.

In stark contrast, we find no association between these variables for India. This suggests that

Chinese national institutions are strategically pushing projects with technology transfer to less

wealthy and more industrialized provinces, while India is not pursuing such a strategy. Indeed,

the China-India difference cannot be attributed to variation in the need for technology transfer

without considering policy differences. If the need for technology transfer were the sole driver

of sub-national variation, then India and China should exhibit similar patterns. Instead, poor but

industrialized Indian states fail to secure more technology transfer projects than their wealthy

but less industrialized counterparts.
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The implications of our study for the research agenda on clean technology transfer are no-

table. Existing quantitative studies (Dechezleprêtre, Glachant, and Ménière, 2008; UNFCCC,

2010; Bayer and Urpelainen, 2013) emphasize variation across countries, but we find that sub-

national variation is equally essential for explaining the CDM’s potential for clean technology

transfer. There is a world of difference between transferring clean technology to already sophis-

ticated sub-national jurisdictions, such as Shanghai, and introducing clean technology to less

developed jurisdictions, such as the majority of northern Indian states and much of inland China

(Lewis, 2007; Brewer, 2008; Ockwell et al., 2008; Doranova, Costa, and Duysters, 2010)

2 Clean Development Mechanism and Technology Transfer

The CDM allows industrialized countries to achieve their emissions reductions under the Kyoto

Protocol at a lower cost (de Jong and Walet, 2004), while improving sustainable development

and encouraging technological innovation in the developing countries that host them (Streck and

Lin, 2008; Lecocq and Ambrosi, 2007). The abatement credits from projects generate Certified

Emissions Reductions (CERs) that can be sold to foreign buyers, such as industrialized countries

with Kyoto commitments. Although technology transfer is not an official goal of the CDM,

the mechanism could fulfill its criterion of sustainable development through clean technology

transfers to non-Annex I countries.2

In fact, the CDM is the largest market-based mechanism that encourages technology transfers

to developing countries (Schneider, Holzer, and Hoffman, 2008). Between the years 2005 and 2006

alone, the number of CDM projects inclusive of technology transfers is valued at an investment

flow of around nine billion Euro (Capoor and Ambrosi, 2007). Access to innovative technologies

can increase the efficiency of emission abatement in developing countries (de Coninck, Haake,

and van der Linden, 2007). Thus, CDM project developers in host countries regularly seek foreign

technologies to maximize profits from project implementation.

Studies of the CDM have focused on the prevalence and quality of technology transfers under

CDM projects, as well as on the specific project characteristics that promote technology transfer.

2Article 10(c) of the Kyoto Protocol does specify the need for all Parties involved to cooperate in the development,
application, diffusion, and transfer of environmentally sound technologies in the public domain.
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Seres, Haites, and Murphy (2009) find that technology transfer depends on both project type and

project size. More specifically, transfer is more common for larger CDM projects, and technology

and technical skill transfers are highly uneven across different project types. While almost all

industrial gas projects on the destruction of, e.g., HFC or N2O emissions, are inclusive of tech-

nology transfers, the complete opposite trend prevails for afforestation projects (Chatterjee, 2012;

Seres, Haites, and Murphy, 2009). Additionally, technology transfer is, for obvious reasons, less

common in projects that are implemented unilaterally, without a foreign partner (Haites, Duan,

and Seres, 2006; Seres, Haites, and Murphy, 2009).

Some studies examine how a host country’s political and economic institutions at the national

level affect CDM technology transfer. Haites, Duan, and Seres (2006) claim that transfer is not

closely associated with either GDP per capita or country size. Dechezleprêtre, Glachant, and

Ménière (2008) find a relationship between a country’s existing technological capabilities and

technology transfer. Specifically, countries with high technology capability attract more transfers

in the energy sector and the chemicals industry, while receiving few transfers in agricultural

CDM projects. Bayer and Urpelainen (2013) present a formal model of North-South technology

transfer, demonstrating that technology transfer is likely to occur when (i) the technology in

focus has limited commercial potential and (ii) the host country lacks the capacity to absorb the

new technology for commercial use.

Despite the growing literature on CDM technology transfer, there is a shortage of studies that

examine sub-national variation in technology transfer in different national contexts. This article

analyzes the regional factors that encourage technology transfer and how these local character-

istics interact with the national context. More specially, we investigate how technology transfer

varies across regions (i.e., Chinese provinces and Indian states) in the two major CDM host coun-

tries, China and India, with distinctively different policy approaches toward the CDM.

3 Hypotheses on Technology Transfer to China and India

Our theory examines sub-national variation in CDM technology transfer under different national

conditions. We argue that in China, where the national government actively promotes the CDM

as a mechanism of sustainable development, low levels of income and high levels of industrial
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activity attract technology transfer. In India, where the national government has adopted a “lais-

sez faire” approach to the CDM (Benecke, 2009), and hence does not actively use it to further

economic goals, such associations should be much weaker. Both countries would reap economic

benefits by directing CDM projects with technology transfer to the least developed regions, but

only China’s national institutions promote this strategy. In other words, China has more in-

stitutional and structural capacity to government the CDM in a way that promotes economic

development where it is needed the most.

The differences in the institutional structure between these two countries account for this

discrepancy in national policy orientation towards the CDM. The Chinese government is char-

acterized as a centralized system, whereas the Indian government is a democratic, federal state.

While the Chinese government wields considerable power in setting policy goals at the national

level, the Indian government has merely taken on a “market facilitation” role in directing the

CDM, placing the coordination of the CDM largely in the hands of the private sector (Benecke,

2009; Ganapati and Liu, 2008, 2009; Bayer, Urpelainen, and Xu, 2014).

China’s ability to coordinate CDM projects stems from institutional factors. As Ganapati and

Liu (2008) argue, in China the agency responsible for the CDM, the National Development and

Reform Commission, is a powerful part of the central government. They further point out that

in the case of the CDM, “[i]n China’s unitary state, provincial governments are the arms of the

central government ... Provincial agencies have little [autonomous] voice in the CDM process”

(Ganapati and Liu, 2008: 355). This centralized system, which is in turn enabled by China’s

centralized policy process, allows China to adopt an effective, coordinated national strategy for

utilizing the CDM.

