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1

Highlights2

 The Banda Alta Member BIF precipitated in a redox-stratified seawater basin 3

influenced by metal-enriched, anoxic seawater in the lower zone and diluted, oxic 4

continental solutes from melting glaciers and rivers in the upper zone.5

 Complex BIF stratigraphy with carbonate-rich and silica-rich facies and 6

resedimented diamictites and hematite muds are a response to juxtaposing 7

glacial advance/retraction cycle and glacial isostatic adjustment.8

 Microbial activity facilitating calcium carbonate spheroids and mats and negative 9

δ57Fe values in BIF in relatively shallow water above a redoxcline. 10

 LREE/HREE fractionation, CePAAS-anomaly, Y/Ho, base metals abundances, 11

Zn/Co, as well as C and Fe isotopes are combined to distinguish following metal 12

sources: (1) redox-stratified Neoproterozoic seawater, (2) metal-enriched fluids 13

derived from altered crust, (3) oxidized continental solutes, and (4) terrigenous 14

detritus.15

16

17
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Abstract 31

The Rapitan-type banded iron formation  (BIF) in the Banda Alta Formation (Fm) of the 32

Neoproterozoic Jacadigo Group in Brazil was deposited in a redox-stratified, marine sub-basin, 33

which was strongly influenced by glacial advance/retraction cycles with temporary influx of 34

continental freshwater and upwelling metal-enriched seawater from deeper anoxic parts. These 35

new finding are based on new stratigraphic, whole-rock geochemical, and stable Fe and C 36

isotope data from the “Santa Cruz” hematite deposit near Corumbá, Mato Grosso do Sul, where a 37
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stratigraphy of lower and upper dolomite-rich and intermediate chert-rich BIF facies with up to 38

three intercalated diamictites is revealed. The Ca-Mg-Fe-Mn-carbonate-chert and chert BIF 39

(~30-45 wt% Fe) of the lower dolomite-rich facies shows chemical signatures consistent with 40

well-oxidized seawater, i.e. low (Pr/Yb)PAAS, strong negative CePAAS-, and positive GdPAAS- and 41

YPAAS-anomalies, as well as negative-13C carbonate typical for Neoproterozoic glaciogenic 42

carbonates. Sedimentation in a rather shallow water depth during relatively warm interglacial 43

periods was likely influenced by abundant freshwater from fluviatile runoff and melting 44

icebergs. In such conditions abundant microbial activity accommodated CO2 sequestration in 45

carbonates as spheroids and mats and fractionated57Fe (-2.6 and -1.2‰) in primary Fe-46

hydroxides. In contrast, the intermediate chert-rich facies, characterized by chert-hematite BIF 47

(~35-55 wt% Fe) and isolated hematite chert and hematite mud, recorded trace element 48

signatures of non-oxidized (absence of Ce anomalies and variable YPAAS-anomalies), more 49

metal-enriched (Fe, Mn, Si, Ni, Zn, Pb, U) seawater, thus deposition was within and below the 50

shallow-level redoxcline during ice cover. Colder water and isolation from sunlight reduced 51

microbial activity, and thus an almost non-fractionated  57Fe (-0.7 to 0.0‰) fluid signature 52

reveals that hydrothermal (MOR) vents or (sub-) seafloor alteration of mafic or felsic rocks, or 53

shales fertilized seawater with metals. All results lead to the model that the Jacadigo Group 54

formed during one major marine transgression-regression cycle, and BIF facies in the Banda Alta 55

Fm were a response to first- and second-order periodic variations of the depth of the redoxcline, 56

induced by the juxtaposition of glacial advance/retraction cycles, active graben tectonics, and 57

glacial isostatic adjustment or eustatic water level changes. The chert-rich BIF facies marked the 58

maximum of transgression. Age and tectonic setting of the Jacadigo basin remains contentious: it 59
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may represent a continental back arc basin of the Brasiliano collision zone (~590 Ma), in which 60

submarine alteration was possibly related to low-temperature hydrothermal fluids moving 61

through the active graben system (as an alternative to basin-wide benthic pore water flux). This 62

would place the Jacadigo group to the suite of Ediacarian “Gaskier” glaciations, although a 63

relationship to the Marinoan glaciation (660-635 Ma), mainly based on the published 64

sedimentation age-bracket of 706-587 Ma, is also possible.65

66

Keywords: Neoproterozoic glaciation; Jacadigo Group; Rapitan-type banded iron formation; 67

rare earth elements; Fe isotopes68

69

1. Introduction70

1.1. BIF-hosted iron ore in the Neoproterozoic glaciogenic context71

Banded and granular iron formation (BIF and GIF) are abundant in Archean to earliest 72

Paleoproterozoic (volcano-) sedimentary successions. No significant iron formation occurs in the 73

rock record between 1.8 Ga and 0.7 Ga, but BIF reappeared in many Neoproterozoic 74

sedimentary successions, most of them associated with Sturtian (ca 715-680 Ma) and Marinoan 75

(ca 660-635 Ma), and some with the Ediacarian (e.g., Gaskier: ~585-582 Ma: Bowring et al., 76

2003) glacial events (Hoffman et al., 2011). BIF are widely accepted as chemical proxies of the 77

ancient marine hydrosphere, as these rocks recorded the seawater chemistry from which they 78

were precipitated. Correspondingly, the association of those chemical sediments with 79

Neoproterozoic glacial deposits provide critical evidence for Neoproterozoic syn- and post-80
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glaciation climate (Hoffman et al., 2011). Although the concurrent records of Neoproterozoic 81

glaciogenic sediments is a central component of the snowball Earth model (Hoffman et al., 1998 82

and references therein), there is a recognition now that the Neoproterozoic BIF occurrence is a 83

result of a culmination of controls, including metal-fertilization of local sub-basins (Cox et al., 84

2013). One of the most significant Neoproterozoic BIF occurs in the Jacadigo Group near 85

Corumbá, Mato Grosso do Sul, Brazil, but nevertheless its depositional age and exact setting 86

remain contentious (c.f., Walde and Hagemann, 2007). A simplified glaciomarine Fe and Mn ore 87

model for the Morro do Urucum deposit proposed by Schneider (1984) and Schreck (1984) and 88

later summarized by Urban et al. (1992) is widely accepted. Klein and Ladeira (2004)89

subsequently supported this model with trace geochemical and carbon isotope data from the 90

same locality. A non-glaciogenic deposition model has been proposed by Freitas et al. (2011). 91

The “Santa Cruz deposit” at the eastern edge of the Urucum inselberg massif (Figure 1), 92

currently owned by Vetria Mineração, is a well-developed exploration project in terms of map 93

and core availability. It represents a perfect natural laboratory to investigate the controversial 94

BIF deposition. Here we present new field observations including detailed diamond core logs, 95

petrographical, geochemical, and Fe and C isotope data. Based on this new data we propose a 96

chemostratigraphic model for the local BIF facies. 97

1.2. Geology of the Corumbá region98

The Corumbá region is located on the eastern edge of the Amazon craton-Rio Apa block, about 99

20-30 km west of its tectonic contact with the Brasiliano Paraguay belt (Figure 1a). In this 100

region, two sets of extensional structures are identified: the poorly exposed eastern extremity of 101

the WNW-ESE-trending, 500 km long, Chiquitos-Tucavaca aulacogen (a failed rift arm) and the 102
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NE-SW-trending, 10-20 km long, Corumbá graben system (Jones, 1985). In the Corumbá area, 103

two lithostratigraphic groups have been distinguished: the Jacadigo and Corumbá Groups (de 104

Almeida, 1945; Dorr II, 1945). A stratigraphic correlation of the Jacadigo with the Boqui Group 105

in Bolivia (Figure 1b) has been established (Graf Jr et al., 1994). According to Dorr II (1945) the106

Jacadigo Group consists of three formations, the Urucum, the Córrego das Pedras, and the Banda 107

Alta Fms. The Urucum Fm consists of coarse arkoses and conglomeratic sandstones and 108

unconformably overlies the basement of the Amazon craton-Rio Apa block. The Córrego das 109

Pedras Fm consists of variable siliciclastic rocks and hosts a basal manganese ore layer. The 110

Banda Alta Fm is made up of hematite-rich BIF with intercalated sandstones, arkoses, 111

diamictites, and manganese ore. In the Banda Alta Fm, dropstones have been identified in BIF 112

and Barbosa (1949) suggested a glaciogenic origin of these rock features. In the alternative 113

lithostratigraphy of de Almeida (1945), rocks of the intermediate Córrego das Pedras Fm are 114

subsumed into the Urucum Fm, and the Banda Alta Fm equals the Santa Cruz Fm (hence the 115

given name of the hematite deposits). In the present publication the subdivision of Dorr II (1945)116

is used, mainly to avoid any confusion regarding the use of “Santa Cruz”. The Corumbá Group, 117

unconformably overlying the truncated Banda Alta Fm, is made up of dolostones in the lower 118

Bocaina Fm, and limestones in the upper Tamengo Fm. The Tamengo Fm contains an Ediacara-119

like fauna (Walde et al., 2015, and references therein). 120

Unequivocal depositional ages, and therefore evidences for a correlation with globally occurring 121

ice ages, are not available for the Jacadigo Group. Basement granites have igneous K/Ar age of 122

ca. 889 ± 44 Ma (Hasui and Almeida, 1970), providing a maximum age for overlying 123

sedimentary rocks. The Banda Alta Fm BIF has been interpreted as largely coeval to the 124

glaciomarine diamictites of the Puga Formation to the South, which has a maximum age (based 125
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on detrital zircons) of 706 ± 9 Ma (Babinski et al., 2013). In Bolivia, the Pimienta Fm, which is 126

possibly a lower part of the Boqui Group (therefore potentially correlative with the Jacadigo 127

Group), consists of tuffs, agglomerates, lapilli, and volcanic breccias of basaltic composition 128

(O'Connor and Walde, 1985; Litherland et al., 1986). Associated plutonic rocks have a lower 129

Ediacarian K/Ar age of 623 ± 15 Ma (Walde, 1988). However, inclusion of the Pimienta Fm in 130

the Jacadigo Group remains hypothetical. A minimum age for the Jacadigo Group of 587 ± 7 Ma 131

was recently obtained by 40Ar/40Ar dating of diagenetic cryptomelane in the Mn-formation at 132

Morro do Urucum (Piacentini et al., 2013). Based on stratigraphical, sedimentological and 133

structural data, Trompette et al. (1998) suggested the following evolution for the Neoproterozoic 134

sequences in the Corumbá region: During the late Cryogenian or early Ediacarian (ca 600-570 135

Ma), extensional tectonics generated a system of grabens parallel to the border of the Amazon 136

craton. This extensional event was probably synchronous with early stages of the Brasiliano 137

collision, which has been dated at ~590 Ma (Pimentel and Fuck, 1992; Pimentel et al., 1996). 138

This relationship and timing suggest a sedimentation during the Ediacaran period, and assuming 139

that the diagenetic-metamorphic sequence commenced shortly (ca. <10 Ma) after deposition, the 140

published minimum depositional age of 587 ± 7 Ma (Piacentini et al., 2013) agrees with this. A 141

deposition of the Jacadigo Group associated with the Marinoan glaciation lacks unequivocal, 142

direct geochronological evidences, too, but is suggested by the 623 ± 15 Ma age of the Pimienta 143

Fm, considering a correlation with the Boqui Group. Even a Sturtian age cannot be ruled out 144

based on the hypothetical correlation with the Puga Fm, as proposed by Hoffman and Li (2009). 145

For comparison, the Rapitan IF in the Mackenzie Mountains, northwest Canada, is with its 716.5 146

± 0.2 Ma age (U/Pb zircon date: Macdonald et al., 2010) a Sturtian deposit.147
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Transgression of glacioeustatic origin initiated the deposition of dolostones of the Corumbá 148

Group during the Ediacarian age (Trompette et al., 1998). Weak NNW-SSE trending folds, 149

probably synchronous with deformation and metamorphism in the Paraguay belt (545-500 Ma), 150

affected the Jacadigo and Corumbá Groups (D'el-Rey Silva et al., in press). Finally, Pliocene (ca 151

3 Ma) tectonic inversion of the graben system and development of the present inselberg 152

topography (the Urucum  massif) are correlated to the subsidence of the basement and formation 153

of the Pantanal basin (Ussami et al., 1999). The flat to shallowly south-easterly dipping BIF in 154

the “Santa Cruz deposit” represents the south-easternmost extension of the Urucum inselberg 155

massif (Figure 2a).156

2. Geological setting of the “Santa Cruz deposit”157

2.1. Stratigraphic column158

Based on mapping and core logging a generalised stratigraphic profile of the “Santa Cruz 159

deposit” was constructed (Figure 3). Siliciclastic units of the Urucum Fm, the Córrego das 160

