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Abstract. A large range of monitoring applications can benefit from
binary sensor networks. Binary sensors can detect the presence or ab-
sence of a particular target in their sensing regions. They can be used
to partition a monitored area and provide localization functionality. If
many of these sensors are deployed to monitor an area, the area is parti-
tioned into sub-regions: each sub-regions is characterized by the sensors
detecting targets within it. We aim to maximize the number of unique,
distinguishable sub-regions. Our goal is an optimal placement of both
omni-directional and directional static binary sensors. We compute an
upper bound on the number of unique sub-regions, which grows quadrat-
ically with respect to the number of sensors. In particular, we propose
arrangements of sensors within a monitored area whose number of unique
sub-regions is asymptotically equivalent to the upper bound.

1 Introduction

Geo-sensor networks generate large interest from researchers in spatial informa-
tion science. They are used to detect, monitor and track continuous environmen-
tal phenomena such as toxic plumes or oil spills in seas. Although sensor nodes
are usually considered to be inexpensive, large deployments still incur signifi-
cant costs. In addition, even if the number of sensors is small, the cost of the
actual deployment of sensors might still be significant. Thus, it is an important
strategy to minimize the costs by identifying optimal arrangements of sensor
nodes to cover a monitored area. Our work will analyze an important subclass
of geo-sensor networks, those that use binary sensors to detect the presence of a
phenomenon. Examples of binary sensors include motion sensors that can detect
the presence of movement, RFID (Radio Frequency IDentification) readers that
can detect the presence of RFID tags [13] and binary chemical sensors that can
detect the presence of chemical compounds in their fields.

Binary sensors can be divided into omni-directional and directional binary
sensors. Omni-directional binary sensors can detect the presence of a phenomenon
from any direction within a specific distance; whereas, directional binary sen-
sors have a limited range and can only determine the presence of a phenomenon
within a sector. Generally, binary sensors are beneficial for movement tracking.
RFID antennas, for example, can be used in design of gesture based user in-
terfaces, in which movement of RFID-tagged user hands are detected to enable
natural user interaction with computing devices. Moreover, directional RFID



antennas can be installed in a museum to track people carrying RFID-enabled
devices to enable personalized recommendations of further exhibits. We propose
optimal arrangements for both omni-directional and directional binary sensors.
The goal of optimal arrangements of binary sensors is to provide the desired
accuracy for a large class of applications with reduced cost.

A number of approaches have suggested the use of binary sensor networks to
track phenomena or targets in an area [11][1][12][3]. In general, each binary sensor
can only return information regarding a target’s presence or absence within its
sensing region. However, one positive detection of a target greatly confines its
possible locations, since a positive detection indicates that the target is in the
space defined by the sensing region of that sensor.

In binary sensor networks, the results of all sensor detections can be combined
to provide a more accurate estimation of the whereabouts of a target at any given
time. In such a case, the monitored area is divided into multiple sub-regions so
that each sub-region is in the sensing regions of a particular set of sensors.
We refer to the technique of using binary sensors to partition a space as space
partitioning.

Figure 1(a) shows partitioning of a monitored area into eight sub-regions r1
to r8, using three omni-directional sensors S1, S2 and S3. These sub-regions are
distinguishable in the sense that each sub-region is covered by sensing regions
of a different set of sensors (Figure 1(b)).
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Fig. 1. Sample space partitioning using three omni-directional sensors

In most tracking applications, the sensors are scattered randomly with uni-
form distribution over a two-dimensional planar monitored area. Shrivastava et
al. [11] show that for a fixed sensing radius, the accuracy improves linearly with
an increasing sensor density. Furthemore, for a fixed number of sensors, the accu-
racy improves linearly with an increase in the sensing radius because an increase
in the sensing radius leads to a finer geometric partition of the field.

Space partitioning using binary sensors can also be used to localize stationary
targets in many indoor localization applications. For example, an RFID system
could be installed in a library to detect misplacement of books [4]. Medication
supply rooms in a hospital can also be equipped with binary sensors to provide



efficiency and security by reducing staff time and frustration in finding what
they need faster, and eliminating drug lost or misplacement.