This is not to deny that the Chinese system is one of “fragmented authoritarianism” with

multiple centers of power (Lieberthal and Oksenberg, 1990). Given the shared incentives of

different organizations in the central government to maximize economic development, however,

these multiple centers of power appear to not have engaged in conflict over the CDM’s goals. As

long as they agree on the need to promote the development of the poorer and less industrialized

provinces, it is reasonable to expect them to also agree on the importance of allowing national
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priorities to guide decisions regarding technology transfer under the CDM.

In India, the realization of national policy goals is a more gradual process as the institutional

structure is decentralized. Compared to Chinese provinces, each Indian state has more autonomy

in setting its own criteria and policies for directing the CDM. According to Benecke (2009: 362),

“[d]ue to the federal system, Indian states have quite substantial political say in some political

areas, such as environment and energy.” In this regard, a coordinated strategy is difficult to carry

out across different Indian states, which explains why the Indian government seems to embrace

a rather hands-off national approach towards the CDM. Given how much power states have

over CDM policy, it is difficult for the central government in New Delhi to explicitly coordinate

CDM project implementation across states. A full reform of the environmental administration

for improved effectiveness, in turn, would be a major effort that the central government has, as

of today, not managed to implement.

Moreover, India’s administrative structure contributes to the weakness of the CDM adminis-

tration. Ganapati and Liu (2008: 356) note that India’s Ministry of Environment and Forests is

a weak agency, and this institutional weakness contributes to the lackluster performance of the

CDM. Given that India does not have a strong administrative apparatus for the management of

environmental affairs, it faces practical difficulties in coordinating CDM projects.

In summary, while China and India face similar problems, their governments could not be

more different in their responses to sustainable development from the CDM. The Chinese gov-

ernment adopts centralized policies and uses the CDM as a strategic tool for promoting eco-

nomic development (Schroeder, 2009b), while India’s approach is less coordinated and more in

the hands of market forces (Benecke, 2009). Given this remarkable difference, we propose that

the sub-national determinants of clean technology transfer differ in China and India. We now

develop our expectations for each country, and these expectations are tested against data in the

empirical section.

3.1 Expectations for China

The Chinese government has taken a proactive role in attracting investment through the CDM

market (Wang, 2010). Official documents highlight the importance of the CDM as a means to
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acquire advanced technologies from abroad. This role of the CDM is often deemed more crucial

than promoting sustainable development (Gao, 2008). Consistent with Chinese governance ideol-

ogy and the style of policymaking, the pursued policies towards the CDM are highly centralized.

This is reflected in the government’s insistence that at least 51% of CDM project ownership must

be in Chinese hands (Newell, 2009).

The government also targets specific priority areas for CDM projects, such as energy efficiency

improvement, the development of renewable energy, and methane recovery and utilization, while

the Indian government has not set out national priority areas (Takahashi and Zhang, 2011). The

Chinese government is able to strategically use tax policy as a tool for channeling CDM invest-

ment to areas that would otherwise be less attractive for international investors (Newell, 2009).

For example, the designated priority sectors only incur a 2% tax rate on issued certified emissions

reduction (CER) revenue, while the “royalty charges” on industrial gas projects can be as high

as a rate of 65% (Schroeder, 2009a; Takahashi and Zhang, 2011). In this regard, tax policy helps

align investment with national development priorities (Schroeder, 2009a). In a similar vein, the

Chinese government established CDM Service Centers in its provinces to promote CDM project

allocation and to entice technology transfer, one of benefits that swayed the Chinese government

to take a favorable position vis-á-vis the CDM (Schroeder, 2009a). Although these examples do

not directly shed light on the geography of project distribution in China, they show that the

country has a purposeful and coordinated strategy for the CDM at the national level. Notwith-

standing that governmental influence can only be indirect in a market-based scheme like the

CDM, for our argument to hold it suffices that the Chinese government takes a more principled

approach than India’s “laissez-faire” policy (Bayer, Urpelainen, and Xu, 2014).

Given this governmental strategy to promote foreign investment through the CDM, we ex-

pect the Chinese government to actively channel CDM projects with technology transfers to the

provinces that need them the most. Since the most underdeveloped provinces demonstrate both

greater need and greater benefits from technology transfer, we expect a negative correlation be-

tween development status and the amount of CDM projects with technology transfer. In other

words, the marginal returns to each additional unit of technology transfer is lower for provinces
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that already have a threshold level of wealth and technology.

Hypothesis 1 (economic wealth and CDM technology transfer in China). In China, provinces with

lower GDP per capita receive fewer incidences of CDM technology transfer than wealthier provinces.

If our theory is wrong, then we would expect the opposite effect of economic wealth on

technology transfer. CDM projects may not be feasible in the less developed provinces without

new technology. Although the Chinese government may strive to exploit the higher returns to

each initial unit of technology transfer to poorer provinces, these provinces may lack the basic

technical knowledge and skillsets to absorb these technologies. In this regard, wealthier provinces

with at least a threshold level of technology, and hence absorptive capacity, may prove to be better

candidates for channeling technology transfers through the CDM. Given these considerations, the

relationship between economic wealth and the amount of CDM technology transfer could run in

the opposite direction.

Next, we expect industrial production to be positively associated with technology transfer.

Since promoting energy efficiency in industrial production is often made possible by the adoption

of modern equipment, foreign technology transfers are particularly essential for reducing carbon

emissions from industrial activities. Compared to sectors with less technological potential, such

as agriculture or reforestation, industrial CDM projects simply require more advanced technolo-

gies. Thus, we expect CDM projects in provinces with large industrial capacity to demonstrate a

greater need for technology transfers.