Pedras Fm, or diamictite of the Banda Alta Fm, all sensu Dorr II (1945), rest unconformably 161

above a gneissic basement high of the Rio Apa Block. The Urucum Fm is characterised by grey-162

green, fine to medium-coarse-grained siliciclastic rocks with calcitic cement, locally displaying 163

cross-bedding and inverse grading characteristic of a fluvial environment. Minor chert-siderite-164

magnetite-hematite BIF is present in the Urucum Fm. The Córrego das Pedras Fm is defined by 165

sandstones, arcoses, micro-conglomerates, and up to three layers (each <2m) massive Mn-oxide 166

or Mn-rich arcoses (cryptomelane-braunite-dominated: Piacentini et al., 2013). The sequence 167
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with four well defined Mn-rich horizons described at Morro do Urucum (Dorr II, 1945) and 168

being mined is not encountered in the “Santa Cruz deposit”. 169

The Banda Alta Fm hosts dolomite-chert-hematite BIF in a lower and upper carbonaceous zone, 170

and jaspilitic chert-hematite BIF in an intermediate siliceous zone. BIF with clastic layers are 171

subordinately dispersed in the column. Diamictite units are discontinuously intercalated in BIF 172

and have thicknesses up to a few decametres. The upper diamictite and its dolomite-rich BIF 173

footwall are the highest preserved units of the Banda Alta Fm in the deposit and is located only 174

in eastern portion of the deposit (see e.g., STCR-DD-28-24 and STCR-DD-26-22 in Figure 4a, 175

and STCR-DD-68-24 in Figure 4b). The uppermost sequence of the Banda Alta Fm is 176

completely eroded in the region. Despite local evidence of compression (see following section), 177

no significant tectonic duplication of the stratigraphy is observed in the deposit, allowing a 178

thickness estimating of the Banda Alta Fm BIF to be 360 metres. This is compatible to Morro do 179

Urucum (>300 metres according to Dorr II, 1945).180

The lower, discontinuously developed, reddish ferruginized diamictite has a hematite-calcitic 181

cement-matrix. The ferruginized middle diamictite, with a hematite-silicate cement-matrix, is a 182

well-developed marker horizon throughout the deposit (see marker lines in Figure 4). The largely 183

non-ferruginized upper diamictite has a silt-calcite-chlorite cement-matrix, local ferruginization 184

is present close to intraformational cherts and footwall BIF. Its lateral continuation is unclear due 185

to erosion. 186

The middle diamictite is stratigraphically enveloped by typical footwall and hanging wall facies: 187

a hematite rock (“hematite mud”) forms the immediate one to two metres below the diamictite, 188

and a hematite chert (or “hematite silt”?) is developed in the hanging wall, commonly as a 189

decimetre to metre thick unit. The footwall hematite mud shows both, laminated or massive-190
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brecciated texture; the latter being rich in randomly oriented chert-mesoband fragments and a 191

featureless hematite matrix. Such a reworked breccia facies suggests a high-energy deposition of 192

overlying diamictite flows, whereas the laminated type indicates less impact of the diamictite 193

flow. The hanging wall hematite chert is intercalated with BIF and therefore represents a 194

transition from diamict clastic environment to chemical sedimentation of the hanging wall 195

jaspilitic BIF. Locally, decimetre to metre thick units of hematite chert and muds are intercalated 196

and interfingered within the BIF. Hematite chert is limited to intermediate siliceous zone, 197

whereas hematite muds also has carbonate components when located within the lower and upper 198

carbonaceous zone.199

2.2. Deformation sequence200

In the region of the “Santa Cruz deposit”, the Neoproterozoic rocks of the Jacadigo Group are 201

deformed by a set of tectonic structures (D1, D2, D3, and D4: D'el-Rey Silva et al., in press). An 202

early Dx-1 is recorded as extentional graben structures associated with the opening of the 203

Chiquitos-Tucavaca aulacogen parallel to the border of the Amazon craton with the Rio Apa 204

block (Trompette et al., 1998). According to these authors, sedimentation of the Urucum Fm, and 205

probably also the Banda Alta Fm, were coeval with the active graben teconics, leading to 206

variable stratigraphic thicknesses throughout the depsoitional basin (Trompette et al., 1998). The 207

D1 is related to the diagenetic to very-low grade metamorphic burial. The D1a is represented in 208

BIF by ptygmatic crenulated, chert veinslets. A D1b-foliation (S1b) is ubiquitously present in 209

siliciclastic rocks as a pervasively developed foliation and in BIF by shape prefered orientation 210

of hematite and oblate flattened clastic and diagenetic nodules. The D2 to D3 events are 211

associated with the tectonic evolution of the Paraguay and Tucavaca tectonic belts bordering the 212
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Amazon Craton. The D2 brittle-ductile deformation event led to the local thrusting of the 213

Urucum over the Banda Alta Fm. Parts of the thrust slice is preserved in the eastern section of 214

the deposit and is characterized by highly asymmetric, tight to isoclinal, F2 folds (D'el-Rey Silva 215

et al., in press). The D3 open folding event comprises crustal shortening phases related to the 216

Paraguay tectonic belt (NW-SE) and the closure of the Tucavaca failed rift basin (SW-NE) (D'el-217

Rey Silva et al., in press). The D4 event is interpreted as the result of Pliocene (at ca. 3 Ma) block 218

tectonics (c.f., Shiraiwa, 1994).219

3. Sample selection and analytical methods220

Drill core logging and grab sampling from drill core and outcrop was carried out by the authors 221

during field work in 2013. Sampling was limited to unweathered BIF (avoiding those with clastic 222

bands), hematite “mud”, and hematite chert in the lower and intermediate zone, focusing on the 223

facies transition from carbonaceous to siliceous BIF and investigating the role of chert- and 224

hematite-rich endmember facies. Each analytical method (whole-rock geochemistry, Fe and C 225

isotopes) was applied to a specific sample subset where the comparability between samples 226

representing a specific lithology and stratigraphic position is given. Table 1 provides a list of 227

samples and methods used and Figure 5 shows the sample locations. 228

3.1. Whole-rock geochemical analyses229

The grab sampling strategy for the analyses of major elements, trace and rare earth elements 230

(based on 0.5 to 0.8 kg aliquots) targeted specific lithologies, which are represented by eleven 231

samples: five banded and podded chert-hematite BIF (CaO < 2.1 wt%), three banded and podded 232

dolomite-chert-hematite BIF, two hematite muds, and one hematite chert (Table 1). Analyses 233
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were performed by ActLabs Pacific Pty. Ltd. facility in Ancester, Canada. Samples were 234

crushed, split into fractions using a rifle splitter, and then pulverized in a mild carbon steel mill 235

(95% passing at 75 m). Contamination during carbon mild steel pulverization is minor (<0.2% 236

Fe, traces of C, Mn, Si, Cr, Co). Cross-contamination between samples was minimized by 237

repeated silica washes. Sixty elements were analyzed by a combination of digestion and 238

analytical methods in order to determine the geochemical abundance using the most appropriate 239

method for each element or groups of elements. Loss of ignition (LOI) was determined at 240

1000°C. ActLabs incudes certified reference materials and duplicates into the analyzed batch for 241

quality control. Additionally, pre-milled certified reference material, BIF standard FER-3 242

(Alexander and Bau, 2009), was submitted together with the sample suites. The accuracy and 243

precision of ActLabs Pacific Pty. Ltd. is monitored since several years using this standard, and 244

monitoring data can be obtained from the first author. Data and calculated indices are provided in 245

Table 2. 246

3.2. Fe isotopes in hematite247

Five hematite samples from selected lithologies were analyzed for stable Fe isotopes at McGill 248

University, Canada. Parts of nodule-free hematite bands from BIF samples were isolated using a 249

saw, then pulverized, and then treated for 0.5 hours in a warm 20% diluted HCL bath to dissolve 250

any minor dolomite (~<5 wt%). Various studies have indicated that no discernible fractionation 251

of iron phases is associated with acid treatment (Skulan et al., 2002; Beard and Johnson, 2004; 252

Severmann et al., 2006). Samples were analyzed at Geotop/UQAM in Montreal, Canada, 253

according to the methods used in Halverson et al. (2011). Approximately 10 mg of pulverized 254

samples were weighed into a Savillex Teflon beaker and dissolved for 24 hours at 80 °C in a 2 255
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mL mixture of double-distilled 6 M HCl and concentrated HNO3 and HF. The samples were then 256

evaporated to dryness with excess HNO3, then redissolved in 2.0 mL of 2 M HCl. Samples were 257

again dried and then taken up in 0.5 mL of 6 M HCl for ion exchange chromatograpy. Fe was 258

separated using Bio Rad AG1 X4, 200–400 mesh resin loaded into custom Teflon columns and 259

separated from the matrix using 6 M HCl. Purified iron was eluted from the columns in 2 M 260

HCl, which was then dried down and taken up in 0.5 M HNO3. Solutions were analyzed in the 261

Geotop Radiogenic isotope laboratory at the Université de Québec à Montréal on a Nu 262

Instruments Nu Plasma II in in high-resolution mode via wet sample introduction. Instrumental 263

mass bias was corrected by using the standard-sample-standard protocol, whereby delta values 264

are calculated for each individual sample analyses against the average of standards before and 265

after. Samples were analyzed three times each, yielding typical 1-sigma errors of <0.1 for δ57Fe 266

and <0.05 for δ56Fe. The data are reported in standard delta notation (per mil units) relative to the 267

IRMM-14 reference standard. 268

3.3. C isotopes in carbonate269

Six carbonate mineral separates from dolomite-rich BIF were analyzed for stable C isotopes at 270

SUERC (Scottish Universities Environmental Research Centre), University of Glasgow. Samples 271

were analyzed at SUERC (Scottish Universities Environmental Research Centre), University of 272

Glasgow, on an Analytical Precision AP2003 mass spectrometer equipped with a separate acid 273

injector system, after reaction with 105% H3PO4 under a He atmosphere at 70 °C. Isotopic 274

results are reported using the conventional δ‰-notation. Mean analytical reproducibility based 275

on replicates of the SUERC laboratory standard MAB-2 (Carrara Marble) was around ±0.2‰ for 276

both carbon and oxygen. The δ13C are reported relative to V-PDB. 277
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4. Petrography 278

4.1. Dolomite-chert-hematite BIF and chert-hematite BIF279

Dolomite-chert-hematite BIF in the lower and upper carbonaceous zone consists of hematite 280

layers and carbonate-chert layers, which are locally weakly podded or rich in nodules (Figure 6a, 281

b). Typically, gangue microbands are <0.5cm thin and mesobands 0.5 to ~5 cm thick and consist 282

of fine to granoblastic, white to yellow dolomite-chert matrix and mm to sub-cm dolomite “intra-283

band” nodules (Figure 6a). So-called “inter-band” textures forming nodular iron formation, as 284

shown in Figure 6b, are less common. It is likely that this pseudonodular texture formed by 285

viscose mobility of the non-mixing components iron hydroxides and carbonate-chert mix, 286

probably under pressure-induced thixotropic behavior during early diagenesis (c.f., Owen, 2003). 287

Dolomite and chert may form distinct bands (Figure 6c, here folded at the microscale) and 288

nodules (Figure 6d), or are interlocked forming mixed carbonate-chert matrices (Figure 6e). In 289

these matrices, dolomite shows subhedral rhombic or granoblastic textures that partially 290

overgrow chert (Figure 6e), thus dolomite and chert are texturally not in equilibrium. This 291

suggests post-sedimentary in-situ growth (ripening?) of carbonate crystals and may be related to 292

a diagenetic dolomitization event (see section 10.2 for discussion). Routine mineral staining and 293

SEM mineral chemistry (authors’ unpublished data) show variable Mn-Fe-content in all 294

dolomite and minor Mn-calcite associated with dolomite.Collected dolomite-chert-hematite BIF 295

samples are limited to unweathered banded and podded textures. This is to obtain a most-pristine 296

BIF sedimentation-record in BIF samples across the transition from the lower carbonate- to 297

intermediated chert-facies zone. 298
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Jaspilitic chert-hematite BIF is commonly podded and only locally shows well-banded textures 299