An important goal is to minimize the number of sensors in the monitored area
to reduce cost while providing the required accuracy. Therefore, it is essential
to find an optimal arrangement of sensors. However, space partitioning does not
guarantee that every two sub-regions can be uniquely identified. In Figure 2,
for example, the two sub-regions of r1 and r2 are in sensing region of the same
sensor, i.e., S3. Therefore, when a target is detected by sensor S3 only, it could
be in either of the two sub-regions r1 or r2. However, we cannot determine in
which of the two sub-regions the target is located. We call the set of created
sub-regions that are all distinguishable from each other, unique sub-regions.
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Fig. 2. Sample space partitioning using three omni-directional sensors

Every localization application needs a particular level of accuracy, which
determines the resolution by which the monitored area must be partitioned.
More precisely, the localization accuracy is limited by the maximum diameter of
the created sub-regions. Generally, the number of created sub-regions can be used
as an approximate measure to determine the localization accuracy. Since not all
sub-regions are distinguihable in target localization, our goal is to maximize the
number of unique sub-regions in contrast to the total number of sub-regions.

Our work will (i) provide an upper bound on the number of unique sub-
regions a monitored area can be divided into, given a specific number of static
binary omni-directional or directional sensors (Sections 5.1 and 6.2). (ii) pro-
pose an arrangement of sensors which creates the number of unique sub-regions
that is asymptotically equivalent to the calculated upper bound for both omni-
directional and directional sensors (Sections 5.2 and 6.3). In our proofs, we as-
sume that the object position can be represented as a point and any value can
be assigned to the range and angles of binary sensors. This outcome gives re-
searchers an insight into how many sub-regions can be created using a specific
number of sensors as well as the number of sensors required to achieve a certain
accuracy.

2 Related Work

Space partitioning using binary sensors have been successfully deployed in a
range of indoor applications. Although there are different variants of binary



sensors, they all sense a target’s presence using a physical phenomenon within
limited range. Murakita et al. [9] have developed a human tracking system, in
which floor blocks are fitted with binary pressure sensors. In the Active Badge
Location System [14], a network of infrared sensors are placed around a building
and detect signals from badges worn by people in order to find the region users
are currently located.

Space partitioning has also been successfully applied in many indoor posi-
tioning systems using omni-directional RFID readers as binary sensors. In the
study by [5], a table surface is equipped with an array of omni-directional RFID
antennas and is hence divided into many distinguishable sub-regions. When an
object tagged with multiple RFID tags is placed on the table surface, the loca-
tion of each individual tag is determined by the sub-region containing the tag.
Similarly, Bouet and Pujolle [2] as well as Reza and Geok [10] deploy a grid
of RFID reader antennas on the floor and ceiling of a building to track RFID
tagged objects within that building.

All approaches proposed so far equip the entire monitored area with many
low-range omni-directional antennas simply such that the sensing regions of im-
mediate neighbor sensors overlap. However, a comprehensive study that investi-
gates the maximum number of unique sub-regions or finds optimal arrangements
of sensors in terms of localization accuracy is still outstanding. Moreover, there
is no study of space partitioning using directional sensors, which provide more
focused sensor regions than omni-directional sensors.

Mehmood et al. [8] employ another variant of space partitioning technique
by deploying passive RFID tags in large numbers covering a deployment space.
Each RFID tag has an area in which it can be read, which is approximated as a
circular disk. In such a deployment, a partition is defined as a non-empty sub-
region where a given set of tags can be read by an RFID reader. The location
of an agent navigating through the deployment space, is approximated by the
closest partition. This approach minimizes the number of used tags for an optimal
coverage of space by employing the classical circle covering problem [6]. Kershner
[6] has shown that the covering for discs of radius r is optimal when they are
placed at the vertices of an equilateral triangular graph overlaying the monitored
space. This problem is different to our work because we aim to maximize the
number of sub-regions, while in the classical circle covering problem the aim is
to cover the whole space with the minimum number of circles.

3 Preliminaries

In this paper, we investigate arrangements of both omni-directional and direc-
tional binary sensors. Each omni-directional sensor has a circular sensing region,
approximated by a circle in two-dimensional space. Directional sensors, on the
other hand, recognize not only the target’s maximal range but also a sector
within the circular range around it. Examples of such sensors include cameras,
infrared sensors and RFID directional antennas. Generally, the sensing region of
a directional sensor can be approximated with a trapezoid in two-dimensional



space (Figure 3(a)). In our proofs, we assume that the object position can be
represented as a point and any value can be assigned to the range and angles of
binary sensors.
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Fig. 3. (a) Approximated sensing region of a directional sensor (b) Sensing region of a
directional sensor Si within a circular monitored area

We assume that all directional sensors are to be installed on the border of
a circular monitored area, as shown in Figure 3(b). It is also assumed that the
sensing range of each sensor is longer than the monitored area’s diameter and
hence, the sensing region of the sensor within the circle is represented by two
circle chords (dashed lines in Figure 3(b)).