This trend is further supported by the Chinese government’s inclination to govern CDM al-

location. The government has openly expressed a priority in energy sector projects because such

projects “shall bring about GHG emission reductions, shall bring additional financial resources [,

and] shall bring technology transfer” (Lu, 2004: 56). Foreign technology transfer under the CDM

is crucial for achieving these efficiency gains. Hence, we expect a positive relationship between

industrial capacity and technology transfer through the CDM.

Hypothesis 2 (industrial capacity and CDM technology transfer in China). In China, provinces

with high industrial capacity experience more technology transfer from CDM projects than provinces with

less industrial capacity.
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Again, if our theory is not valid, a different hypothesis can be proposed. It could be the

case that industrial capacity discourages technology transfer, since regions with higher industrial

capacity may have a smaller technology differential, resulting in lower valuation of transfers in

these provinces than in less industrialized ones. Although industrial activities create substantial

opportunities for reducing carbon emissions, a greater capacity for industrial production could

also signal a higher threshold of existing technologies. In this regard, the relationship could work

in the opposite direction if investors hold the impression that the marginal returns to each unit

of technology transfer is lower in a industrialized region.

3.2 Expectations for India

In contrast to China’s centralized politics, the Indian government has developed a “laissez faire”

CDM policy. Essentially, the allocation of CDM projects and the diffusion of technology is en-

tirely left to the market dynamics (Benecke, 2009; Fuhr and Lederer, 2009; Newell, 2009). The

Indian government neither restricts nor promotes the development of the CDM carbon market

in different regions. Although the regulatory bodies that direct the CDM have adequate human,

technical, and financial resources to strengthen control over the CDM, India’s federal government

lacks the political will to employ the CDM as a tool for developing economically less developed

states (Benecke, 2009) and there is a clear need for better policy (Nautiyal and Varun, 2012).

Unlike China’s active approach to the CDM, India’s “laissez faire” approach implies that the

association between economic wealth and technology transfer should be weak and possibly even

slightly positive. Because each state’s absorptive capacity depends largely on the technological

stock of its private firms (Ockwell et al., 2007), less developed states with technologically un-

sophisticated firms have a lower capacity to adopt new innovations.3 Without the support of

the government, poor regions are likely to have a higher incidence of unsophiscated firms with

minimal absorptive capacity. As mentioned in the discussion of the GDP per capita and CDM

technology transfer relationship in China, regions that lack at least a threshold level of technical

3At the firm level, technology transfer often results from cooperation between multinational companies, such as
joint ventures (Heller and Shukla, 2003; Ivarsson and Alvstam, 2005). In the absence of a strong national policy,
technology transfer is expected to be higher for most developed Indian states because they already host branches of
internationally operating technology leaders.

10



knowledge and skillsets may not have the absorptive capacity to effectuate technology transfers

through the CDM.

Insufficient absorptive capacity would prove to be an even greater hindrance to technology

transfer in a country that does not actively work to promote technology upgrades in these regions

that demonstrate need. Without state support the private sector retains control over the CDM.

While the demonstrated need for new technologies may attract private sector investment in these

particular states, the lack of absorptive capacity discourages it.

In other words, the need for new technologies and the dearth of absorptive capacity have

contradictory effects in attracting private sector CDM investment in less developed states. The

two effects could essentially cancel out, and hence the association between economic wealth

and CDM technology transfer in India should be weak and could run in either direction. We

hypothesize that insufficient absorptive capacity in the absence of supporting state policy is the

more important factor in India, making the association slightly positive.

Hypothesis 3 (economic wealth and CDM technology transfer in India). In India, wealthier states

experience more technology transfer from CDM projects than poorer provinces. However, this positive

effect is expected to be weak.

As to industrial capacity, we expect a positive, albeit weak, association. As in China, industrial

capacity creates demand for CDM technology transfer. But, unlike China, the Indian government

is not actively promoting the use of the CDM to promote industrial growth. While high industrial

capacity creates demand for more foreign technology transfer, this demand may not always be

matched in India given the government’s lack of strategic policy. Therefore, we expect a positive,

but modest, relationship between industrial capacity and technology transfer.

Hypothesis 4 (industrial capacity and CDM technology transfer in India). In India, provinces with

high industrial capacity experience more technology transfer from CDM projects than provinces with less

industrial capacity. However, this positive effect is expected to be weak.

Here, we do not consider competing hypotheses. Since our hypotheses for India are null

hypotheses, there is no clear rationale for formulating alternative expectations. Strong positive
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or negative associations between these factors and projects with technology transfers would raise

the question of what factors are driving these associations.

4 Research Design

Empirically, we examine CDM technology transfer in 30 Chinese provinces4 and 27 Indian states.5

The dataset includes 4,460 CDM projects (2,674 in China and 1,786 in India) that were registered,

waiting for registration, or at the validation stage during years 2004 to 2010. 518 of these projects

feature technology transfer, as coded by UNFCCC (2010).6 Since our dataset is comprehensive,

sample selection bias is not of concern.

The unit of analysis is province-year. We have a total of 298 panel observations, yielding a

fairly balanced panel dataset. Our dependent variable records the number of CDM projects with

technology transfer for each province-year. Figure 1 shows that the dependent variable is zero

for 40% of the observations, while there is just one province-year (in China) in which 18 CDM

projects transfer technology. We account for this non-normal count distribution by estimating

zero-inflated negative binomial models.

[Figure 1 about here.]

To further test our hypotheses, we also implement a placebo test. We re-estimate our main

models using the number of CDM projects without technology transfer as our dependent variable.

In this specification, we expect the observed effects from the main models to be weaker and to lose

statistical significance because our theory is predicated on the centrality of technology transfer

for sustainable development.

Before elaborating on the dependent variable, we must comment on the relevance of other

differences between China and India to our empirical analysis. Although China is wealthier and

4Officially, China administers 33 sub-national divisions, but CDM project data is not available for Tibet and the
two special administrative regions, Hong Kong and Macau. This leaves us with 30 “provinces.”