(Figure 7a, b). Chert-rich BIF show far less nodules in the gangue layers than the dolomite-chert-300

hematite BIF. The gangue matrix is a fine-grained, red cryptocrystalline hematite-impregnated 301

chert (Figure 7c). The typical podding texture in unweathered chert-rich BIF is a result of 302

removal of gangue (“dissolution-podding”), which is identified by dissolution seams parallel to 303

bedding tracing the former mesoband (Figure 7b). Podded textures are less well-developed in the 304

dolomite-hematite BIF of the lowermost Banda Alta Fm.305

Hematite mesobands in all BIF are commonly a fine mix of anhedral hematite to microplaty 306

hematite and minor gangue, i.e., chert or dolomite, or dolomite-chert (Figure 7d). The hematite 307

grain sizes are commonly less than 20 m, however single grains are fused to anhedral-massive 308

or cellular aggregates (Figure 7e), giving the macroscopic metallic lustre to the hematite 309

mesobands. Also, the microplaty hematite-rich textures may show lepidoblastic orientation of 310

crystal shapes parallel to bedding (Figure 6f). This compaction fabric was generated by hematite 311

re-orientation and/or growth most likely during late diagenesis. Dolomite and chert nodules are 312

variously hematite-altered showing red, dusty, cryptocrystalline hematite or dense aggregates of 313

finely intergrown microcrystalline hematite with metallic lustre.314

Common, but heterogeneously distributed in gangue mesobands of all Banda Alta Fm BIF types, 315

are microscopic spheroids up to 400 m diameter (Figure 7e). These spheroids consist of 316

secondary, concentric and/or radial symmetric, chert or dolomite, and are locally hematite-317

stained (Figure 7f). 318
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4.2. Hematite chert and mud 319

The hematite chert is a banded-laminated to nodular-laminated type rock, characterized by less 320

than 0.5 cm thick jaspilitic chert laminae alternating with thin hematite-rich laminae (<mm) 321

(Figure 8a). Few isolated clast-like hematite grains suggest some influence of (hematitic?) 322

detritus (Figure 8b). Hematite in the chert is commonly present as 10-20 µm small, chert-323

inclusion-rich, globular grains, and locally they form randomly oriented chains (or “needles”) or 324

aggregates (Figure 8c). Such hematite-“needles” may represent hematite-replaced fibrous 325

silicates, which are typical for diagenetic to low-metamorphic Archean and Paleoproterozoic BIF 326

(Klein, 1974; Klein, 2005). Hematite grains may also form layers of larger anhedral aggregates 327

(Figure 8d).328

Hematite muds are laminated or massive rocks with up to ~66 wt% Fe. There is a near absence 329

of dolomite-chert gangue layers, only local chert lenses are observed (Figure 8e). The laminated 330

texture is defined by alternating, bedding-parallel, hematite laminae of variable grain sizes and 331

shapes. Three distinct hematite mud types are delineated: (1) reworked hematite mud (sample H-332

01): this mud is present just below the middle diamictite, as the hematite-rich endmember of 333

breccia-muds that commonly contain fractures of chert layers. The texture in sample H-01 334

resembles a clastic texture of fused hematite grains that are oriented parallel to the bedding 335

(Figure 8f). In some bands, hematite is completely fused leaving only relics of hematite clasts 336

(Figure 8g). The overall clastic texture of this hematite mud type and the association with 337

breccias provides evidence for a reworked nature. (2) chemical mud sediment (C-18): This mud 338

is characterized by granoblastic hematite texture with distinct layers of variable grain sizes 339

(Figure 8h). Textures do not provide evidence for clastic nature and the mud was probably 340
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chemically precipitated, as the Fe-rich endmember of BIF. This is supported by the stratigraphic 341

association with BIF. (3) leached-type hematite rock (not sampled): A completely different type 342

of hematite rock is the leached type. The leached-type hematite rocks can be identified by 343

dissolution seams at the edges of remnant gangue lenses and between hematite laminae. This 344

lithology was generated by secondary, probably hypogene and supergene, silica or carbonate 345

loss. The rock type is not part of the present investigation.346

5. Major element geochemistry347

5.1. Dolomite-chert-hematite BIF and chert-hematite BIF348

Chert-hematite BIF (with CaO <2.1 wt%) show Fe contents of 45 to 56 wt% and define a 349

negative linear correlation with SiO2 (Figure 9a). Dolomite-chert-hematite BIF have on average 350

lower Fe, Si, and Al contents compared to chert-hematite BIF, whereas Ca, Mg, and LOI are 351

significantly enriched due to the abundance of dolomite (Figure 9b, c; for LOI see Table 2). All 352

BIF samples have very low Al and Ti concentrations (Al2O3 <0.25 wt %, TiO2 <0.031 wt%) and 353

a positive correlation of both elements suggest that both derive from minor detrital components 354

(Figure 10a). The limited number of samples suggests that podded BIF have higher Fe contents. 355

Dissolution-podding of chert-hematite BIF is, therefore, associated with Fe upgrade from about 356

~35 wt% to up to 55 wt% in the unweathered section of the deposit.357

The P2O5 content in dolomite-chert-hematite BIF is high with 0.36 to 0.38 wt% and low in chert-358

hematite BIF (<0.2 wt%). This corresponds to apatite abundances in the rocks (not shown in the 359

petrography section). The dolomite-chert-hematite BIF have CaO/MgO ratios of 2.3 to 3.2, 360

whereas the chert-hematite BIF have higher ratios of 3.0 to 9.0. Overall mean value is ~4.0, 361



Page 18 of 70

Acc
ep

te
d 

M
an

us
cr

ip
t

18

which is much higher than in pure dolomite (1.4) and a result of Fe- and Mn-bearing dolomite, 362

and Mn-calcite, and apatite abundance.363

5.2. Hematite chert and mud 364

The hematite chert sample H-03 is significantly depleted in Fe compared to other samples 365

(Figure 9a, Table 2). Consistent with the silica-dominated mineralogy, dolomite and apatite 366

related elements CaO, MnO, MgO, P2O5, and LOI are lowest in the sample set. Also, terrigenous 367

Al and Ti are very low and thus, despite its stratigraphic position overlying the clastic middle 368

diamictite, a dominantly chemical nature is suggested.369

The two analyzed hematite mud samples have Fe grades of 58.7 and 66.3 wt% (Figure 9a, Table 370

2). In the slightly lower Fe grade sample H-01, the sum of MnO, MgO, CaO, P2O5, LOI is 0.55 371

wt%, whereas in contrast, the higher Fe grade sample C-18 shows a sum of 1.7 wt%. This 372

elemental pattern is consistent with the association of the samples with dolomite-chert-hematite 373

BIF (sample C-18) and chert-hematite BIF near the middle diamictite (sample H-01). However, 374

whole-rock geochemistry is not indicative for the genesis of the two distinct samples (i.e., 375

reworked clastic mud and chemical precipitated mud).376

6. REE and trace metal geochemistry377

6.1. Two distinct signature in BIF (REE I and II)378

The BIF samples and hematite mud sample C-18 reveal two distinct Post Archean Australian 379

Shale (PAAS)-normalized REE fractionation patterns (referred to REE I and REE II). The REE 380

I, represented by dolomite-chert-hematite (samples C-04, C-05, C-07) and podded chert-hematite 381

BIF (samples C-15, C-16, C-17), shows depletion towards LREE, quantified by (Pr/Yb)PAAS, 382
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(Pr/Sm)PAAS, and (Tb/Yb)PAAS < 1 (Table 2), and consistent negative CePAAS- and positive 383

GdPAAS- and YPAAS-anomalies. These characteristics are consistent with modern seawater (Figure 384

11Error! Reference source not found.a). The chert-(dolomite)-hematite BIF samples C-01 and 385

C-14, as well as the hematite mud sample reveal a distinct pattern REE II, which is characterized 386

by stronger LREE depletion and near absence of the CePAAS-anomaly (Figure 11Error! 387

Reference source not found.b). The REE I and II patterns have very similar HREE and Y 388

concentrations and define a mixing array in the (Ce/Ce*)PAAS and (Pr/Yb)PAAS space (Figure 389

12a), suggesting a genetic relationship amongst both. Base metal concentrations are higher in 390

REE II than in REE I samples (Cu+Pb+Zn > 15 ppm and < 12 ppm, respectively, and Figure 12b 391

for Cu and Pb). This appears also to be the case for U (REE I <0.14 and REE II >0.16: Table 2), 392

albeit the fact that U depends on SiO2, thus is generally higher in chert-rich BIF. An 393

“undisturbed” Mn to Co correlation is indicated for REE I samples, consistent with common Co 394

uptake by Mn-oxides (Figure 12c). However, significant deviation (elevated Co) is shown in 395

REE II samples pointing to more complex Co-hosts. 396

There are similarities, but also significant differences, between BIF from the “Santa Cruz 397

deposit” and contemporaneous Morro do Urucum deposit (Klein and Ladeira, 2004). Most 398

terrigenous elements Al, Ti (Figure 10a), as well as Zr (Figure 10d), base metals, and Rb (Figure 399

12d) are higher concentrated in BIF from Morro do Urucum. Nevertheless, the REE patterns 400

mostly resemble those from the Morro do Urucum BIF (compare Figure 11a, b, with dError! 401

Reference source not found.), with the exception of the more pronounced Ce-anomalies in REE 402

I BIF. BIF from the Rapitan IF (Halverson et al., 2011; Baldwin et al., 2012) resembles the REE 403

II geochemistry, which the exception of their generally lower Y/Ho ratio (Figure 12e).404
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6.2. Comparable signature in hematite mud and chert (REE III)405

A third distinct REE pattern (REE III), represented by the reworked hematite mud (H-01) and 406

hematite chert (H-03), is characterized by a wavy, but rather flat (shale-like), fractionation 407

pattern, an insignificant CePAAS-anomaly, and a weak negative YPAAS-anomaly. This 408

heterogeneous REE pattern does not resemble the signatures in other BIF types and thus indicate 409

largely contrasting metal sources. Hematite chert is significantly enriched in Zr and Cu (Figure 410

10d, Figure 12b), whereas Ti, Al, Co and Ni (Figure 10a, Figure 12c, Table 2) are depleted. 411

The REE-abundance and fractionation pattern of REE III samples are strikingly similar to 412

“hematitic muds and silts” in the Rapitan IF (Figure 11c, Figure 12aError! Reference source 413

not found.) reported by Halverson et al. (2011). Just minor differences are the HREE 414

fractionation pattern and slightly higher Y/Ho in the Rapitan muds and silts (Figure 12e). 415

Accessory detrital illite, feldspar, and chlorite are present in those rocks (Halverson et al., 2011), 416

and, although not observed in the REE III samples, they may be represented by the abundant 417

hematite-replaced silicates.418

6.3. Detritus and possible effects on trace element chemistry419

Using REE pattern as proxies of chemical seawater conditions have to be discussed in light of 420

potential diluting effect of detritus. The low (Pr/Yb)PAAS and high Y/Ho ratios (i.e., super-421

chondritic, >26.22: Pack et al. (2007)) in REE I and REE II are far from unity (i.e., not shale-like). 422

The lack of covariance between REE indices and Ti and Al supports that the influence of 423

terrestrial-derived material on the reported REE fractionation indices is negligible (Figure 10b, 424

c). Diagrams of (Pr/Yb)PAAS and Y/Ho versus Ti (not shown) also lack such covariance. Within 425

the REE I and II types there is no covariance of the Y/Ho anomaly with Zr (Figure 10d) and Al. 426
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Therefore, contribution of detrital sources in REE I and II is considered insignificant with respect 427

to the potential obliteration of a pristine seawater signature.428

In the absence of terrigenous detritus, important REE hosts are Ca-carbonates and apatite 429

(predominantly LREE and MREE based on similarity of ionic radii: Shannon (1976) and 430

hematite (predominantly HREE with smaller ionic radii). This is supported by a weak covariance 431

of Pr with CaO and P2O5 concentration, whereas no significant covariance of Pr with other 432

elements is detected. Dolomite-apatite content significantly shape LREE fractionation within 433

REE I (higher (Pr/Yb)PAAS ratios and lower (Ce/Ce*)PAAS) (Figure 10e, Figure 11a) but the key434

trace element characteristics to differentiate REE I and REE II are independent on dolomite-435

apatite content. This allows the conclusion that REE I and REE II types BIF recorded seawater 436

signatures, co-precipitated dolomite-apatite have only minor impact on trace element 437

geochemistry and their primary phases were most likely seawater-derived (based on the 438

similarity of REE pattern compared with dolomite-free BIF). The actual genesis of the present 439

carbonate mineralogy, however, is likely secondary diagenetic and will be discussed in section 440