The following notations are used in lemmas and proofs in the remainder of
this paper:

n the number of sensors.
Si the ith sensor.
Ci the corresponding circular region of an omni-directional sensor Si.
eil and eir at Si’s position facing the circle’s center, the left and the right edges

of directional sensor Si (shown as two chords within the circle as shown in
Figure 3(b)).

eix a generic term, to refer to either of the two edges of directional sensor Si.
The bounding-arcs of Si two arcs of the circle within the sensing region of

directional sensor Si (Figure 3(b)).
The end points of Si the intersection points of the sensing region of direc-

tional sensor Si with the monitored area (Figure 3(b)).

4 Unique Sub-regions

We denote the set of all created sub-regions by SR. We then define C as a
function that assigns every sub-region an n-bit code, i.e., C � SR � �0,1�n, the
kth bit of which is set if a target in sub-region ri is detectable by the kth sensor.
Figure 4(b) shows the codes assigned to each sub-region in the sample sensor
arrangement shown in Figure 4(a). Sub-region r4, for example, has the code 001
since a target in this sub-region is detectable by S3 but is not detectable by
either of S1 or S2.
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Fig. 4. Sub-region codes in a sample arrangement of three sensors

Two sub-regions ri and rj are equivalent if they have the same codes, i.e.,
ri � rj 
� C�ri� � C�rj�. Given the mentioned equivalence relation among
sub-regions, SR can be divided into different equivalence classes as:

�ri� � �rj > SR S rj � ri�

For sensor arrangement in Figure 4(a), for example, there are 23
� 8 equiv-

alence classes: �r1, r2�, �r3, r4�, �r5, r6�, �r7�, �r8, r9, r10�, �r11, r12�, �r13, r14�
and �r15�.

Definition 1. The selection of one sub-region from each equivalence class of
SR, arbitrarily, establishes a set of class representatives. We call the sub-regions
in the class representatives of SR, unique sub-regions; all remaining sub-regions
are called duplicates.

For example, we may choose the set of class representatives to be

�r1, r3, r5, r7, r8, r11, r13, r15�

from the arrangement shown in Figure 4(a). The sub-region r8 is then called
unique, but r10 is a duplicate.

The number of created sub-regions and their uniqueness depends on the
shape of the sensor sensing regions as well as the arrangements of the sensors.
The main aim of this paper is to determine, for each value of n, the maximum
size of the set of class representatives (the maximum number of unique sub-
regions), and an arrangement of sensors that would lead to this maximum, for
both omni-directional and directional sensors. For every set of n sensors, there
are 2n subsets of sensors, which is therefore an upper bound on the number
of unique sub-regions. However, for large values of n, the number of unique
sub-regions is also limited by the maximum number of sub-regions that can
be geometrically created. In Section 5, we propose an arrangement of omni-
directional sensors with maximum geometrically possible number of sub-regions,
which are all unique. Then, in Section 6 we prove a tighter upper bound on the



number of unique sub-regions in directional sensor arrangements and propose
an arrangement with number of unique sub-regions asymptotically equivalent to
the calculated upper bound.

5 Omni-directional Binary Sensors

5.1 Maximum Number of Sub-regions

Space partitioning using circles – representing the sensing region of omni-directional
binary sensors – has already been investigated in the literature [7, Problem
137.1]. It has been shown that n circles can divide a plane into n2

� n � 2 sub-
regions, if each pair of circles intersects in two points, and no three circles inter-
sect in the same point.

Therefore, n2
� n � 2 is the maximum number of sub-regions that can be

created geometrically. However, our aim is to find the maximum number of sub-
regions that are all distinguishable – the maximum number of unique sub-regions.
In this section, we first introduce Algorithm 1 that creates an arrangement of
omni-directional sensors with maximum number of sub-regions, n2

�n�2. Theo-
rem 1 then proves that all created sub-regions are unique and hence, n2

�n�2 is
also an upper bound on the number of unique sub-regions in a omni-directional
binary sensor network.

5.2 Our Proposed Arrangement of Omni-directional Sensors

The following algorithm generates an arrangement of omni-directional sensors
that creates maximum number of sub-regions, n2

� n � 2.

Input : n omni-directional sensors
Output: An arrangement of n omni-directional sensors with maximum possible

number of sub-regions

Choose X such that X @ r, where r is the sensing range of the circular sensors.1

a�X � cosπ~n2

Consider an n-sided convex regular polygon, with the side length equal to a.3

Place the sensors on the vertices of the regular polygon.4

Algorithm 1: Our proposed algorithm for construction of an arrangement
of n omni-directional sensors

Figure 5 shows arrangements of four and five omni-directional sensors, with
sensing regions Ci, generated by Algorithm 1.