5In India, there are 35 sub-national administrative units: 28 states and 7 Union Territories. However, with the
exception of Delhi, we data the Union Territories (i.e., Andaman and Nicobar Islands, Chandigarh, Dadra and Nagar
Haveli, Daman and Diu, Lakshadweep, and Pondicherry) and for the states of Mizoram and Nagaland is not available.
For further information on Indian states, see http://india.gov.in/knowindia/state_uts.php. Accessed June 16,
2012.

6CDM data is available from http://cdmpipeline.org. Accessed July 11, 2012. Of all the 6,977 CDM projects
available in the CDM/JI Pipeline database for years 2004–2010, the projects implemented in China and India jointly
account for about 65% of the data.
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more industrialized than India, there is considerable variation within each country. Thus, differ-

ences in sub-national variation cannot be ascribed to overall levels of industrialization. Politically,

China’s authoritarian institutions differ from India’s federal democracy, where elections play an

important factor in determining state policy for the CDM (Bayer, Urpelainen, and Xu, 2014). Al-

though an authoritarian ruler’s incentives and ability to support CDM technology transfer may

differ from a democratic ruler’s incentives and ability, these effects should manifest themselves

through policy. China’s coordinated national approach to the CDM may stem from the country’s

authoritarian political institutions, but without a strategic policy to support clean technology

transfer to less developed provinces, authoritarian institutions per se should not allow less devel-

oped provinces to reap the benefits of technology transfer (Bayer, Urpelainen, and Wallace, 2013).

Finally, China’s provincial system has historically been more stable. While the number of Indian

states has grown over time, with Uttarakhand and Jharkhand being formed in the year 2000, the

state structure has not changed during the period of analysis.

4.1 Dependent Variable

Our dependent variable is the number of CDM projects by province-year that are coded to have

technology transfer. From the project dataset provided by the CDM/JI Pipeline Database, we

construct our dependent variable by summing the incidences of technology transfer for each

province and each year.7

An alternative to counting projects with technology transfer is to compute the proportion of

projects that feature technology transfer. Upon closer inspection, however, this approach appears

flawed. All else constant, a province that draws dozens of projects with technology transfer is

clearly doing better than a province that draws one project with technology transfer, even if the

former also draws projects without technology transfer.

Similarly, we also check that the number of CDM projects is indicative of the amount of

reduced CO2 emissions. One might be concerned that few large-scale projects may have a larger

effect for sustainable development and emissions reductions than many smaller ones do. If this

is the case, measuring counts of technology transfer would be a pathological dependent variable.

7The data for CDM projects with technology transfer is available from UNFCCC (2010) upon request.
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We find that both the total and technology transfer number of CDM projects are highly correlated

with expected CO2 emission reductions.8

The IPCC defines technology transfer as “a broad set of processes covering the flows of

know-how, experience and equipment for mitigating and adapting to climate change amongst

different stakeholders such as governments, private sector entities, financial institutions, non-

governmental organizations (NGOs) and research/education institutions” (UNFCCC, 2010: 13).

Adopting this definition, the UNFCCC in its 2010 report coded all registered CDM projects

for presence of foreign technology transfer based on an assessment of existing CDM project

documents.9

To understand how foreign technology transfers can result under a CDM project, consider

CDM0472, the largest CDM project in China that was implemented in 2006 in the eastern

province of Jiangsu. This project expects to reduce annual CO2 emissions by 10 million tons by

destroying HFC23 emissions. The Project Design Document clearly states that this “project will

adopt a thermal decomposition technology to destruct HFC23 from a French company VICHEM”

and emphasizes that “[t]hrough the transfer of VICHEM’s technology to the proposed project,

... the relevant technical know-how can be transferred to China” (CDM0472, 2006: 6f.). Hence,

this project is coded as a CDM project with technology transfer. On the other hand, the large

hydroelectricity project CDM4412 hosted by the Indian state of Himachal Pradesh is coded as

a non-tech project. The project document specifically mentions that “[t]he project activity uti-

lizes conventional state-of-art environmentally safe and sound hydropower technology and hence

there is no technology transfer involved” (CDM4412, 2008: 9).

Figure 2 below illustrates the geographical distribution of CDM projects with technology

transfers in China and India. In addition, the figure also visualizes the geographical distribution

of our two main independent variables: average economic wealth and industrial capacity, both

measured on per capita basis. Overall, the figure offers preliminary support for our hypothe-

8As shown in the supplementary appendix, correlation coefficients vary from r = +0.497 for total Chinese CDM
projects and 2012 CERs to r = +0.839 for total Indian CDM projects and 2012 CERs. All correlation coefficients are
strongly positive and highly statistically significant.

9In fact, the UNFCCC (2010) report also distinguishes between the presence of equipment transfers, knowledge
transfer, and both. To avoid unstable estimation, we do not use this information to construct separate dependent
variables.
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ses, but also calls for a systematic multivariate analysis. In China, CDM technology transfers

seem to be more common in less developed – yet relatively heavily industrialized – northeast-

ern provinces. In contrast, CDM technology transfers in India are concentrated in the wealthier

southwestern states along the coast of the Indian Ocean.

[Figure 2 about here.]

4.2 Independent Variables

In the previous section, we formulated four hypotheses about the impact of economic wealth and

industrial capacity on the number of CDM projects with technology transfer across both China

and India. Since we pool Chinese and Indian CDM projects to systematically examine country

differences, a major challenge is to construct comparable data for our empirical analysis.

To address the first set of hypotheses (i.e., Hypotheses 1 and 3) on the effect of wealth on tech-

nology transfer, we use data on real GDP per capita in US$ in 2005 constant prices. For China,

per capita GDP data is provided by the University of Michigan’s China Data Online database10,

while Indian data comes from the Directorate of Economics Statistics of the Indian state govern-

ments.11 Since the China Data Online database is built on official government sources, both the

Chinese and Indian data are official. To construct the variable, we converted the values of per

capita GDP of Chinese provinces, measured in yuan and current prices, and those of per capita

GDP of Indian states, measured in rupees and constant prices at different years, into 2005 US$.12

In making these adjustments, we can compare variation in per capita income at the sub-national

level across the two countries.