10.2.  441

In light of the very low terrigenous detrital components Al and Ti in hematite chert (Figure 10a), 442

its REE pattern is consistent with volcanogenic ash origin (Pearce et al., 2013; Tepe and Bau, 443

2014) or indicate a certain fluid signature. The hematite-pseudomorphs (Figure 8c) may be an 444

alteration product after volcanogenic Al-free Fe-silicates such as greenalite, stilpnomelane, 445

minnesotaite, or riebeckite. However, the hematite mud sample H-01 lacks high Zr 446

concentrations despite showing an almost equivalent REE III pattern. On the other hand, there is 447

a striking similarity of REE III with those of modern low-temperature (~30 °C) submarine vent 448

fluids reported by Michard et al. (1993), as shown in Figure 11c). Conclusively, the wavy REE 449
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III pattern clearly suggests a component mix, likely including volcanic ash and/or terrigenous 450

detritus, but potentially it indicates low-temperature hydrothermally fertilized seawater. The 451

origin remains contentious and will be discussed in a speculative way.452

6.4. Post-sedimentary alteration and possible effects on trace element chemistry453

The sample selection was rigorous in terms of avoiding weathering artefact (such as clay and 454

goethite) which may modify geochemical signatures. However, post-depositional, (cryptic) 455

hydrothermal alteration was impossible to avoid and therefore alteration is an alternative 456

explanation for the distinct base metals, Pb, U, and LREE patterns in unweathered BIF. 457

Petrographical evidence for diagenetic alteration do exists: silica veinlets, dolomite 458

recrystallization, hematite replacement, with the most noticeable being hypogene gangue 459

leaching and hematite upgrade by dissolution-podding. Cr (and V) shows a positive covariance 460

with Fe content (Figure 12f), and as these metals are partitioned into the hematite lattice (c.f., 461

Nadoll et al., 2014; Hensler et al., 2015), their covariance is a direct result of podding. All other 462

geochemical signatures in BIF, e.g., Al, Ti, REE fractionation and anomalies, are independent 463

from dissolution-podding, and therefore this alteration is not significant in terms of primary fluid 464

signatures. 465

Minor LREE mobility in dolomite-chert-hematite BIF, e.g., by carbonate recrystallization, is 466

suggested by the variation of La to Gd abundances amongst dolomite-chert-hematite BIF 467

samples (Figure 11Error! Reference source not found.a). However, REE budget in modern 468

and Devonian microbial reef-calcite (Figure 11Error! Reference source not found.a) show that 469

carbonates can show minor variation in LREE fractionation compared to the seawater they were 470
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precipitated from. In any case, this LREE variation is insignificant in terms of the general REE 471

pattern. 472

Hydrothermal alteration of banded chert-hematite BIF (REE II) to podded BIF (REE I) is an 473

alternative explanation for the chemical variance and would involve a depletion of base metals, 474

Pb and U, and an addition of LREE by Ce-HREE-depleted apatite or monazite, causing the 475

negative CePAAS-anomaly. However, whereas the hydrogenetic Co-Mn correlation appears 476

“pristine” in REE I BIF (Figure 12c), there is deviation from this trend in REE II BIF. This 477

suggests that, if at all, only REE II samples enjoyed limited hydrothermal alteration involving 478

mobility of Co and Mn. 479

In conclusion, based on the REE patterns in the present sample set, the effects of post-480

depositional alteration or chemical exchange in whole-rock chemistry are considered as not 481

significant. However, effects at the micro-scale remain contentious and need to be explored in 482

more detail with, for example, stable oxygen isotopes and element mapping.483

7. Fe isotopes in hematite484

The subset of five samples are petrographically representative for BIF and hematite mud 485

lithologies of the lower carbonaceous (samples C-06 and C-11) and intermediate siliceous 486

(samples C-14, H-14, and H-15) zone and correspond to geochemical samples as shown in Table 487

1. The Fe isotope data (expressed in per mil units relative to the IRMM-14 standard) show 488

negative 57Fe values for BIF (Table 3). Values are low in the dolomite-rich hematite BIF (-2.6 489

and -1.2 ‰), higher in the chert-hematite BIF (-0.7 ‰) and highest in the associated reworked 490

hematite mud (-0.3 and 0.0 ‰). The 1 range from 0.01 to 0.07 indicates that the data ranges of 491

each group (albeit limited in number) are distinct. This allows a general assessment of a 492
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lithologically controlled iron isotope fractionation, with dolomite-rich BIF being most depleted 493

in 57Fe and hematite mud least. The effect of sedimentological reworking in the hematite mud 494

on the iron isotopic signatures is considered to be minor. For comparison, Fe isotopes in the 495

Rapitan IF record 57Fe values of -0.67 to +1.2 ‰, with an up-stratigraphic increase (Table 3).496

8. C isotopes in dolomite497

The selected samples are petrographically representative for dolomite-chert-hematite BIF 498

lithologies of the lower carbonaceous zone. In the “Santa Cruz deposits” (this study) and Morro 499

do Urucum deposits (Klein and Ladeira, 2004), carbonates show negative 13CCARB values 500

(CARB means carbonate-hosted carbon) relative to seawater, with a total range of -3.4 to -7.0 ‰ 501

PDB (Table 4). At the “Santa Cruz deposit” the range of 13CCARB values in selected samples is 502

limited to -3.4 to -4.3 ‰ PDB. In comparison, carbonates in the Rapitan IF recorded less 503

depletion in 13CCARB with values between -0.67 to -3.37 ‰ (Klein and Beukes, 1993). 504

9. Fluid source signatures505

9.1. Redox-stratified seawater and influx of continental solutes506

The REE I and REE II patterns are mostly consistent with Phanerozoic (modern) seawater (Bau 507

et al., 1995; Alibo and Nozaki, 1999; Bau and Dulski, 1999) as sown in Figure 11aError! 508

Reference source not found.. Seawater-typical positive LaPAAS anomalies are probably masked 509

by the strong CePAAS-anomaly (Figure 10f). Seawater has negative CePAAS-anomalies due to the 510

large-scale sequestration of Ce4+ into hydrogenetic ferromanganese crusts and nodules (Bau, 511

1999; Kato et al., 2006; Ohmoto et al., 2006). If the CePAAS-anomalies in Banda Alta Fm BIF are 512
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related to the seawater redox condition, then the negative Ce-fractionation supports oxidizing 513

conditions (and an abundance of Ce-sinks) in the Neoproterozoic Jacadigo basin at the time of 514

BIF precipitation. On the other hand, the near absence of CePAAS-anomalies in REE II BIF 515

indicates the lack of oxygenated water and/or dissolution of Ce4+-sinks at the time of BIF. 516

Modern oceanic water is redox stratified, affecting the Ce budget of seawater. A continuous 517

decrease of Ce concentration occurs with increasing depth within the upper ~500 m. In addition, 518

or alternatively to oxidative scavenging by hydrogenetic Mn-Fe-hydroxides in the upper marine 519

basins, negative seawater Ce-anomaly recorded in BIF may also be an effect of the REE 520

contribution from large amounts of freshwater: Braun et al. (1990) showed that freshwater is 521

commonly Ce-depleted resulting from weathering-related Ce-enrichment in saprolites and 522

Alexander et al. (2008) show evidence for a significant contribution of continental freshwater 523

solutes to the Nd-isotopic signature in shallow Paleoproterozoic BIF. (Sholkovitz and Schneider, 524

1991; Alibo and Nozaki, 1999). Ce concentrations remain low but largely unchanged also in 525

deeper zones (500 - 3000 m) of the ocean (Alibo and Nozaki, 1999). Contrastingly, in marine 526

sub-basins where hydrological equilibrium with the oceans is incomplete, redoxclines are 527

present, dividing upper oxic and lower anoxic zones (Sholkovitz et al., 1992; Bau et al., 1997).528

Within and just below the redoxcline, partial Ce4+ to Ce3+ reduction occurs, increasing the 529

relative solubility, and thus the Ce concentration in water increases by dissolution of Mn-Fe-530

hydroxides (Bau et al., 1997). In deep anoxic zones, progressed dissolution of hydroxide 531

particles fractionates REE and Y by selective dissolution of LREE over HREE (increase of 532

(Pr/Yb)PAAS) and Ho over Y (decrease of Y/Ho), ultimately generating a near-flat dissolved REE 533

pattern with a vanished Ce-anomaly and (no or negative) Y-anomaly (Bau et al., 1997). Those 534

REE trends across three redox zones in relation to a redoxcline has been proposed for 535
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Proterozoic deep marine iron formations associated with partially oxidized seawater (Planavsky 536

et al., 2010). In the present data set, those three zones are represented by the sample set: (1) 537

dolomite-rich BIF and some chert-rich BIF (REE I) representing the oxidized top part above the 538

redoxcline, likely influenced by abundant freshwater; (2) chert-rich BIF and chemically 539

precipitated hematite mud (REE II) from below (but near to) the redoxcline with lower CePAAS-540

anomaly; and (3) hematite chert and hematite mud (REE III), albeit with its contentious detrital 541

and/or volcanic ash contribution, approximating the anoxic “deep” seawater zone characterized 542

by minimal Ce-anomaly and negative Y-anomaly, and maybe influenced by low-temperature 543

hydrothermal fluids (c.f., Planavsky et al., 2010). 544

In contrast to the “Santa Cruz deposit”, CePAAS-anomalies in BIF at Morro do Urucum are far 545

less pronounced (Klein and Ladeira, 2004), and in the Rapitan IF even negligible (Halverson et 546

al., 2011; Baldwin et al., 2012), as shown in Figure 11d. In summary, the sample set from the 547

“Santa Cruz deposit” recorded temporarily changing redox conditions in the largely isolated 548

Jacadigo basin, which may be related to fluctuation of the seawater level and associated 549

redoxcline, or variation in fluid-mixing (as discussed in the following section).550

9.2. Fertilization by crustal alteration: hydrothermalism or benthic pore water flux?551

Based on the trace element variations and total values it is suggested that REE II chert-hematite 552

BIF samples recorded a stronger signature of submarine crustal alteration than REE I chert- and 553

dolomite-hematite BIF samples. In cases of pure BIF, an explanation for variations in base metal 554

concentrations are variable fertilization of seawater with metals derived from submarine 555

hydrothermal fluids, benthic pore water flux, or continental solutes. Owing to the lack of CePAAS-556

anomaly in REE II, fertilization under reduced conditions water is a likely scenario for REE II 557
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type BIF and precludes oxidized continental solutes derived from weathering of the continental 558

hinterland. Fertilization of seawater is also indicated by Y/Ho ratios (Figure 12e), which range 559

between seawater-like (>40) and chondrite-like signatures (27 - 35) and thus support metal input 560

to seawater from external fluids. Geochemical modelling by Le Hir et al. (2008) shows an up to 561

four times greater rate of alteration reactions in a CO2-charged snowball earth ocean, therefore 562

crustal alteration (either by pore water or hydrothermal fluids) must have been significant. 563

Elevated Zn/Co ratios are suitable tracers of such crustal alteration, as Co is largely derived from 564

pure seawater, whereas Zn is sourced from altered rocks (Toth, 1980). In the Banda Alta Fm BIF 565

the Zn/Co ratios range between 1.7 and 6 with higher values recorded in chert-hematite BIF 566

(Figure 12e). These ratios are comparable to those recorded in BIF of the Rapitan IF (Halverson 567

et al., 2011) and consistent with significant metal input from altered rocks. Much higher Zn/Co 568

ratios are recorded in hematite chert and mud (18 and 18.8), which contrast those values from 569

hematitic mud and silt of the Rapitan IF.The altered crust may be oceanic crust (low-LREE, Cu 570

and locally Co in REE II rocks) or granitic basement and shales (Pb, Zn, U in REE II and REE 571

III rocks). If detritus and ash is negligible, then the geochemical signatures in hematite chert and 572

hematite mud are consistent with highest contribution from felsic altered rocks. 573

What is the cause of this submarine crustal alteration: hydrothermal activity or widespread 574

scavenging of seafloor sediments by benthic pore waters? The Fe-isotopic composition has the 575

potential to narrows down the sources of iron and alteration fluids: According to Johnson et al. 576