In Theorem 1, we prove that all created sub-regions using Algorithm 1 are
unique. We will use the following notations in the proofs in this section. Si is
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Fig. 5. Our proposed arrangement (a) 4 (b) 5 omni-directional sensors

the ith sensor and Ci is its corresponding circular region. Sensors are indexed
from 1 to n, counterclockwise. We denote the boundary of a circle Ci with ∂Ci.
Moreover, ∂Cj = ∂Ci denotes the rightmost intersection point of the boundaries
of two circles Ci and Cj . We also define h as n~2, where n is the number of
sensors.

Theorem 1 All created sub-regions in our proposed arrangement generated by
Algorithm 1 are unique.

Proof. Consider a line L0 passing through the polygon’s center, vc, and ∂Ch =

∂Ch�2 and a Line L1 passing through vc and ∂Ch�1 =∂Ch�2, as shown in Figure
6.
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Fig. 6. A proposed arrangement of 8 omni-directional sensors



L0 intersects h sub-regions by crossing the following circles/circle intersec-
tions in the following order:

∂Ch�1, ∂Ch = ∂Ch�2, ∂Ch�1 = ∂Ch�3, ..., ∂C2 = ∂Cn . (1)

Similarly, L1 crosses h � 1 sub-regions by crossing the following circle inter-
sections in the following order:

∂Ch�1 = ∂Ch�2, ∂Ch = ∂Ch�3, ∂Ch�1 = ∂Ch�4, ..., ∂C2 = ∂C1 . (2)

The sub-region r0 is within the sensing regions of all sensors. So, all bits in
its code bit vector, C�r0�, are set. Starting from r0, moving further on lines L0

and L1 moving from one sub-region to another, we leave the sensing region of
a sensor once the line intersects with its sensing region boundary (in the order
defined in 1 and 2). Whenever a circle, describing the sensing region of a sensor,
is left, its corresponding bit becomes zero in the code bit vector of the newly
met sub-region. Consequently, sub-regions r1 to rn have n � 1, n � 2, ... and 1
bits set, respectively and hence, are all unique.

Now, consider n� 1 circles, CC1 to CCn�1 (dashed circles in Figure 6), each
CCi defined as follows: CCi is a circle centered at vc that intersects with two
vertices of sub-region ri. Therefore, by construction, Circles CC1 to CCn�1 pass
through the following n � 1 intersection points.

∂Ch�1=∂Ch�2, ∂Ch=∂Ch�2, ∂Ch=∂Ch�3, ∂Ch�1=∂Ch�3, ..., ∂C3=∂Cn, ∂C2=∂Cn, ∂C2=∂C1 .

By symmetry, each of circles CC1 to CCn�1 crosses n sub-regions – sub-
regions r1 to rn, respectively, and their n � 1 counterparts. Sub-regions r1 to rn
and their counterparts have n � 1 to 1 bits set in their code bit vectors.

Table 2 shows the code bit vectors of r3 and its counterparts - sub-region
intersected by CC3, which all have only three zero bits in their code bit vectors.
The pattern of zeros and ones in the code bit vectors of the intersected sub-
regions, as shown in Table 2, will be rotated right one bit position at a time;
thus, making all of them unique. Therefore, all sub-regions in the proposed ar-
rangement of circular sensor generated by Algorithm 1 are unique.

sub-region no. 1 2 3 . . . h h � 1 h � 2 h � 3 . . . n � 1 n

r3 1 1 1 0 0 0 1 1 1
rm 1 1 1 1 0 0 0 1 1
. . . 1 1 1 1 1 0 0 1 1
. . .
. . . 0 0 0 1 1 1 1 1 1
. . . 1 0 0 1 1 1 1 1 1
. . .
. . . 1 1 1 0 1 1 1 1 1
rn 1 1 1 0 0 1 1 1 1

Table 1. Code bit vectors of the sub-regions intersected with CC3 (Figure 6)



6 Directional Binary Sensors

In Section 6.1, we demonstrate that n directional sensors placed on the border of
a circular monitored area divide the area into at most 2n2

�1 sub-regions. Then,
in Section 6.2 we prove an upper bound on the number of unique sub-regions
in any arrangement of directional sensors. Finally, Section 6.3 introduces our
proposed arrangements of directional sensors.

6.1 Maximum Number of Sub-regions

It is clear that one sensor divides the circle into three sub-regions (Figure 7(a)).
Adding any additional sensor such that its sensing region does not intersect with
any existing sensing region, introduces two additional sub-regions (r4 and r5 in
Figure 7(b)). Therefore, if no pair of n sensor sensing regions intersect within
the circle, then the number of sub-regions is 3 � 2�n � 1� � 2n � 1.
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Fig. 7. Intersections between sensing regions

Now, assuming that no more than two edges have the same intersection point,
each intersection point between two sensing regions generates one new sub-region
(r6 in Figure 7(c)). Therefore, we have:

nr � 2n � 1 � nm, (3)

where nr and nm denote the total number of sub-regions and intersections
within the circle, respectively.