The second set of hypotheses link industrial capacity in China and India to technology trans-

fers in the CDM scheme. We operationalize this variable as the per capita industrial production

in US$, with constant 2005 prices. Data is retrieved from China Data Online and from the In-

10See http://chinadataonline.org. Accessed March 20, 2012.
11See http://planningcommission.nic.in/data/datatable/. Accessed April 25, 2012.
12For the data on Chinese provinces, we use real GDP growth data provided by China Data Online to account for

inflation. For the data on Indian states, we use price data taken from the Directorate of Economics and Statistics. These
sources account for price increases in provinces and states, respectively. Finally, we used exchange rate data from
the Reserve Bank of India (http://www.rbi.org.in/scripts/PublicationsView.aspx?id=13734) and the China-
U.S. foreign exchange rate provided by the Board of Governors of the Federal Reserve System (http://research.
stlouisfed.org/fred2/series/AEXCHUS?cid=32219), to convert these values into 2005 US$. Accessed July 7, 2012.
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dian Annual Survey Industries.13 We first converted figures of industrial production, originally

measured in current prices, into 2005 constant prices and then into US$.14 Following these steps,

we get at a comparable measure for industrial capacity for Chinese provinces and Indian states.

We logarithmize both per capita GDP and industrial capacity to account for the skewness of the

statistical distributions of the two variables. The Chinese and Indian variables are both reported

in gross terms and, therefore, intended to capture the same quantity. Both countries conduct

an entire census of all large enterprises, while collecting data from smaller enterprises through a

representative sample. Technical differences notwithstanding, the main concern with data quality

is the lack of transparency of the Chinese data at the provincial level.

Since we are primarily interested in the ways in which the effects of these variables differ

for China and India, we interact both economic wealth and industrial capacity with a dummy

variable for Indian observations. The binary indicator, which is also included into our statistical

model (Brambor, Clark, and Golder, 2006), scores “1” for all Indian province-years, and zero

otherwise.

4.3 Control Variables

We also include several control variables. Although data limitations prevent us from including a

large number of controls, we were able to account for a set of important political and economic

variables.

For one, we include electricity consumption per capita and a dummy variable for political

change as main controls. Both variables are interacted with the India dummy to allow for country

heterogeneity. Electricity consumption per capita is included to control for the potential for

emissions reductions in the energy sector.15 To account for the skewness of the distribution, we

again logarithmize our electricity consumption variable.

We also control for political change. The measure intends to capture political uncertainty

13The variables used are “Total Output” (India) and “Gross Industrial Output” (China). For India, see http:

//mospi.nic.in/mospi_new/upload/asi/ASI_main.htm?status=1&menu_id=88. Accessed July 7, 2012.
14The deflators were provided by the IMF. See http://elibrary-data.imf.org/public/FrameReport.aspx?v=3&

c=20840382. Accessed July 7, 2012.
15For China, the data are from China Data Online. For India, the data is from the Ministry of Power. See http://

pib.nic.in/newsite/erelease.aspx?relid=84206 and http://pib.nic.in/newsite/erelease.aspx?relid=30158.
Accessed on July 7, 2012.
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resulting from changes in sub-national leadership. For China, we use a binary indicator that

scores “1” for when either the incumbent party secretary or the governor of a province leaves

office and zero for all other observations. This measure is based on Bayer, Urpelainen, and

Wallace (2013) and reflects the idea that individual leader characteristics play a critical role in

Chinese politics, as shown in Shih, Adolph, and Liu (2012). For India, we simply code all election

years as “1” and zero otherwise. In a robustness check, we also consider the possibility of

governmental, instead of political change and thus only code election years as “1” in which the

incumbent party at the subnational level changes.16 In the full sample, we record 59 incidences

of political change out of 162 observations in China (36%) and 26 out of 136 in India (19%). We

include this control variable because change in political leadership can pose risks for projects with

large-scale technology transfer.17 Given that these projects involve capital-intensive investments,

project developers look for stable investment conditions. The political uncertainty that surrounds

leadership changes makes technology inventors and project developers hesitant. What is more,

CDM renewable energy projects require subsidies.18 This discourages investment until political

uncertainty is reduced.

Next, we add a logarithmized population variable into our statistical model, using it as the

inflator in our zero-inflated negative binomial model.19 The data for China come from China

Data Online; for India, we use census data from the Office of the Registrar General and Census

Commissioner, India.20 Since the official Indian data is only available for 2001 and 2011, we

interpolate population data with a linear trend for 2004 to 2010. This seems unproblematic as

population figures develop in a monotonic and stable fashion.

To ensure that variation in technology transfer is not only driven by variation in the total

number of CDM projects, we also estimate models that include a count of CDM projects without

technology transfer. This control variable allows us to avoid unduly conflating our theoretical

16Election data come from the Election Commission of India and are available from http://eci.nic.in/eci_

main1/ElectionStatistics.aspx. Accessed on April 13, 2014.
17In our dataset, 70 out of 298 province-years have large-scale projects. This accounts for about one quarter of the

dataset.
18Overall, only 38 out of 298 province-years (13%) do not have a single renewable energy project.
19See the supplementary appendix for a histogram.
20See http://planningcommission.nic.in/data/datatable/index.php?data=datatab. Accessed May 20, 2012.
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expectations with scale effects.

Finally, we account for temporal trends in the data by adding a linear time trend to our model.

Since the need for technology transfers may decrease over time because of growing technological

prowess, or rising concerns about reverse-engineering (Bayer and Urpelainen, 2013), controlling

for time patterns is essential.

In Tables 1 and 2, we present summary statistics and correlation matrices.21 While the two

countries are similar regarding projects without technology transfer, China hosts more than twice

as many CDM projects with technology transfer as does India. This aligns with our argument.

Note also that there is no statistically significant correlation between economic wealth and tech-

nology transfer, while a positive association between industrial production capacity and technol-

ogy transfer exists. This calls for a more systematic statistical analysis.

[Table 1 about here.]