(2003) there are three factors defining the Fe isotope fractionation in BIF: (1) the compositions 577

of the fluids from which minerals were precipitated, (2) the e�ects of metabolic processing of Fe 578

by bacteria, and (3) mineral-specific equilibrium fractionation. The latter factor can be 579

considered as insignificant, since competing phases are just iron-free SiO2 and carbonates with 580
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only a few percent Fe. The fluid Fe-isotopic composition is unknown, but should be in all BIF of 581

the sequence that same, no matter if dolomite or chert-rich, because the Fe source (i.e., altered 582

Fe-rich rocks in the deeper basin) would not have changed significantly. The 57Fe isotope in 583

REE II type chert-hematite BIF (-0.71 ‰) and REE III type hematite mud (-0.25 and -0.04 ‰) 584

are consistent with MOR hydrothermal fluids (-0.9 to -0.45: Johnson et al., 2003). This supports 585

the presence of hydrothermal fluids as a medium of seawater fertilization. A slight positive shift 586

in 57Fe associated with the oxidation of Fe (Johnson et al., 2003) should have affected all BIF 587

similarly and point to a primarily slightly more Fe isotope depleted source. The strong Fe isotope 588

fractionation in REE I type carbonate-rich BIF to low 57Fe (down to 2.6 ‰) does not match any 589

known iron reservoir (Beard and Johnson, 1999; Johnson et al., 2003) and microbial activity is 590

likely a major factor (see section 10.2). 591

The hydrothermal fertilization model is largely accepted for Archean and Paleoproterozoic BIF, 592

and is based on the common REE fractionation patterns exhibiting positive EuPAAS-anomalies, 593

which are related to high-temperature hydrothermal solutions (>200 °C) in the REE source 594

(Dymek and Klein, 1988; Danielson et al., 1992; Bau and Möller, 1993; Bau and Dulski, 1996; 595

Bau and Dulski, 1999; Ohmoto et al., 2006; Bolhar and Van Kranendonk, 2007; Planavsky et al., 596

2010). The Neoproterozoic BIF in the “Santa Cruz deposit” shows REE patterns different to 597

Archean and Paleoproterozoic BIF, particularly the absence of a positive Eu anomaly (Figure 598

11Error! Reference source not found.c). This points to the absence of high-temperature 599

hydrothermal alteration (Bau and Dulski, 1999), but does not preclude low-temperature 600

hydrothermal fluids (<150 °C), which do not always show Eu enrichment, as shown in Figure 601

11c (Michard et al., 1993; Alexander et al., 2008). The influence of fertilization of the 602
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Neoproterozoic seawater with high-temperature fluids has previously been inferred for the 603

Jacadigo BIF (Graf Jr et al., 1994), where the lack of Eu anomaly was attributed to the fluid 604

interacting with rocks that display a negative Eu-anomaly, such as the granitoids in the basement. 605

Basta et al. (2011) concluded for the Wadi Karim BIF in Egypt, which also lack EuPAAS-606

anomalies, that low-temperature hydrothermal fluids interacting with mafic rocks fertilized 607

Neoproterozoic seawater. Although the Jacadigo basin lacks evidence of oceanic crust and 608

exhalative hydrothermal processes, the active graben tectonics (Dx-1) in the Corumbá Graben 609

may have introduced hydrothermal fluids from deep seated sources (Dardenne, 1998; Walde and 610

Hagemann, 2007). If fluid flow rates were intense enough, possibly accommodated by 611

glacioeustatic pressurization and depressurization (Kump and Seyfried, 2005), these processes 612

may effectively contribute to the metal fertilization. 613

Laterally widespread seafloor sediment alteration by pore fluids is an alternative process that 614

may have fertilized the seawater with metals that were deposited as Fe- and Mn-rich rocks in the 615

Banda Alta Fm. Distal source regions in deeper parts of the basin are envisaged.Pufahl and Hiatt 616

(2012) proposed that hypothetical pyrite-rich back shales in some anoxic deep water sections 617

may have been a potential reservoir for metals including Fe, Mn, Si, and also base metals, Pb, 618

and U. In reduced seawater that was undersaturated in S such hydrothermal reactions could have 619

taken place. Sulphur-undersaturated Neoproterozoic seawater with consequential low sulphate-620

reducing bacteria activity, has been discussed as a result of the lack of typically sulphate-rich 621

freshwater supply during glaciation (Hoffman, 2009; Swanson-Hysell et al., 2010). 622

In addition to the submarine alteration process(es), glacial erosion of long-lived and thick 623

regolith may have enhanced iron accumulation in the ocean (Swanson-Hysell et al., 2010).624

Sediments delivered by icebergs are a significant source of iron (as Fe-hydroxide nanoparticles) 625
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to the open oceans (Raiswell et al., 2006). However fertilization by ice-delivered metals is not 626

important here, for two reasons: (1) metal concentration are not higher in REE I type BIF, which 627

should be the case as these BIF are strongest influence by ice and freshwater, and (2) considering 628

illite, as a major Rb host, as being a main component in eroded regolith, the relatively low Rb 629

concentration in BIF of the “Santa Cruz deposit” (Figure 12d) does not support such regolith 630

provenance. However, Rb, as well as Al, Ti, Zr, that are enriched in regolith concentrations are 631

much higher at Morro do Urucum (Klein and Ladeira, 2004), suggesting a variable flux of 632

continental derived detritus across the Jacadigo basin. Also, Baldwin et al. (2012) discussed 633

icebergs as a source for metals in the Rapitan IF, which is consistent with higher Rb/Sr values.634

10. BIF facies in response to tectonics, climate, transgression, and metal 635

sources636

The above discussed multi-source signatures of the rocks can be correlated with the stratigraphic637

sequence of the Banda Alta Fm to determine a chemostratigraphy and the sedimentary setting of 638

the basin. This setting can be discussed in terms of the prevailing tectonics, climate, relative 639

redoxcline variation, and fluid sources. In Figure 13a the discussed chemical proxies to a semi-640

quantitative, albeit spatially limited, chemostratigraphic model are synthesized.641

10.1. A glaciomarine depositional environment642

The deposition of the BIF in the Jacadigo Group took place in a glaciomarine environment 643

(Urban et al., 1992). This postulation has been regionally supported by BIF that include 644

dropstones and lonestones and the abundant diamictites in the sequence. The negative δ13C 645

values of carbonates in BIF ranging from -3.4 to -7.0 ‰ (also recorded at Morro do Urucum:  646
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Klein and Ladeira, 2004), are consistent with signatures from global syn-glacial deposits 647

(Kaufman and Knoll, 1995). Negative 13CCARB excursions in stratigraphic carbonates are 648

recorded closely below, within, and closely above Marinoan and Ediacarian glaciogenic 649

sedimentary successions (Kaufman and Knoll, 1995; Swanson-Hysell et al., 2010). According to 650

Kaufman et al. (1991) several possible mechanisms may have contributed to the recorded 13C 651

depletion, of which (1) the breakdown of marine stratification (or upwelling) and mixing of 13C-652

depleted deep water into the surface ocean, and (2) the erosion of organic-rich rocks exposed 653

during low sea-level (i.e., syn-glaciation) stands are most likely deeper marine water as the 654

predominant source of light C agrees with the proposed Fe source area within the Jacadigo basin. 655

Organic-rich black shales (as metal sources) in the deep parts of the basin have been postulated 656

by Pufahl and Hiatt (2012). Microbial activity in the carbonate precipitation will be discussed in 657

the following section. It is possibly that several processes contributed to the 13C depleted isotope 658

signatures in the glaciogenic successions (Kaufman and Knoll, 1995). Without further, more 659

detailed investigation, the actual cause for the present 13C depleted signatures in the Banda Alta 660

Fm carbonate-rich BIF remains speculative, and the discrepancy in 13CCARB between the two 661

putatively coeval glaciogenic sequences, Rapitan IF and Banda Alta Fm BIF remarkable, but 662

unexplained.663

A glaciomarine precipitation model in response to a redoxcline is based on the present 664

investigation, and largely compatible with the Urban et al. (1992) model (Figure 13b): During 665

glaciation phases, glaciers and sea ice closed-up the basin preventing atmospheric O2 ventilation. 666

Under such conditions a redoxcline built up, and metals deriving from submarine rock alteration 667

remained largely in solution throughout the basin. A near-complete covering with ice during 668
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peak glaciations and a minimized hydrological exchange with the ocean requires the basin being 669

relatively small, like a gulf, and silled (i.e. isolated only in the lower part by graben), as 670

envisaged for the Rapitan IF (Baldwin et al., 2012). In times of glacial retraction, oxidizing 671

conditions in the gulf led to the precipitation of hydroxides rich in Fe3+ or Si4+ and/or calcium 672

carbonate to form BIF. Carbonate or chert precipitation in BIF was likely in response to 673

prevailing water depth. At the same time, melting of sea ice introduced previously locked-in drop 674

stones and thin clastic layers. 675

10.2. Hematite and dolomitic carbonate precipitation in response to microbial mediation?676

Based on the clear stratigraphic setting (lower and upper dolomite-rich BIF) and the low-13C 677

signature of dolomite, it is concluded that carbonates in the Banda Alta Fm BIF derived from 678

seawater precipitation, although most of the carbonate is present as recrystallized Fe-Mn-679

dolomite ± Fe-Mn-calcite. The Fe-Mn enrichment of the carbonates result from the metal-680

endowed fluid-rock system in which carbonate was precipitated or recrystallized. 681

The degree of CaCO3 and Ca(Mg,Fe,Mn)(CO3)2 saturation increases with warming, which is the 682

reason why Phanerozoic and modern shallow-water carbonates exist mainly within 35° of the 683

paleoequator (Kiessling, 2001; Kiessling et al., 2003, and references therein). Therefore, the 684

warmer interglacial periods are the likely setting for carbonate precipitation. Supersaturation of 685

dissolved CO2 or CO3
- is required to chemically deposit carbonate (Dupraz et al., 2009, and 686

references therein). There is evidence for higher CO2 partial pressure in the Neoproterozoic 687

atmosphere compared to recent times (Bao et al., 2008). However, it is questionable if this CO2688

concentration had an impact on the restricted carbonate precipitation in the BIF sequences. 689

Therefore, on top of the climatically controlled, elevated CO2 level, crustal alteration by low-690
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temperature hydrothermal fluids or pore waters likely fertilized seawater with CH4 or CO2. 691

Similar provenance for CO2 has been concluded for Archean-Early Proterozoic carbonate-facies 692

BIF in the Quadrilatero Ferrífero in Brazil, in which dolomite precipitated at shallow depth from 693

seawater that was fertilized with hydrothermal fluids enriched in CO2 and with a high Mg/Ca 694

ratio (Morgan et al., 2013). A primary precipitation of dolomite remains controversial. One 695

largely accepted model is that dolomite formed by secondary replacement of meta-stable calcium 696

carbonates (aragonite and high-Mg calcite) facilitated by the circulation of (typically Mg-rich) 697

seawater during diagenesis (McKenzie and Vasconcelos, 2009, and references therein).698

Another (or further) probable process facilitating carbonate precipitation (aragonite, calcite or 699

dolomite) was bacterial activity. Petrographic evidence for microbial activity is the abundance of 700

spheroids. Spheroids are commonly observed in very-low metamorphic grade BIF of various 701

ages (c.f., Krapež et al., 2003; Rasmussen et al., 2013), and biomineralized carbonate with 702

spheroid morphology has been found in diverse modern environments and in geological 703

dolomite samples (McKenzie and Vasconcelos, 2009, and references therein). Mg-calcite 704

microbialites from modern and Devonian reefs (Webb and Kamber, 2000; Nothdurft et al., 2004)705

have REE pattern characterized by a shallower LREE fractionation trend compared to ambient 706

seawater, therefore most similar to the carbonate-rich BIF (Figure 11a). 707

Calcium carbonate spheroids are discussed as biogenic features linked to cyanobacterial activity 708

involving photosynthetic uptake of dissolved CO2 or HCO3- facilitating CaCO3 precipitation 709

(c.f., Verrecchia et al., 1995). Such photosynthetic microbial activity and carbonate precipitation 710

is envisaged in interglacial periods by the largely absence of sea ice. Biomediated dolomite 711

precipitation has been shown to occur in various, hypersaline marine settings: Wright and Wacey 712

(2005) proposed dolomite formation through bacterial sulphate reduction. However, this process 713
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requiring a sulphate-rich, reduced water-sediment interface was most likely not the key process 714

in the oxidized Banda Alta Fm BIF showing negative CePAAS-anomalies and Fe3+ in hematite. 715