Since a sensor region can intersect another sensor region at at most four
points, the maximum number of intersections is nmax

m �
4�n�1�.n

2
� 2n2

� 2n,
where the division by two accounts for each intersection being counted twice.
Thus, by Equation 3, the maximum number of sub-regions will be:

nmax
r � 2n � 1 � nmax

m � 2n � 1 � 2n2
� 2n � 2n2

� 1 . (4)

Therefore, n directional sensors placed on the border of a circular monitored
area divide the area into at most 2n2

� 1 sub-regions.



6.2 An Upper Bound on the Number of Unique Sub-regions

Notations defined in Section 3 are all used in the lemmas and proofs in this
section. To maximize the number of created sub-regions, we make the following
assumptions:

Assumption 1 Sensor edges do not overlap.
Assumption 2 No two edges intersect on the monitored area.
Assumption 3 No more than two edges have the same intersection point within

the monitored area.

Figure 8 (a-c) illustrate a violation of the Assumptions 1-3, respectively.

(c)(b)(a)
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Fig. 8. Violating assumption 1 (a), 2 (b), and 3 (c)

Definition 2 and Lemmas 1 to 3 are used in the upper bound proof in Theorem
2. We first divide the sub-regions into boundary and inner sub-regions (Definition
2). Lemmas 1 and 2 prove the number of boundary sub-regions and the number
of bits set in their codes, respectively. In Lemma 3, we calculate the maximum
number of created sub-regions when the codes of the boundary sub-regions are
known. The three lemmas are then used to prove an upper bound on the number
of unique sub-regions in Theorem 2.

Definition 2. Boundary sub-regions and inner sub-regions. We create the mul-
tiset of boundary sub-regions, SRb, by traversing the circle’s perimeter clockwise
or counterclockwise until the same point is reached and including the intersected
sub-regions in SRb. All sub-regions that are not in SRb are called inner sub-
regions.

For arrangement in Figure 9(a), for example,

SRb � �r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12� .

SRb is a multiset because a sub-region might be encountered twice in this traver-
sal. For example, in Figure 9(b), sub-region r10 is intersected twice and hence,
included twice in SRb � �r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r10�.

Lemma 1 The cardinality of the multiset of boundary sub-regions SRb is 4n.
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Proof. The sensing region of each sensor intersects the circle’s perimeter at four
end points. Therefore, by Assumptions 1 and 2, there is a total of 4n intersection
points on the circle’s perimeter, leading to the size of multiset SRb also being
4n.

Lemma 2 The number of sub-regions in SRb whose codes have an odd number
of bits set equals the number of sub-regions in SRb with an even number of bits
set.

Proof. By Assumption 1, each pair of neighboring boundary sub-regions have
exactly one edge in common. Therefore, each pair of neighboring boundary sub-
regions has only a one-bit difference in their codes. Thus, if a boundary sub-
region has an odd (even) number of bits set in its code, its clockwise neighbor
has an even (odd) number of bits set in its code, which proves the lemma.

Lemma 3 In any arrangement of n sensors, n C 2, there are at most �2n2
�

n� 1�� �Pn
i�1 i.SRi

b�~2 sub-regions within the circle, where SRi
b is the number of

elements of multiset SRb with i bits set in their codes.

Proof. When n C 2, for each end point located in the bounding-arcs of Si, there
is an intersection between an edge ejx and an edge of Si that is missed ((ejr,eir)
and (ejl,eil) in Figure 10(a) and (ejr,eil) and (ejr,eir) in Figure 10(b)). Moreover,
if no end point of ejx ends up in the bounding-arcs of Si, ejx might still intersect
with none of the edges of sensor eix (ejl Figure 10(c)).

Therefore, if we denote the number of sensor edges that do not intersect with
edge eix by m�

eix
and the number of end points located in the bounding-arcs of

Si with ne, then we have:

m�

eil
�m�

eir
C ne . (5)

On the other hand, the number of boundary sub-regions covered in the
bounding-arcs of Si equals ne � 2, because each sensor has two bounding-arcs
and each end point creates a new boundary sub-region within those bounding-
arcs. These are also the only boundary sub-regions that have a bit set in the ith
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position of their codes. Therefore, denoting the number of boundary sub-regions
with a bit set at the ith position of their codes by SRi��1�

b , using Equation 5:

m�

eil
�m�

eir
� 2 C SRi��1�

b . (6)