[Table 2 about here.]

4.4 Statistical Model

As mentioned above, we estimate a zero-inflated negative binomial model. Under the assumption

that larger provinces should see more technology transfer than smaller ones, population is a good

variable to use in the inflation stage. To further evaluate our model choice, we apply the Vuong

(1989) test for model selection. We find that for all our models, a zero-inflated negative binomial

specification is preferred to a standard negative binomial model that does not specifically account

for oversampling of observations with zero counts as dependent variable.22 Standard errors are

clustered by province or state.

5 Results

The results corroborate our hypotheses. For China, we find that a negative relationship between

per capita GDP and the incidence of technology transfer exists, while the association between

21For summary statistics and a correlation matrix for the entire sample, see the supplementary appendix.
22For models (1) to (3) in Table 3 below, the normally distributed test statistics are z = 2.24, z = 2.20, and z = 1.44,

respectively. This yields corresponding p-values of p < 0.012, p < 0.013, and p < 0.077, supporting the choice of
zero-inflated models over non-inflated count models.
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industrial capacity and technology transfer is strong and positive. This set of findings can be

contrasted with our results from the analysis of Indian states. In India, the relationships under

analysis are not statistically significant. In this section, we first present the main findings from

econometric model estimations before discussing the robustness of our results.

5.1 Main Findings

Table 3 shows the main regression results for three zero-inflated negative binomial models.

Model (1) only includes our main independent variables, per capita GDP, industrial capacity,

the interactions of the preceding variables with the India dummy, the India dummy itself, and

the temporal trend. Model (2) adds electricity consumption and political change as controls,

while model (3) also accounts for the number of CDM projects without technology transfer.

[Table 3 about here.]

Notwithstanding complications with the interpretation of statistical significance in non-linear

models with interaction effects (Ai and Norton, 2003; Greene, 2010), the coefficients for China

are directly interpretable from the regression table as the India dummy is zero (Brambor, Clark,

and Golder, 2006). The coefficient of economic wealth is always negative and highly statistically

significant; for industrial capacity, all coefficients are positive and statistically significant.

To interpret the coefficients for India, we simulate substantive effects for our two key explana-

tory variables, economic wealth and industrial capacity (King, Tomz, and Wittenberg, 2000). Fig-

ure 3 illustrates these effects separately for China (black lines) and India (gray lines). All our

simulations are based on 1,000 draws from a multivariate normal distribution with model (3) as

the statistical specification; continuous variables are set at their means and the median year 2008

is used for time effects.

[Figure 3 about here.]

In China, provinces with a higher level of per capita GDP host, on average, 0.59 fewer CDM

projects with technology transfer than do the poorer provinces. Confidence intervals range from

-0.11 to -1.25 projects. The results show that economic wealth discourages technology transfer, a
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finding that illustrates the Chinese government’s policy to promote CDM projects and technology

transfer in less developed provinces in inland China. A change in industrial capacity from the

mean to one standard deviation above the mean increases the number of technology intensive

CDM projects by 4.91, with 1.82 and 9.99 as the lower and upper bounds, respectively. Provinces

with high industrial capacity receive considerably more technology transfer, a finding that once

again suggests the efficient use of the CDM by the Chinese administration. Given the carbon

content of manufacturing, clean technology transfer can help reduce carbon emissions. This

conforms with the Chinese government’s “controlled” CDM allocation policy, which seeks to

promote sustainable development in remote places across the country (Popp, 2011).

On the contrary, the Indian government has never actively pursued policies to promote tech-

nological advancement through the CDM. In the Indian case, changes for both economic wealth

and industrial capacity from means to one standard deviation above the mean do not statistically

significantly affect the number of CDM projects with technology transfer. While the effect size

for changes in GDP, despite different signs, is comparable between China and India, changes in

industrial capacity produce an increase in the number of CDM projects with technology transfer

that is about 30 times higher in China than in India. According to our theory, this dramatic

difference in effect size reflects strategic policy in China. In addition to China’s securing more

CDM technology transfer than India, the Chinese technology transfers are also better targeted

than the Indian ones.

5.2 Robustness Checks

All our robustness checks can be found in the supplementary appendix. To check that our

analysis captures the effects of our main explanatory variables on technology transfer, we first

re-estimate our models using the number of projects without technology transfer as the dependent

variable. This placebo test is presented in Table 4, with the substantive effects plotted in Figure 4.

[Table 4 about here.]

The simulations of the substantive effects are again based on model (3), while keeping con-

tinuous variables at their means and using 2008 for the time trend variable. In contrast to our
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previous simulations, Figure 4 indicates that neither economic wealth nor industrial capacity

statistically significantly predict the number of non-tech CDM projects in China. The results

for India paint a different picture. While GDP reduces the number of non-tech CDM projects

on average by 3.03, with -0.31 and -5.02 as lower and upper confidence bounds, an increase of

industrial capacity from the mean to one standard deviation above the mean increases CDM

projects without technology transfer by 2.02, with 0.25 and 5.09 as lower and upper bounds. This

finding highlights the difference between Chinese and Indian politics in attracting CDM projects

without technology transfers. In India, poorer states and those states with a large industrial

base host more CDM projects than richer and less industrialized ones, but these projects are less

valuable for sustainable development because they lack technology transfer. The Indian govern-

ment’s laissez-faire approach toward the CDM fails to attract those projects that would be the

most useful for the country’s technological development.

[Figure 4 about here.]

Returning again to the model for projects with technology transfer, we conducted further

tests. Since the highly significant and strongly negative coefficient of the time trend suggests

temporal dependence, we consolidate our analysis by separately excluding all projects imple-

mented in 2004 and 2010.23 This shows that our results are not driven by undue effects of the

early or late years of the CDM scheme.