Also, Neoproterozoic seawater was largely sulphur-undersaturated (Hoffman, 2009; Swanson-716

Hysell et al., 2010), although during interglacial periods seawater may have been temporarily 717

refertilized with sulphate from freshwater runoffs. The more likely process is microbial dolomite 718

precipitation by aerobic respiration as shown by Sánchez-Román et al. (2009) in the younger 719

geological record and by experiments. 720

Fractionation to negative hematite δ57Fe values in the carbonate-rich facies BIF supports 721

microbial activity also being active during Fe-hydroxide precipitation. Beard and Johnson (1999)722

proposed that bacterial metabolism played a crucial role for Fe isotope fractionation during 723

precipitation of marine hydrogenic Fe-Mn nodules and Fe-rich layers in BIF. As the overall 724

source of Fe in all BIF should be the same across the Banda Alta Fm, the dominant process 725

leading to a variation in Fe isotopic composition between dolomite- or chert-rich BIF must be a 726

syn-sedimentary or early diagenetic. In light of the above discussed carbonate genesis, this 727

fractionating process is most likely microbial activity accumulating light 57Fe in iron oxides. 728

Consequently, microbial activity was reduced during precipitation of carbonate-free BIF, mud, 729

and chert; albeit it was still active, mediating Fe oxidation and causing the observed minor 57Fe 730

fractionation. 731

A variability of microbial activity during BIF precipitation in response to temperature changes 732

has been suggested by Posth et al. (2008), who determined experimentally a maximum of bio-733

mediated Fe-oxidation (and thus Fe-hydroxide precipitation) at 20-25 °C. Conclusively, primary 734

carbonate (dolomite or metastable Mg-Calcite or aragonite) and associated hematite in the Banda 735

Alta Fm BIF was mainly a product of marine biomineralization by aerobic respiration of 736
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microbial colonies in warm interglacial, shallow, saline water environment. In the colder and 737

anoxic chert-BIF facies, biomineralization of Fe-hydroxides was also active but reduced.738

10.3. A transgression-regression cycle in response to glacial isostatic adjustment739

The up-stratigraphy transition in the Banda Alta Fm from a lower carbonate-rich facies to an 740

intermediate jaspilitic BIF facies, via a transitional zone of ~50 metres, in which both facies are 741

alternating, corresponds with simultaneous increase in δ57Fe value, Zn/Co ratio, CePAAS-742

anomaly, and decrease of (Pr/Sm)PAAS ratio (Figure 13a, b). These geochemical indicators reflect 743

an increase of metal contribution from submarine rock alteration (base metals), or in turn the lack 744

of continental solutes (Ce), and the decrease of microbial activity in the basin below the 745

redoxcline (δ57Fe). Similarly, a covariance of Zn/Co and positive δ57Fe fractionation (and Y/Ho), 746

all coupled to an increase in water depth, have been observed in the Rapitan IF (Halverson et al., 747

2011). The δ57Fe trend in the Rapitan IF is interpreted as an isotopic gradient in the marine water 748

column, in which isotopically heavy Fe is enriched in the lower parts of a chemocline, as a result 749

of upward Fe-diffusion (Halverson et al., 2011). In the Banda Alta Fm BIF, however, heavy Fe is 750

absent and isotope fractionation to light Fe is rather controlled by microbial activity.751

The proposed up-sequence facies change is compatible with an overall transgressive scenario, 752

initiated with the facies transition from the Urucum Fm (more fluvial) to Córrego das Pedras Fm 753

(more shallow marine with abundant Mn-horizons). In the upper Banda Alta Fm, carbonate-rich 754

BIF indicate the reversed process, i.e., regression of the ocean water. Figure 13c correlates all 755

established climatic, chemical, petrographic parameters to a consistent time-resolved scheme. 756

This scenario is largely compatible with the three-stage basin evolution of the (gulf-like) 757

Jacadigo basin within a half graben proposed by Freitas et al. (2011): During the early rift climax 758
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system tract, the Urucum Fm, characterized by bedload-dominated river, lacustrine and fan-delta 759

environments, was deposited (Freitas et al., 2011). During the mid-rift system tract, the shallow 760

marine Córrego das Pedras Fm and shallow to deeper marine Banda Alta Fm BIF-diamictite 761

facies were the main elements of the basin infill. Based on geochemistry supporting strongest 762

metal fertilization and least oxidation, hematite chert and mud may represent the deepest marine 763

setting, and thus marked, together with the associated middle diamictite, the peak of 764

transgression. After deposition of the upper carbonate-BIF during the regressive stage, the late 765

(post-rift) systems tract caused the extensive carbonate deposits of the Corumbá Group. The 766

stratigraphic column in the Rapitan IF indicates a similar depositional environment related to a 767

relative rise in sea level, and is interpreted as the result of glacial isostatic adjustment during the 768

advance of ice sheets (Klein and Beukes, 1993). If the transgression of the Jacadigo basin was 769

dominated by glacial isostatic adjustment (Lambeck et al., 2014, and references therein), and not 770

(only) by global eustatic sea level rise or regional graben tectonics, then the chert-rich BIF facies 771

marking the transgressive peak is consistent with the peak of the ice age. 772

10.4. Diamictites as a gravitation flow of a reworked till773

A direct glaciogenic origin of the diamictites has previously been invoked (Dorr II, 1945; Urban 774

et al., 1992), based on similarities to till sediments. However, the proposed location in the deeper 775

basin of the middle diamictite causes problems related to its genesis. A till pushed forward into 776

the basin during glacial advances is expected only in a near-shore environment, and therefore an 777

unlikely option considering the established deeper basin setting of contemporaneous hematite 778

chert and mud. An alternative scenario compatible with a distal position is the settling of detritus 779

liberated from retracting sea ice. However, this rather slow and continuous scenario is 780
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incompatible with the high energy mass flow deduced by the reworked hematite mud breccias in 781

the diamictite footwall. A third possibility is that diamictites represent gravitational flows on the 782

continental margin, possibly triggered by tectonic processes. Such scenario has been proposed 783

for diamictites in the Jacadigo Group (Freitas et al., 2011), and also for similar Neoproterozoic 784

units, e.g., in Namibia (Eyles and Januszczak, 2007). Here we propose the combination of both 785

processes, glaciogenic and gravitational, to be responsible for the middle diamictite 786

sedimentation. Accordingly, diamictites represent a reworked till that was initially pushed by 787

advancing glaciers to a position at the basin slope during the cold peak glacial phase, before it788

collapsed under its own weight and the glacier’s load (or triggered by an earthquake, c.f., Freitas 789

et al., 2011) and moved as a gravitational flow into deeper parts of the basin (Figure 13). 790

Interstitial layers of hematite chert indicate that this process took place several times, with 791

periods of quiescence allowing for chemical chert deposition. Considering a rapid sedimentation 792

of the diamictite flows, the ferruginized and siliceous cement must have been resulted from the 793

abundance of fine reworked iron and chert particles mixed into the diamict slurry.794

10.5. The geotectonic setting of the Jacadigo basin - a Brasiliano back arc?795

The opening of the Corumbá graben system (c.f., Trompette et al., 1998) in which the Jacadigo 796

Group was deposited, may have been synchronous with deformation during the early Brasiliano 797

collision at ~590 Ma (Trompette et al., 1998 and references therein). According to Freitas et al. 798

(2011), a recorded high-rate subsidence was related to the initiation of the border fault of the 799

(half-) graben system, which implies that the Corumbá graben system was active at least during 800

deposition of the Córrego das Pedras Fm. This is supported by the regionally variable 801

stratigraphic thickness (Trompette et al., 1998) and number of Mn-horizons. In the “Santa Cruz 802
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deposit”, the Córrego das Pedras Fm is only a few decametres metres thick, compared with 803

Morro do Urucum, where the Córrego das Pedras Fm is ~90 metres thick (Dorr II, 1945). The 804

entire Jacadigo Group was deposited on the continental shelf of a rifted basin (Walde and 805

Hagemann, 2007), and a likely setting would be a back-arc that was opened during collision 806

related to the Brasiliano orogeny. The discussed low-temperature hydrothermal activity 807

interacting with the basement can be envisaged in a back-arc basin, in which the crust was 808

significantly thinned (Corumbá Graben) and even some volcanic activity may have taken place, 809

as speculated from volcanic ash silicates (?) and metal enrichment in the hematite chert. A 810

continental failed rift basin without production of oceanic crust is envisaged. Similar models 811

involving rifting and contemporaneous exhalation of ore bearing fluids into the basins have been 812

proposed for a series of Neoproterozoic BIF, mainly based on associated mafic rocks in the 813

sequences (i.e. Wadi Karim, Tatonduk, Chestnut Hill, Damara) and/or occur in rifted basins 814

(Chuos, Yerbal, Oraparinna, Holowilena, Braemar, Rapitan BIFs) (Cox et al., 2013, and 815

references therein). 816

In terms of lateral continuity at the regional scale, it is interesting that BIF in the Morro do 817

Urucum deposit (Klein and Ladeira, 2004) show, at most, weak negative CePAAS-anomalies 818

(Figure 11d, Figure 12aError! Reference source not found.). Taking into account that Al, Ti, 819

Zr, and Rb and most base metals concentrations in the Morro do Urucum deposit are much 820

higher (Klein and Ladeira, 2004), and carbonate content in unweathered BIF lower (pers. comm. 821

Rio Tinto staff) than in the “Santa Cruz deposit”, this all points to a strong variability of detrital 822

source (and water redox state by glaciogenic water input?) across the Jacadigo basin. The Morro 823

do Urucum deposit was probably located in the less oxygenated, centre of the basin richer in 824

alteration-derived metal, whereas the “Santa Cruz deposit” was located more towards the shore, 825
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influenced by oxidized, glaciogenic water in the lower and upper (carbonate-rich) stratigraphic 826

zones. 827

11. Conclusions828

The present study of the Urucum-type Santa Cruz hematite deposit, successfully contributes to 829

the ongoing discussion of the genesis of Neoproterozoic BIF. A revised depositional model is 830

presented, which supports the sedimentation of complex BIF facies, linked to a tectonically and 831

eustatically controlled transgression-regression cycle under changing climatic and fluid source 832

conditions. 833

Specific geochemical indicators (base metal concentration, Zn/Co ratio, LREE/HREE 834

fractionation, CePAAS-anomaly, Y/Ho ratio) in the stratigraphic transition of dolomite-rich to 835

chert-rich BIF to clastic diamictite facies chemical lithologies allows to determine the relative 836

influence of four sources: (1) redox-stratified seawater, (2) base metal-rich fertilizing fluids 837

(low-temperature vent or pore water) derived from altered mafic, felsic, or shale crust, (3) 838

oxidized continental solutes, and (4) terrigenous detritus in silt-layers in BIF and in diamictites. 839

Microbial activity facilitating carbonate precipitation in carbonate-rich BIF in shallow water 840

above a redoxcline is supported by spheroids in carbonate and strongly negative δ57Fe values in 841

hematite. Whether low-temperature hydrothermal (vent) fluids or (benthic) pore water flux 842

played a dominant role in metal fertilization, remains contentious. The local and regional 843

geological setting suggests that the Jacadigo Group was deposited during active (half-) graben 844

tectonics probably in a continental failed rift back-arc. If this setting is related during initial 845

collisions associated with the Brasiliano orogeny (~590 Ma), then this suggests that the Jacadigo 846
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Group is associated with the suite of Ediacarian glaciations. However, final conclusions on the 847

age of the Jacadigo Group cannot be made. 848

Figures and Tables849

Figure 1: (a) Geological map of the Brasiliano Paraguay fold belt and the Chiquitos-Tucavaca 850

aulacogen which cross-cuts the eastern part of the Amazon craton near the Brazil-Bolivia 851

boundary (according to Schobbenhaus et al., 1981; Litherland et al., 1989; de Alvarenga and 852

Trompette, 1994; Trompette et al., 1998). The contact between the two geological provinces is 853

generally characterized by thrusting of metasediments onto the folded cratonic sequences.854

Figure 2: (a) Geological map and (b) cross section of the Corumbá graben system (modified after 855

Walde, 1988; Trompette et al., 1998). Names of the main hills or morros (M): 1. M. do Jacadigo 856

(Mutum in Bolivia); 2. M. da Tromba dos Macacos; 3. M. do Urucum with the underground 857

manganese mine of the Urucum Mineracão; 4. M. Santa Cruz with the São Domingos 858

underground manganese mine (presently inactive), and open-pit iron mine in the northern part; 5. 859