Moreover, the total number of bits set in all boundary sub-regions codes is
, SR1

b � 2SR2
b � 3SR3

b � ... � P
n
i�1 i.SRi

b , where SRi
b is the number of elements of

multiset SRb with i bits set in their codes. Therefore, we have:

n

Q
i�1

�m�

eil
�m�

eir
� 2� C

n

Q
i�1

i.SRi
b . (7)

On the other hand, the number of intersections within the circle is:

�2n2
� 2n� �

n

Q
i�1

��m�

eil
�m�

eir
�~2�,

where the first part, 2n2
�2n, is the number of intersections when all edges in-

tersect with one another. The second part, Pn
i�1 ��m�

eil
�m�

eir
�~2�, is the number

of missed intersections; the sum is divided by two, as each possible intersection
is counted twice.

Therefore, by Equation 7, the maximum number of intersections within the
circle is:

2n2
� 2n � �

Pn
i�1 i.SRi

b

2
� n� . (8)

Using Equations 8 and 3 (by Assumption 3), the maximum number of par-
titions is calculated as:

2n � 1 � 2n2
� 2n � �

Pn
i�1 i.SRi

b

2
� n� � 2n2

� n � 1 � P
n
i�1 i.SRi

b

2
. (9)

Theorem 2 An upper bound on the number of unique sub-regions for any ar-
rangement of n directional sensors is 2n2

� 3n � 2, n C 2.



Proof. As in Definition 2, the created sub-regions in any arrangement of sensors
are divided into two groups of boundary and inner sub-regions. An upper bound
on the number of unique sub-regions can be the maximum value of SRt �SRbd �

SRid , where SRt is the total number of sub-regions and SRbd and SRid are
the number of duplicate sub-regions among boundary and inner sub-regions,
respectively. Therefore, SRupper � SRmax

t � SRmin
bd � SRmin

id .
Assume that the number of elements of multiset SRb with i bits set in their

codes is denoted by SRi
b. Since there are at most n unique boundary sub-regions

with one bit set in their codes and only one unique boundary sub-region with
code zero, the minimum number of duplicate boundary sub-regions SRmin

bd is
�SR1

b �n�� �SR0
b � 1�. To calculate an upper bound, we can also assume that all

inner sub-regions are unique, or SRmin
id � 0. Therefore, an upper bound on the

number of unique sub-regions for any arrangement of n directional sensors is:

SRupper � SRmax
t � ��SR1

b � n� � �SR0
b � 1�� . (10)

Then, by Lemma 3:

SRupper � 2n2
� n � 1 � �

Pn
i�1 i.SRi

b

2
� � ��SR1

b � n� � �SR0
b � 1�� . (11)

By Lemma 1, Pn
i�0 SRi

b � 4n . Therefore, we have:

SRupper � 2n2
� n � 1 � �

Pn
i�1 i.SRi

b

2
� � ��4n � �

n

Q
i�2

SRi
b�� � n � 1� .

or,

SRupper � 2n2
� 2n � 2 � �

Pn
i�1 SRi

b

2
� � �

Pn
i�1 �i � 1�.SRi

b

2
� � �

n

Q
i�2

SRi
b� .

Using Lemma 1, we have:

SRupper � 2n2
� 2n � 2 �

�4n � SR0
b�

2
� �
Pn

i�1 �i � 1�.SRi
b

2
� � �

n

Q
i�2

SRi
b� .

The upper bound is therefore:

SRupper � 2n2
� 3n � 2 � �

�SR0
b � SR2

b�

2
� n� � �

Pn
i�4 �i � 3�.SRi

b

2
� . (12)

From Lemmas 1 and 2, we know that SR0
b � SR2

b B 2n, i.e., the value of
��SR0

b � SR2
b�~2 � n� is not greater than zero. Thus, we conclude that an upper

bound on the number of unique sub-regions for any arrangement of n sensors is
2n2

� 3n � 2.

To show that the calculated upper bound is tight, we propose, in the next
section, an arrangement of sensors whose number of unique sub-regions is asymp-
totically equivalent to the calculated upper bound.



6.3 Our Proposed Arrangements of Directional Sensors

We have proved an upper bound on the number of unique sub-regions for any
arrangement of n sensors, 2n2

� 3n � 2, n C 2. In this section, we provide an
algorithm to construct a regular arrangement of n sensors that has 2n2

� 5n � 1
unique sub-regions for even n and 2n2

� 5n � 5 unique sub-regions for odd n.
Using a probabilistic method, we will also show that we can in fact generate
arrangements that have a greater number of unique sub-regions than the regular
arrangement and are very close to the calculated upper bound in Section 6.2.

