Biomineral shell formation under ocean acidification: a shift from order to chaos

Fitzer, S. , Chung, P., Maccherozzi, F., Dhesi, S. S., Kamenos, N. A. , Phoenix, V. R. and Cusack, M. (2016) Biomineral shell formation under ocean acidification: a shift from order to chaos. Scientific Reports, 6, 21076. (doi: 10.1038/srep21076) (PMID:26876022) (PMCID:PMC4753494)

[img]
Preview
Text
115013.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Kamenos, Professor Nick and Cusack, Professor Maggie and Chung, Mr Peter and Phoenix, Dr Vernon and Fitzer, Dr Susan
Authors: Fitzer, S., Chung, P., Maccherozzi, F., Dhesi, S. S., Kamenos, N. A., Phoenix, V. R., and Cusack, M.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Scientific Reports
Publisher:Nature Publishing Group
ISSN:2045-2322
ISSN (Online):2045-2322
Copyright Holders:Copyright © 2016 The Authors
First Published:First published in Scientific Reports 6:21076
Publisher Policy:Reproduced under a Creative Commons License
Data DOI:10.5525/gla.researchdata.259

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
452471Understanding polymorph production and control in calcite/aragonite biomineralsAndrew FreerBiotechnology and Biological Sciences Research Council (BBSRC)BB/E025110/1CHEM - CHEMISTRY