M. Grande with the presently inactive Figueirinha manganese underground mine; 6. M. do 860

Rabichão with the presently inactive Santana manganese underground mine; 7. M. do Zanetti; 8. 861

M. Pelada; 9. M. d'Aguassu; 10. M. do Sajutá. 862

Figure 3: Generalized stratigraphical profile of the “Santa Cruz deposit”, based on logging and 863

mapping of the authors and company geologists. Stratigraphic nomenclature based on Dorr II 864

(1945).865

Figure 4: Cross-section across the “Santa Cruz deposit” (a) NW-SE cross-section; (b) SSW-NNE 866

cross-section. See Figure 5 for map with cross section location.867
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Figure 5: The “Santa Cruz deposit”; (a) simplified geological map with drill hole locations; (b) 868

four drill hole logs with grab sample locations, including outcrop samples from above drill hole 869

24-36.870

Figure 6: Petrography of dolomite-chert-hematite BIF. (a) sample C-06 with intra-band nodular 871

texture; (b) half core sample showing inter-band pseudonodular dolomite-chert texture; (c) 872

photomicrograph of folded dolomite and chert microbands and hematite-altered spheroids; (d) 873

photomicrograph of a dolomite mesoband showing dolomite-cryptocrystalline hematite nodules 874

in recrystallized dolomite matrix; rims of chert-dolomite-calcite at the contacts between nodules 875

and matrix; cryptocrystalline hematite-rich nodule apex; (e) SEM-backscattered micrograph of a 876

dolomite-chert nodule with cryptocrystalline hematite dust bordered by microcrystalline 877

hematite; (f) photomicrograph of sample C-04 showing two distinct textures in a hematite 878

mesoband: laminae rich in cellular and lepidoblastic microplaty hematite. H = hematite, crxH = 879

cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = crossed nicols.880

Figure 7: Petrography of chert-hematite BIF. (a) banded texture in sample C-14; (b) half core 881

view showing typical dissolution-podding in chert-hematite BIF; (c) photomicrograph of 882

cryptocrystalline hematite-impregnated chert matrix; shown are chert-clast and quartz-veins, 883

both devoid of cryptocrystalline hematite; (d) photomicrograph of sample C-14 showing a 884

cellular hematite mesobands, partly thinned by dissolution-podding; e) photomicrograph of 885

sample C-01 showing fused microplaty hematite texture and potentially clastic remnants; (f) 886

photomicrograph of a gangue layer rich in spheroid and blue stained dolomite. H = hematite, 887

crxH = cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = crossed 888

nicols.889
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Figure 8: Petrography of hematite chert and hematite mud; (a) Sample H-03 with red, jaspilitic 890

chert layers and thin hematite laminae; (b) photomicrograph of H-03 with chert layer and 891

hematite lamina; note the hematite-clast in chert; (c) photomicrograph of H-03 showing 892

secondary hematite after fibrous silicates may indicate volcanic ash; (d) photomicrograph of H-893

03 showing a granular hematite lamina, probably of thixotropic nature; (e) Hematite mud sample 894

H-01 with compact, laminated hematite texture and local chart lenses (f) photomicrograph of H-895

01 showing irregular fused hematite grains, interpreted as reworked sedimentary texture; (g) 896

photomicrograph of H-01 showing cellular hematite texture; (h) photomicrograph of C-18 897

showing granoblastic hematite textures (after chemical sedimentation?) with variable grain sizes. 898

H = hematite, crxH = cryptocrystalline hematite, TL = transmitted light, RL = reflected light, x = 899

crossed nicols.900

Figure 9: Major element geochemistry of grab samples shown as binary diagrams of major 901

oxides and LOI versus Fe grade. Fields are based on the Vetria assay database (unpublished data, 902

Vetria Mineração). (a) SiO2 versus Fe shows the unimodal distribution of chert-hematite BIF, 903

inclusive leached BIF, and a clustered distribution of dolomite-chert BIF, which are still 904

relatively rich in SiO2; (b, c) CaO and MgO are amongst the major constituents only in dolomite-905

chert-hematite BIF; (d) Al2O3 shows the minor contribution of terrigenous material in all 906

samples. The high-Al range in the Vetria database results from inclusion of minor siliciclastic 907

bands into assay samples; (e) P2O5 is significantly higher in dolomite-rich BIF resulting in the 908

abundance of apatite grains.909

Figure 10: Geochemical tests for the influence of detrital (Al, Ti) and carbonate (Ca) components 910

on trace element patterns, especially the Ce-anomaly. (a) Al2O3 versus TiO2 indicates the general 911

low concentration of terrigenous material in the samples, which is similar to worldwide BIF and 912
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Rapitan BIF (Baldwin et al., 2012); see the high concentrations in BIF from the Urucum deposit  913

(Klein and Ladeira, 2004). The worldwide (ww) BIF field is based on a selection of 914

representative BIF across the globe: Temagami BIF, Canada (Bau and Alexander, 2009); 915

Kuruman Iron Formation, South Africa (Gutzmer et al., 2008); Sandur schist belt BIF (Gutzmer 916

et al., 2008), Caué Fm, Quadrilatero Ferrifero, Brazil (Spier et al., 2007); Carajas Serra Norte 917

deposits (Figueiredo e Silva et al., 2008); Koolyanobbing and Windarling deposits, Yilgarn 918

Craton (Angerer et al., 2012; Angerer et al., 2013); Pic de Fon deposit, Guinea (Cope et al., 919

2008), Brockman and Marra Mamba Iron Formations, Western Australia, including Tom Price, 920

Mt. Whaleback, Eastern Ridge, and Mesa Gap deposits (unpublished data from the first author). 921

(b, c) Al2O3 and TiO2 versus (Ce/Ca*)PAAS show no significant influence (no covariability) of 922

detrital components on Ce-anomaly; (d) Y/Ho versus Zr indicates a slight covariance across the 923

sample set, but not with the distinct REE groups. See high Zr in hematite chert sample H-03; (e) 924

CaO versus (Ce/Ce*)PAAS shows that the specific CePAAS-anomalies of REE I- and II-type BIF 925

are unrelated to carbonate content (f) Binary diagram of (Pr/Pr*)PAAS versus (Ce/Ce*)PAAS926

indicates the ubiquitous presence of a true negative Ce-anomaly in all samples, and the absence 927

of a true La anomaly (cf. Bau and Dulski, 1996; Planavsky et al., 2010).928

Figure 11: REE multi-element diagrams. (a) REE I type dolomite-chert-hematite and chert-929

hematite BIF in comparison with modern seawater (Alibo and Nozaki, 1999), modern calcitic 930

microbialites (Webb and Kamber, 2000) and Devonian microbialites (Nothdurft et al., 2004); (b) 931

REE II type chert-(dolomite)-hematite and chemical hematite mud; (c) REE III type hematite 932

chert and reworked hematite mud in comparison with Archean BIF (IF-G: Bolhar et al., 2004), 933

high-temperature vent fluids (Bau and Dulski, 1999) and low-temperature vents fluids (Michard 934

et al., 1993). (d) calculated mean values of carbonate-bearing and carbonate-poor BIF from 935
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published datasets: Morro do Urucum (Klein and Ladeira, 2004) and Rapitan IF (Halverson et 936

al., 2011; Baldwin et al., 2012). To ease comparison, all normalized fluid data are multiplied to 937

fit the present scale.938

939
Figure 12: Binary diagrams for selected major and trace elements (see Figure 10 captionError! 940

Reference source not found. for references to fields, additional data for the Rapitan IF (BIF, 941

hematitic mud and hematitic silt) are from Halverson et al. (2011); (a) (Pr/Yb)PAAS versus 942

(Ce/Ce*)PAAS discriminates the REE pattern I, II, III, but also shows the transition between REE 943

I and REE II. A negative CePAAS anomaly is well developed only in REE I type BIF from the 944

“Santa Cruz deposit”, (the Urucum dataset of Klein and Ladeira (2004) lacks Pr, hence 945

(La/Yb)PAAS is shown and Ce-anomaly calculated with Nd); (b) discrimination of REE I type BIF 946

from REE II and III types based on low Cu and Pb abundances is a result of the dilution with 947

metal-depleted continental solutes; (c) a correlation of MnO and Co results from hydrogenetic 948

co-precipitation, whereas disturbance of this trend derives from variable hydrothermal Co 949

contribution; (d) a very low Rb/Sr ratio (based on low Rb) in samples of the “Santa Cruz 950

deposit”, compared with other BIF, suggests low amount of weathering-derived detritus or 951

solutes from altered continental crust; (e) The combined plot of Zn/Co and Y/Ho discriminates 952

various metal and REE sources. Elevated Zn/Co is a proxy for Zn input by crustal alteration, and 953

the range of Y/Ho shows the mixing of various sources into seawater (continental solutes, crustal 954

alteration, and anoxic deep seawater); (f) Cr covaries with Fe, both being distributed in hematite 955

and passively enriched by dissolution-podding.956

957
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Figure 13: (a) Chemostratigraphic variations in the BIF facies in the Jacadigo basin as recorded 958

in the “Santa Cruz deposit”. See text for discussion. (b) Chemical cycling in the Jacadigo basin: 959

Metals for BIF precipitation derived from upwelling low-temperature hydrothermal solutes or 960

pore water. Formations of the two main BIF facies, carbonate- and chert-rich, were related to the 961

relative position of the seafloor to the redoxcline (transition from oxic to anoxic water), which 962

fluctuated due to transgression juxtaposed with glaciogenic processes. Carbonate and hematite 963

precipitation in the shallow zone above the redoxcline was facilitated by basin-wide CO2964

abundance and bacteria mediation. Chert-rich BIF with stronger hydrothermal signature lacks the 965

contribution of diluting and oxygenated shallow water from melting glaciers, and bacteria 966

activity was still active but reduced. Hematite chert and reworked mud, preceding and following 967

the middle diamictite flow, may represent the deepest zone showing strongest input of metals 968

derived from submarine alteration. (c) simplified variations of basin parameters: The time-969

dependent variation of the depth of the redoxcline and submarine crustal alteration versus 970

continental solute influxes result from the juxtaposition of the overall marine transgression and 971

shorter-term glacial advance-regression cycles.972

973

Table 1: Sample set (BIF, hematite chert, hematite mud) from the “Santa Cruz deposit”.974

Table 2: Whole-rock data for representative BIF and chert samples from the “Santa Cruz 975

deposit”. The Ce-anomaly (Ce/Ce*)PAAS is calculated as Ce(PAAS)/(0.5*LaPAAS+0.5*PrPAAS), Eu-976

anomaly (Eu/Eu*)PAAS is calculated as Eu(PAAS)/(0.5*SmPAAS+0.5*GdPAAS).977
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Table 3: Fe isotope data of representative BIF samples. *relative to the IRMM14 standard. § 978

56Fe is measured directly on the MC, but can also calculated from 57Fe (= 2/3*56Fe). For 979

comparison, data from Rapitan IF (Halverson et al., 2011) are shown (in stratigraphic sequence).980

Table 4: Carbonate 13C isotope data from the “Santa Cruz deposit”. Published data from the 981

Urucum (Klein and Ladeira, 2004) and Rapitan (Klein and Beukes, 1993) deposits are also 982

shown.983
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sample_ID locality BIF facies lithology
Vetria core

STCR-DD-

core

depth
BIF texture REE pattern

geoche

mistry

Fe isotope 

(hematite)

C & O 

isotope 

(mineral)

compari

ble 

samples

References

H-03 Santa Cruz intermed. siliceous hematite chert outcrop - - III yes - - this study
H-01 Santa Cruz intermed. siliceous reworked hematite mud outcrop - - III yes - - a this study
H-15 Santa Cruz intermed. siliceous reworked hematite mud outcrop - - - - yes - a this study
H-14 Santa Cruz intermed. siliceous reworked hematite mud outcrop - - - - yes - a this study
C-14 Santa Cruz intermed. siliceous chert-hematite BIF 12-24 69.9 banded II yes yes - this study
C-15 Santa Cruz intermed. siliceous chert-hematite BIF 12-24 75.2 podded I yes - - this study
C-16 Santa Cruz transitional chert-hematite BIF 12-24 96.24 podded I yes - - this study
C-17 Santa Cruz transitional chert-hematite BIF 12-24 111.35 podded I yes - - this study
C-01 Santa Cruz transitional chert-hematite BIF 24-24 142.4 banded II yes - - this study
C-18 Santa Cruz transitional hematite mud 12-24 120 - II yes - - this study
C-11 Santa Cruz lower carbonateous chert-dolomite-hematite BIF 24-24 215.8 weakly podded - - yes - b this study
C-12 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 24-36 167.65 banded - - - yes (dol) b this study
C-06 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 24-24 268.21 banded - - yes yes (dol) c this study
C-07 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 24-24 268.8 weakly podded I yes - - c this study
C-05 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 40-32 277.35 weakly podded I yes - - this study
C-04 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 40-32 278.03 banded I yes - . d this study
C-03 Santa Cruz lower carbonateous dolomite-chert-hematite BIF 40-32 290.35 banded - - - yes (dol) d this study
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UWA ID C-04 C-05 C-07 C-14 C-01 C-17 C-16 C-15 C-18 H-01 H-03

lithology
detection 

limits

banded 

dolomite-

chert-

hematite 

BIF

hematite 

mud

reworked 

hematite 

mud

hematite 

chert

Fe 35.12 40.11 51.69 45.70 43.83 54.62 51.86 55.97 66.26 58.71 16.04

Fe2O3_t 0.01 50.21 57.35 73.90 65.34 62.67 78.09 74.14 80.02 94.74 83.94 22.94

SiO2 0.01 13.72 9.81 10.78 34.48 31.98 21.75 26.25 19.86 3.77 14.08 77.63

TiO2 0.00 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.04 0.03 0.01

Al2O3 0.01 0.08 0.25 0.07 0.14 0.07 0.09 0.09 0.16 0.19 0.14 0.06

MnO 0.00 0.18 0.55 0.08 0.11 0.21 0.07 0.05 0.11 0.09 0.01 0.01

MgO 0.01 5.05 4.78 1.53 0.03 0.63 0.03 0.01 0.03 0.09 0.03 b.d.l.