Arrangement I We describe in Algorithm 2 the construction of our regular
arrangement of n directional sensors, Arrangement I. For an even number of
sensors, the sensors are placed equidistant around the circle with an angle of
2π~n apart from each other. If n is odd, the sensors are placed 2π~�n�1� apart,
which leaves one position empty. For a given sensor Si, we define its left (right)
angle βi (αi) as the angle between eil (eir) and the ray pointing from Si to
the centre of the circle (see Figure 11(a) for example for sensor S1). In any
Arrangement I, all αis and βis are equal to a given α and β, respectively. Figure
11 shows such arrangements for five and six sensors, computed by Algorithm
2. The sensors are positioned on a circular monitored area and are numbered
anticlockwise from 1 to n (see Figure 11).

Input : n sensors, a circular monitored area, α, β
Output: An Arrangement I of n sensors

α� π~n � ε1

β � π~n � �ε � ε��2

¦i > �1, . . . , n� � αi � α3

¦i > �1, . . . , n� � βi � β4

if n is even then5

Place the sensors equidistant 2π~n apart.6

end7

if n is odd then8

Place the sensors equidistant 2π~�n � 1� apart, leaving one position empty.9

end10

Algorithm 2: Our proposed algorithm for construction of an Arrangement
I of n directional sensors

We will initially assume that n is even and we define h as n~2. Moreover,
arithmetic is modulo n on the domain �1, ..., n�. Given the values of α � π~n � ε
and β � π~n � �ε � ε�� for small ε and ε� as in Algorithm 2, Sensor Si’s left edge
aims slightly to the left of sensor Si�h�1, while its right edge aims slightly to
the left of sensor Si�h�1. Lemma 4 is used to compute the number of unique
partitions in any Arrangement I.
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Fig. 11. Our proposed arrangements of (a) five and (b) six sensors

Lemma 4 Edge e1r intersects the following edges in the following order:
e�h�3�r, e2l, e�h�4�r, e3l, . . . , enr, e�h�1�l, e�h�1�l, e2r, e�h�2�l, e3r, e�h�3�l, . . . , e�h�1�r, e�n�1�l .

Proof. Consider two edges: e1r (from sensor S1 to sensor Sh) and eil (from sensor
Si to sensor Si�h�1), for i > �2,3, ..., n � 1�. By symmetry, if there were no ε and
ε�, these two edges would meet at a point that lies on the diameter from sensor
S�i�1�~2 to sensor S�i�1�~2�h. Therefore, as i increases, the intersection point of
eil with e1r moves further and further counterclockwise, and therefore in the
order given by i. Note that none of ehl, ehr, enl intersects e1r. By construction,
edge eil is almost coincident with e�h�i�1�r, but due to the effect of the ε and ε�

deflections, e�h�i�1�r intersects e1r slightly closer to sensor h� i� 1 than eil does
(for i x h).

Using Lemma 4, we enumerate the neighboring sub-regions of edge e1r, which
are the sub-regions whose boundaries are formed by parts of edge e1r. In Figure
11, for example, the neighboring sub-regions of edge e1r are sub-regions r1 to
r12. Sub-region r2 is the start sub-region of sensor S1.

Table 2 shows the enumeration of neighboring sub-regions of edge e1r. This
enumeration is anologous for edges eir: there will be corresponding sub-regions
for each edge of eir. Each row i in Table 2 shows the code bit vector of the ith

neighboring sub-region of edge e1r. When counting neighboring sub-regions of
e2r, e3r etc., the pattern of zeros and ones in the bit vectors in Table 2 will be
rotated right one bit position at a time. Thus, we can establish symmetries and
identify when sub-regions are not unique. In particular, row 2n� 5 is equivalent
to row 2n � 10, row 2n � 4 is equivalent to row 2n � 8, row 2n � 3 to row 2n � 11
and row 2n � 2 to row 2n � 9. In fact, this process will continue, repeating with
period four, due to the symmetries, except that lines 2n� 7, 2n� 6, 4n� 13 have
no counterparts and line 4n � 12 is a duplicate of the first line. The number of
unique sub-regions among neighboring sub-regions of edge e1r is then 2n�5. The



sub-region in the fields of all sensors is not included in Table 2. Hence, the total
number of unique sub-regions is �2n � 5�n � 1 � 2n2

� 5n � 1.
Our discussion assumed that n is even. If n is odd, we calculate the number

of unique sub-regions in the n � 1-size arrangement: 2�n � 1�2
� 5�n � 1� � 1,

because n � 1 is even. We subtract the neighboring sub-regions of the �n � 1�th

sensor’s edges: there are 2�n � 1� � 5 intersections on its left edge, 2�n � 1� � 7
intersections on its right edge, each corresponding to one neighboring sub-region
of Sn�1’s edges. We must also exclude the start sub-region of sensor Sn�1. In
summary: the number of unique sub-regions is 2�n � 1�2