Moreover, CDM project implementation, especially for renewable projects, depends on geo-

graphical, physical, and political conditions. To account for differences in renewable energy po-

tential, we present additional models in the supplementary appendix that include binary control

variables for wind, solar, and hydroelectricity potential.24 Most importantly, our key results con-

tinue to hold. As to the renewable potential controls, only wind potential seems to be positively

associated with technology transfer in CDM projects. Given that in particular solar technology

was mostly not yet commercially viable during the years of observation in our study, 2004–2010,

23While dropping the first year reduces the number of CDM projects by only eleven, seven of which feature tech-
nology transfer, excluding projects from 2010 reduces the sample size by about 11%. Out of 4,460 CDM projects, 939
are implemented in 2010 with 56 or about 6% carrying technology transfers.

24See the supplementary appendix for data sources and the exact construction of these renewable potential controls.
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it makes intuitive sense that technologically advanced wind projects carry comparatively high

levels of technology transfer.

Additionally, both Chinese provinces (e.g., Hunan and Hubei), and Indian states (e.g., Mad-

hya Pradesh and Gujarat), established CDM Service Centers and CDM Cells, respectively, to

foster the implementation of CDM projects in their sub-national jurisdictions.25 The main re-

sponsibilities of these units are to provide information and professional guidance during the

registration process with the CDM scheme. While the existence of these services should facilitate

overall project implementation, our CDM promotion policy dummy is positive, but not statisti-

cally significant for technology transfer to China and India. Even though CDM service centers in

China, for instance, were found to have a positive effect on overall project implementation, this

need not be the case for technology transfers in CDM projects.

Another concern with the CDM scheme in general is the large share of carbon credits that

result from HFC and N2O destruction (Wara, 2007). Even though our analysis is less sensitive

to this problem as it is framed in terms of project counts, not carbon credits, we re-estimate all

our main models with the number of HFC and N2O projects as a control variable. While our

dataset only comprises 60 projects that are aimed at destroying HFC and N2O, 50 of these feature

technology transfer. To ensure that our results are not dependent on these projects, we not only

use their counts as a control variable, but also exclude them from our analysis entirely.26 These

robustness checks leave our estimation results unchanged; in fact, our results become somewhat

stronger when dropping HFC and N2O destruction projects.

Similarly, we separately re-estimate our main models without projects that fall into one of the

following three categories: renewable energy projects, supply side energy efficiency projects, and

projects focusing on emissions reductions from methane, coal, and cement use.27 This robustness

check is useful as many of the excluded projects, especially on energy conservation and emissions

reductions from methane, coal, and cement sources, are particularly large projects. Correlations

25A full list of Chinese provinces with CDM service centers and Indian states with CDM cells as well as the
regression results can again be found in the appendix.

26The full results tables for these additional robustness checks can be found in the supplementary appendix.
27We exclude these project types mainly because they are the largest categories in our dataset. Renewable projects

account for 67% of the data (3,005 projects), supply side energy efficiency projects for 14% of the data (634 projects),
and projects concentrating on methane, coal, and cement emissions for 9% of the data (397 projects).
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as low as r = +0.142 and r = +0.224, respectively, between project type and projects being

small safeguard our analysis against bias from oversampling large projects. Similarly, renewable

energy projects are often very small (r = +0.787). All our main results hold even after excluding

these project types, suggesting that our statistical analysis is not sensitive to differences in project

size.

6 Conclusion

In summary, after examining differences in the sub-national distribution of CDM projects with

technology transfer in China and India, we find that in India, clean technology transfer is not

systematically allocated to provinces that would benefit the most from it, echoing findings from

the previous literature (Babu and Michaelowa, 2003; Benecke, 2009; Ganapati and Liu, 2008,

2009; Bayer, Urpelainen, and Wallace, 2013; Bayer, Urpelainen, and Xu, 2014). In China, on the

other hand, the central government’s systematic strategy of using the CDM as an instrument of

economic development allows new technologies to reach less developed provinces with a lot of

industrial capacity, as hypothesized in previous works (Ganapati and Liu, 2009; Schroeder, 2009b;

Bayer, Urpelainen, and Wallace, 2013). Much of this discrepancy between China and India could,

therefore, be attributed to variation in government capacity and institutional structure. Given its

greater capacity to govern, China is in a better position to exploit the CDM for developmental

purposes.

The findings have notable implications for the scholarship on clean technology transfer. Stud-

ies in the literature have mostly focused on explaining variation in technology transfers across

countries (Dechezleprêtre, Glachant, and Ménière, 2008; UNFCCC, 2010; Hascic and Johnstone,

2011). We have shown that in the two most important host countries of the CDM, sub-national

variation should not be neglected. Indeed, rapidly industrializing countries like China and India

exhibit considerable sub-national economic inequality that impacts their economic development

as national level. Promoting the transfer of clean technology to less developed regions allows for

more substantial development benefits than encouraging clean technology transfer in exclusively

wealthy jurisdictions.

China’s national strategy supports the efficient allocation of CDM projects across regions,

23



and the agenda is especially keen on directing projects with technology transfer to the country’s

more impoverished provinces. This relationship is not observed for CDM projects without tech-

nology transfer. Conversely, increased economic wealth in India has a positive effect on clean

technology transfer. If Indian policymakers developed a more systematic strategy for promoting

foreign technology transfer under the CDM, they could use this unique international institution

to achieve more equitable economic development across the Indian subcontinent.
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Figure 1: Distribution of CDM project counts with technology transfer. The x-axis gives the
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capacity across Chinese provinces and Indian states,2004–2010.
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First Differences in Predicted Number of CDM Projects
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Figure 3: Substantive effects. Plot shows substantive effects for changes in economic wealth and
industrial capacity from the mean to one standard deviation above the mean. Black lines denote
China, gray lines denote India. Error bars indicate 95% confidence interval.
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First Differences in Predicted Number of CDM Projects
 without Technology Transfer
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Figure 4: Substantive effects. Plot shows substantive effects for changes in economic wealth and
industrial capacity from mean to one standard deviation above the mean. Black lines denote
China, gray lines denote India. Error bars indicate 95% confidence interval.