CaO 0.01 11.70 11.39 4.90 0.10 2.09 0.16 0.09 0.09 0.63 0.07 0.03

K2O 0.01 b.d.l. 0.01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.01 b.d.l. b.d.l. b.d.l.

Na2O 0.01 0.07 0.10 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.01 0.01

P2O5 0.01 0.36 0.37 0.38 0.14 0.20 0.15 0.10 0.10 0.39 0.11 0.02

LOI 0.01 16.99 16.20 6.54 0.28 2.76 0.37 0.20 0.35 0.51 0.32 0.14

Total 0.01 98.37 100.80 98.22 100.70 100.60 100.70 101.00 100.80 100.50 98.75 100.90

FeO* 0.10 4.00 3.50 2.00 0.50 1.60 0.90 0.70 0.30 1.00 0.40 0.60

As 0.1 4.30 5.30 4.40 5.30 7.30 4.70 5.20 4.40 10.50 5.20 3.50

Ba 1 217.00 38.00 40.00 82.00 14.00 55.00 56.00 92.00 31.00 104.00 67.00

Be 0.1 1.10 1.10 1.30 1.70 1.20 1.80 1.70 1.90 2.10 1.20 1.10

Co 0.1 2.70 4.80 1.30 2.80 2.40 1.10 1.00 1.60 4.90 0.40 0.50

Cr 0.5 8.80 10.80 14.50 9.80 10.30 13.90 12.10 14.30 15.80 15.70 23.40

Cu 0.2 3.90 3.30 2.70 8.20 8.30 3.70 5.80 4.50 8.10 8.20 38.80

Ga 0.1 b.d.l. 0.20 b.d.l. 0.30 0.30 0.30 0.20 0.20 0.30 b.d.l. 0.20

Ge 0.5 0.80 1.30 1.20 1.50 2.30 2.30 1.70 1.70 2.00 1.60 6.50

Mo 0.1 0.40 0.60 0.80 0.70 1.60 0.80 0.50 0.60 0.70 0.50 0.70

Nb 0.2 1.00 1.20 0.40 0.60 3.10 b.d.l. b.d.l. 0.30 0.30 2.10 0.20

Ni 0.5 3.50 4.50 2.50 6.20 6.10 3.10 3.20 3.00 8.20 2.20 3.00

Pb 0.5 0.80 1.20 0.70 2.00 4.40 1.20 1.60 1.70 3.10 3.80 2.30

Rb 0.2 0.30 0.80 0.30 0.50 0.60 0.50 0.40 0.40 0.60 0.40 b.d.l.

Sr 0.2 237.00 336.00 58.40 31.90 41.00 25.30 35.60 29.00 29.40 54.60 21.00

Th 0.05 0.44 0.70 0.29 0.49 0.48 0.27 0.30 0.23 0.30 0.89 0.39

U 0.01 0.05 0.08 0.07 0.18 0.23 0.10 0.12 0.14 0.11 0.11 0.16

V 1.0 32.0 33.0 35.0 42.0 34.0 30.0 42.0 39.0 53.0 36.0 14.0

Zn 0.2 7.00 6.20 3.00 4.70 9.60 6.60 3.30 3.20 9.00 7.20 9.40

Zr 1.0 3.00 5.00 b.d.l. 8.00 7.00 3.00 5.00 12.00 4.00 3.00 34.00

Y 0.50 17.90 18.20 17.60 87.80 11.60 12.30 23.20 20.00 15.60 9.60 3.80

La 0.05 11.90 7.57 10.40 5.55 1.73 3.46 6.13 6.05 1.79 11.60 4.81

Ce 0.10 7.39 9.41 6.42 10.20 3.52 3.85 7.48 5.70 3.91 21.90 9.60

Pr 0.01 2.56 1.84 2.14 1.61 0.56 0.91 1.44 1.25 0.59 3.21 1.35

Nd 0.05 10.50 7.97 9.17 7.86 2.40 4.15 6.67 5.48 2.76 13.60 5.29

Sm 0.01 2.02 1.62 1.68 1.86 0.62 0.91 1.36 1.06 0.73 2.57 1.11

Eu 0.005 0.422 0.351 0.380 0.517 0.124 0.211 0.332 0.241 0.189 0.560 0.223

Gd 0.01 2.34 1.94 2.03 3.56 0.90 1.19 1.97 1.30 1.07 2.23 0.85

Tb 0.01 0.34 0.32 0.32 0.91 0.17 0.21 0.37 0.25 0.22 0.33 0.14

Dy 0.01 2.18 2.15 2.09 8.25 1.34 1.39 2.67 1.79 1.67 1.94 0.81

Ho 0.01 0.48 0.52 0.48 2.21 0.34 0.31 0.63 0.46 0.43 0.38 0.15

Er 0.01 1.55 1.67 1.55 7.73 1.17 0.99 2.13 1.60 1.49 1.10 0.41

Tm 0.005 0.242 0.265 0.248 1.270 0.203 0.160 0.356 0.275 0.266 0.158 0.058

Yb 0.01 1.66 1.72 1.71 9.06 1.44 1.12 2.59 2.02 1.92 1.03 0.37

Lu 0.002 0.269 0.265 0.269 1.460 0.222 0.192 0.454 0.361 0.315 0.170 0.059

REE type I I I II II I I I II III III

SUM_REE 43.85 37.61 38.89 62.05 14.74 19.05 34.58 27.84 17.35 60.78 25.23

SUM_LREE 34.37 28.41 29.81 27.08 8.83 13.28 23.08 19.54 9.78 52.88 22.16

SUM_HREE 9.06 8.85 8.70 34.45 5.79 5.56 11.17 8.06 7.38 7.34 2.85

La/Smpaas 0.86 0.68 0.90 0.43 0.41 0.55 0.65 0.83 0.36 0.66 0.63

Pr/Smpaas 0.80 0.71 0.80 0.54 0.57 0.63 0.67 0.74 0.51 0.79 0.76

Gd/Ybpaas 0.85 0.68 0.72 0.24 0.38 0.64 0.46 0.39 0.34 1.31 1.39

Tb/Ybpaas 0.75 0.68 0.68 0.37 0.43 0.68 0.52 0.45 0.42 1.17 1.38

La/Ybpaas 0.53 0.32 0.45 0.05 0.09 0.23 0.17 0.22 0.07 0.83 0.96

Pr/Ybpaas 0.49 0.34 0.40 0.06 0.12 0.26 0.18 0.20 0.10 1.00 1.17

Ce/Ce*paas 0.31 0.58 0.31 0.78 0.81 0.50 0.58 0.48 0.86 0.82 0.87

Eu/Eu*paas 0.90 0.92 0.95 0.87 0.75 0.93 0.92 0.95 0.97 1.10 1.08

Y/Ho 37.29 35.00 36.67 39.73 34.12 39.68 36.83 43.48 36.28 25.26 25.33

CaO/MgO 2.3 2.4 3.2 3.3 3.3 5.3 9.0 3.0 7.0 2.3 n.d.

Ti/Zr 18 26.1 48 39.5 11.2 14.5 43.6 52.5 25.3 21.6 4.5

TiO2/Al2O3 0.260 0.110 0.340 0.220 0.260 0.180 0.270 0.180 0.200 0.190 0.120

Cu+Pb+Zn 12 11 6 15 22 12 11 9 20 19 51

Rb/Sr 0.0013 0.0024 0.0051 0.0157 0.0146 0.0198 0.0112 0.0138 0.0204 0.0073 n.d.

Zn/Co 2.59 1.29 2.31 1.68 4 6 3.3 2 1.84 18 18.8

podded 

chert-hematite BIF

podded

dolomite-chert-

hematite BIF

banded 

chert-hematite BIF
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Locality Sample stratigraphic zone lithology n d57Fe* 1se d56Fe*,§ 1se

Santa Cruz H-15 intermediate siliceous reworked hematite mud 3 -0.04 0.07 0.01 0.08

Santa Cruz H-14 intermediate siliceous reworked hematite mud 3 -0.25 0.01 -0.18 0.01

Santa Cruz C-14 intermediate siliceous chert-hematite BIF 3 -0.71 0.07 -0.49 0.06

Santa Cruz C-11 lower carbonaceous chert-dolomite-hematite BIF 3 -1.22 0.04 -0.83 0.02

Santa Cruz C-06 lower carbonaceous  dolomite-chert-hematite BIF 3 -2.62 0.03 -1.83 0.02

Rapitan G22.19.8 15.1m hematitic silt n.d. 0.944 0.023 0.635 0.013

Rapitan G22.21.1 13.8m hematitic jaspilite n.d. 0.858 0.015 0.575 0.011

Rapitan G22.21.3 13.6m hematitic jaspilite (±calcite) n.d. 1.196 0.045 0.821 0.039

Rapitan G22.24.8 10.1m hematitic jaspilite (±calcite) n.d. 0.652 0.006 0.441 0.011

Rapitan G22.26.1 8.8 m hematitic mud n.d. -0.268 0.045 -0.182 0.011

Rapitan G22.32.9 2 m hematitic mud n.d. -0.426 0.013 -0.283 0.09

Rapitan G22.34.7 0.2 m hematitic silt n.d. -0.65 0.019 -0.431 0.016
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stratigraphic 

zone
lithology mineral sample ID

mineral 

sample ID
d

13
C VPDB data source

C-03 3C carb1 -3.8 present study

C-03 3C carb1-re -3.8 present study (repeat)

C-03 3C carb2 -3.7 present study

C-03 3C carb2-re -3.7 present study (repeat)
C-06 6C carb1 -4.3 present study

C-06 6C carb1-re -4.1 present study (repeat)

C-06 6C carb2 -4.0 present study

C-06 6C carb2-re -4.0 present study (repeat)
C-12 12C carb1 -3.4 present study

C-12 12C carb1-re -3.5 present study (repeat)

C-12 12C carb2 -3.4 present study

C-12 12C carb2-re -3.5 present study (repeat)

U-2-6 -7.02
U-2-1 -6.09

U-2-3 -5.83

U-2-7 -4.88

U-2-8 -4.49
U-2-9 -4.42

nodular IF Y-7_142 -3.37

banded IF Y-7_152.8 -2.74

IF arenite Y-5_158.7 -0.67

Rapitan

Santa Cruz

Urucum Klein and Ladeira 2004

Klein and Beukes 1993

lower 

carbonaceous

intermediate 

carbonaceous

intermediate 

carbonaceous

dolomite-chert-

hematite BIF

dolomite-

cryptocrystalline 

hematite band

chert-dolomite-

hematite BIF

dolomite-

cryptocrystalline 

hematite band

calcite
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hematite chert (H-03)
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