� 5�n � 1� � 1 � ��2�n �

1� � 5� � �2�n � 1� � 7� � 1� � 2n2
� 5n � 5 .

sub-region no. 1 2 3 4 5 . . . h � 2 h � 1 h h � 1 h � 2 h � 3 h � 4 . . . n � 1 n

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
2 1 0 0 0 0 0 0 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 1 0 0 0
4 1 0 0 0 0 0 0 0 1 1 1 0 0 0
5 0 1 0 0 0 0 0 0 1 1 1 0 0 0
6 1 1 0 0 0 0 0 0 1 1 1 0 0 0

2n � 11 0 1 1 1 1 1 0 0 1 1 1 1 1 0
2n � 10 1 1 1 1 1 1 0 0 1 1 1 1 1 0
2n � 9 0 1 1 1 1 1 0 0 1 1 1 1 1 1
2n � 8 1 1 1 1 1 1 0 0 1 1 1 1 1 1
2n � 7 0 1 1 1 1 1 1 0 1 1 1 1 1 1
2n � 6 1 1 1 1 1 1 1 0 1 1 1 1 1 1
2n � 5 0 1 1 1 1 1 1 0 0 1 1 1 1 1
2n � 4 1 1 1 1 1 1 1 0 0 1 1 1 1 1
2n � 3 0 0 1 1 1 1 1 0 0 1 1 1 1 1
2n � 2 1 0 1 1 1 1 1 0 0 1 1 1 1 1
2n � 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1

2n 1 0 1 1 1 1 1 0 0 0 1 1 1 1

4n � 17 0 0 0 0 0 0 1 0 0 0 0 0 1 1
4n � 16 1 0 0 0 0 0 1 0 0 0 0 0 1 1
4n � 15 0 0 0 0 0 0 0 0 0 0 0 0 1 1
4n � 14 1 0 0 0 0 0 0 0 0 0 0 0 1 1
4n � 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4n � 12 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2. Enumeration of code bit vectors of neighboring sub-regions of edge e1r

Arrangement II This type of sensor arrangement is constructed using Algo-
rithm 2, but with new constraints for values of α and β, i.e., α � β @ 2π~n and
α,β @ π~n. We assume again that the sensors are anticlockwise ordered from 1
to n. Therefore, each field of sensor Si covers only sensor Si�n~2. Figure 12 shows
a sample of Arrangement II for six sensors.

For each n ranging from 6 to 20, the number of unique sub-regions is then
computed by doing simulations for every value of angles α and β with angles
change step of 0.1 X.

The achieved maximum number of unique sub-regions for such arrangements
(Maximum for Arrangement II) are shown in Table 3 and in Figure 13. We
compare these numbers with the maximum number of unique sub-regions from
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Fig. 12. Arrangement II for 6 sensors

Arrangement I (Section 6.3) and the upper bound calculated in Section 6.2. The
number of unique sub-regions in both Arrangements I and II are asymptotically
equivalent to the upper bound.

Table 3. The achieved maximum number of unique sub-regions for n ranging from 6
to 20

n Maximum for Maximum for Upper
Arrangement I Arrangement II Bound

6 43 53 56
7 67 75 79
8 89 102 106
9 121 132 137

10 151 167 174
11 188 205 213
12 229 248 256
13 274 294 301
14 323 344 353
15 376 399 407
16 433 457 466
17 494 518 529
18 559 584 596
19 628 654 667
20 701 727 742

7 Conclusions and Future Work

Binary sensors can be used to partition an area into unique sub-regions and
hence, provide localization functionality. We calculated an upper bound on the



Fig. 13. Upper bound and maximum on the number of unique sub-regions in our
proposed arrangements

number of unique sub-regions that a set of omni-directional or directional sensors
can achieve. We also proposed regular arrangements for both omni-directional
and directional sensors whose number of unique sub-regions is asymptotically
equivalent to our calculated upper bound. This outcome gives researchers an
insight into how many sub-regions can be created using a specific number of
sensors as well as the number of sensors required to achieve a certain accuracy.
Finding a constructive algorithm to generate an arrangement of n sensors whose
number of unique sub-regions equals the calculated upper bound is still an open
problem for directional sensors. Moreover, since the size of the created sub-
regions has impact on the localization accuracy, we are currently looking at
partitioning schemes that lead to sub-regions that are as equally-sized as possible
so that we achieve a uniform resolution.
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