32



Summary statistics for China

count mean sd min max

CDM projects with tech transfer 127 2.67 2.93 0.00 18.00
CDM projects w/o tech transfer 127 13.34 16.03 0.00 94.00
Real GDP (p.c., logged) 127 7.73 0.53 6.82 9.23
Industrial production (p.c., logged) 127 6.76 0.57 5.61 8.03
Electricity consumption (p.c., logged) 127 7.80 0.49 6.95 8.93
Political change 127 0.40 0.49 0.00 1.00
Population (logged) 127 3.58 0.75 1.71 4.62

Summary statistics for India

count mean sd min max

CDM projects with tech transfer 127 1.15 2.15 0.00 11.00
CDM projects w/o tech transfer 127 12.38 13.20 1.00 53.00
Real GDP (p.c., logged) 127 6.55 0.49 5.18 7.81
Industrial production (p.c., logged) 127 5.62 1.31 0.85 8.08
Electricity consumption (p.c., logged) 127 6.53 0.66 4.36 7.60
Political change 127 0.20 0.40 0.00 1.00
Population (logged) 127 3.50 1.13 0.33 5.28

Table 1: Summary statistics for Chinese (top) and Indian CDM projects (bottom). The summary
statistics are based on the sample that includes all of the control variables discussed above.
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Correlation matrix for China

(1) (2) (3) (4) (5) (6) (7)

(1) CDM projects with tech transfer 1.000
(2) CDM projects w/o tech transfer 0.199∗ 1.000
(3) Real GDP (p.c., logged) 0.135 -0.198∗ 1.000
(4) Industrial production (p.c., logged) 0.259∗∗ -0.152 0.899∗∗∗ 1.000
(5) Electricity consumption (p.c., logged) 0.114 -0.122 0.627∗∗∗ 0.667∗∗∗ 1.000
(6) Political change 0.010 0.073 -0.054 -0.031 -0.100 1.000
(7) Population (logged) 0.320∗∗∗ 0.253∗∗ 0.014 0.168 -0.353∗∗∗ 0.087 1.000

Correlation matrix for India

(1) (2) (3) (4) (5) (6) (7)

(1) CDM projects with tech transfer 1.000
(2) CDM projects w/o tech transfer 0.640∗∗∗ 1.000
(3) Real GDP (p.c., logged) 0.154 0.241∗∗ 1.000
(4) Industrial production (p.c., logged) 0.233∗∗ 0.347∗∗∗ 0.597∗∗∗ 1.000
(5) Electricity consumption (p.c., logged) 0.163 0.289∗∗∗ 0.777∗∗∗ 0.668∗∗∗ 1.000
(6) Political change -0.099 -0.145 -0.068 -0.012 -0.063 1.000
(7) Population (logged) 0.298∗∗∗ 0.431∗∗∗ -0.349∗∗∗ 0.172 -0.137 0.009 1.000

Table 2: Correlation matrices for Chinese (top) and Indian CDM projects (bottom). The correla-
tions are based on the sample that includes all of the control variables discussed above.
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Main regression results

(1) (2) (3)
Model Model Model

Stage 2: Estimation stage
Real GDP (p.c., logged) -1.789∗∗∗ -1.461∗∗∗ -0.829∗∗

(0.464) (0.373) (0.351)

Industrial production (p.c., logged) 1.943∗∗∗ 1.724∗∗∗ 1.845∗∗∗

(0.469) (0.399) (0.391)

India dummy -5.971∗ -4.644 -0.981
(3.458) (3.953) (3.244)

GDP x India 2.148∗∗ 2.138∗ 1.423∗∗

(0.916) (1.117) (0.703)

Industrial production x India -1.538∗∗ -1.290∗∗ -1.682∗∗∗

(0.647) (0.654) (0.511)

Electricity consumption (p.c., logged) 0.183 -0.313
(0.505) (0.486)

Electricity consumption x India -0.368 0.146
(0.815) (0.678)

Political change -0.122 -0.146
(0.201) (0.222)

Political change x India -0.553 -0.283
(0.446) (0.455)

Year -0.168∗∗∗ -0.305∗∗∗

(0.043) (0.045)

CDM projects w/o tech transfer 0.037∗∗∗

(0.009)

Stage 1: Inflation stage
Population (logged) -1.583∗∗∗ -1.801∗∗∗ -2.213∗∗∗

(0.325) (0.413) (0.438)

Observations 283 254 254
Standard errors in parentheses
Dependent variable: Number of CDM projects with tech transfer.
Standard errors are clustered by province/state.
All models are zero-inflated negative binomial models
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Main regression results from zero-inflated negative binomial model.
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Regression results for placebo test

(1) (2) (3)
Model Model Model

Stage 2: Estimation stage
Real GDP (p.c., logged) -1.909∗∗∗ -1.749∗∗∗ -0.964∗

(0.478) (0.524) (0.556)

Industrial production (p.c., logged) 1.123∗∗∗ 0.950∗∗ 0.111
(0.424) (0.443) (0.501)

India dummy -6.763∗ -6.891 -5.019
(3.744) (4.293) (3.345)

GDP x India 1.442∗ 0.997 -0.117
(0.743) (0.871) (0.769)

Industrial production x India -0.662 -0.553 0.208
(0.446) (0.478) (0.513)

Year 0.256∗∗∗ 0.254∗∗∗ 0.318∗∗∗

(0.047) (0.058) (0.052)

Electricity consumption (p.c., logged) -0.009 -0.087
(0.574) (0.319)

Electricity consumption x India 0.378 0.564
(0.781) (0.521)

Political change 0.083 0.093
(0.199) (0.170)

Political change x India -0.380 -0.224
(0.311) (0.268)

CDM projects with tech transfer 0.190∗∗∗

(0.029)

Stage 1: Inflation stage
Population (logged) -0.020 -0.045 -0.120

(0.228) (0.226) (0.198)

Observations 283 254 254
Standard errors in parentheses
Dependent variable: Number of CDM projects with tech transfer.
Standard errors are clustered by province/state.
All models are zero-inflated negative binomial models
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Regression results for placebo test with non-tech project count as dependent variable.
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