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Abstract. Statistical models of habitat preference and species distribution (e.g. Resource 14 

Selection Functions and Maximum Entropy approaches) perform a quantitative comparison of 15 

the use of space with the availability of all habitats in an animal’s environment. However, not all 16 

of space is accessible all of the time to all individuals, so availability is, in fact, determined by 17 

limitations in animal perception and mobility. Therefore, measuring habitat availability at 18 

biologically relevant scales is essential for understanding preference, but herein lies a trade-off:  19 

Models fitted at large spatial scales, will tend to average across the responses of different 20 

individuals that happen to be in regions with contrasting habitat compositions. We suggest that 21 

such models may fail to capture local extremes (hot-spots and cold-spots) in animal usage and 22 

call this potential problem, homogenization. In contrast, models fitted at smaller scales, will vary 23 

stochastically depending on the particular habitat composition of their narrow spatial 24 

neighborhood, and hence fail to describe responses when predicting for different sampling 25 

instances. This is the now well-documented issue of non-transferability of habitat models. We 26 

illustrate this trade-off, using a range of simulated experiments, incorporating variations in 27 

environmental gradients, richness and fragmentation. We propose diagnostics for detecting the 28 

two issues of homogenization and non-transferability and show that these scale-related 29 

symptoms are likely to be more pronounced in highly fragmented or steeply graded landscapes. 30 

Further, we address these problems, by treating the neighborhood of each cell in the landscape 31 

grid as an individual sampling instance (with its own neighborhood), hence allowing coefficients 32 

to respond to the local expectations of environmental variables according to a Generalized 33 

Functional Response (GFR). Under simulation this approach is consistently better at estimating 34 

robust (i.e. transferrable) habitat models at smaller scales, and less susceptible to homogenization 35 

at larger scales. At the same time, it represents the first application of a GFR to continuous space 36 
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(rather than multiple, spatially distinct datasets), allowing the predictive advantages of this 37 

extension of species distribution models to become available to data from large-scale but single-38 

site field studies.  39 

Key words: climate change; habitat fragmentation; functional responses for species 40 

distributions; generalized linear model; animal habitat preference; predictive modeling; 41 

resource selection functions; simulation study; spatial scale; species distribution models; species 42 

ranges; statistical model. 43 

 44 

Introduction 45 

  Species Distribution Models (SDM) have seen increased use, due to advances in data collection 46 

methods (GIS, GPS, radio telemetry) and flexible regression-based frameworks in software such 47 

as R (R Core Team, 2014). A large class of SDMs are used for identifying habitat preferences 48 

based on a comparison between habitat use and the availability of habitats in the study area 49 

(Johnson 1980). We will here refer to these approaches as habitat models (employing a species-50 

independent definition of the term “habitat”, as a particular point in environmental, or niche-51 

space - Hall et al. 1997, Aarts et al. 2008, Matthiopoulos et al. 2011, Matthiopoulos et al. 2015). 52 

The general class of habitat models includes notable examples of frameworks such as Resource 53 

Selection Functions (RSF - Boyce and McDonald 1999, Manly et al. 2002, also termed Habitat 54 

Selection Functions, HSFs - Aarts et al. 2012) and Maximum Entropy models (MaxEnt - Phillips 55 

et al. 2006, Elith and Leathwick 2009). Habitat models are predicated on the assumption that if 56 

organisms had no preference and could access all of the study area, then space use would be 57 

uniformly random. Therefore, when habitat use is disproportionate to habitat availability, this is 58 

taken to indicate preferential selection, possibly hinting at combinations of environmental 59 
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conditions that help species fulfil vital life history functions (Johnson 1980, Boyce & McDonald 60 

1999, Aarts et al. 2012). However, a fundamental principle of habitat models has been largely 61 

neglected in their application to real data. Johnson (1980) conditioned his definition of 62 

preference on the availability of all habitats within an organism’s reach (Aarts et al. 2008) and 63 

several publications since have pointed out that estimates of preference (and subsequent 64 

predictions of space use) are conditional on the complete profile of availabilities in the 65 

environment (Boyce and McDonald 1999, Mysterud & Ims 1998, Mauritzen et al. 2003, Osko et 66 

al. 2004, Aarts et al. 2008, Godvik et al. 2009, Beyer et al. 2010, Matthiopoulos et al. 2011, 67 

Aarts et al. 2012, Aarts et al. 2013). In particular, three main problems have been identified: The 68 

sensitivity of habitat models on the defined size of the study region, changes in the 69 

environment’s composition and changes in population density. 70 

Dependence on the size of the study region: Habitat models are frequently implemented at study 71 

scales decided during project planning, often on the basis of logistical constraints. For the 72 

particular example of use-availability data, Beyer et al. (2010) drew attention to the fact that the 73 

overall spatial scale of a study alters the representation of habitat availability, and hence changes 74 

subsequent estimates of preference. When based on arbitrarily extreme scales, the resulting 75 

regression coefficients in a habitat model can (alarmingly) lead an investigator to conclude that 76 

an animal shows any one of the three possible responses of preference, avoidance or indifference 77 

(positive, negative or zero regression slope) towards any environmental gradient. 78 

Dependence on changing environments: Increasingly, habitat models fitted to data from one 79 

region are being used to predict space use in other regions, or to forecast species distributions in 80 

the future, particularly in view of habitat loss and climate change. Matthiopoulos et al. (2011) 81 

examined the consequences of such extrapolations. Using both simulated and real data, they 82 
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showed that habitat models fitted in one region are tied explicitly to the habitat availability 83 

prevailing in that region. Since it is unlikely that the availability of all habitats will remain the 84 

same in new regions or through time (ironically, environmental change is the instigator of most 85 

current conservation studies on habitat preference), the fitted habitat model coefficients may be 86 

ineffective for spatial prediction and forecasting.  87 

Dependence on changing population sizes: Individuals in small populations can aggregate at 88 

high quality habitats, whereas individuals in crowded environments may be forced into sub-89 

optimal habitats (McLaughlin et al. 2010). Habitat models fitted to these two situations would 90 

attest to different apparent strengths of preference for high-quality habitats. In recent work 91 

Matthiopoulos et al. (2015), have proposed a solution to this problem by modeling the 92 

dependence of habitat model coefficients on population density.  93 

All three of the above types of dependence are manifestations of the same fact: apparent 94 

preference is conditional on habitat availability (as it is perceived by the observer, set by the 95 

environment, or experienced by the animal), and therefore any analytical protocol or ecological 96 

process that alters availability will also alter our insights into preference.  This paper resolves the 97 

challenges of quantifying availability at a biologically relevant scale and accounting for an 98 

organism’s non-linear responses to the availability of all habitats within that scale.  99 

    Thinking about biologically relevant scales in habitat models requires us to trade off two types 100 

of bias against each other. At one extreme, models fitted over small study regions may miss the 101 

full diversity of environmental compositions occurring in the broader landscape and hence 102 

exclude the full range of animal responses to different environmental compositions. This will 103 

yield prediction bias when these models are applied in unobserved environments. Here, we will 104 

call this problem, non-transferability, because it causes models to be unusable outside the 105 
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confines of the data to which they were fitted. Conversely, larger study scales may encompass 106 

data from multiple individuals, hence averaging over divergent responses to a wide variety of 107 

habitat availabilities and compositions. In such cases, particularly in the presence of non-linear 108 

responses by higher animals, a habitat model with spatially stationary regression coefficients is 109 

asked to describe strong and varying responses to the same covariates, at different points in 110 

space. We hypothesize that this will lead to estimation bias because the model will under-111 

estimate usage hot-spots and over-estimate usage cold-spots. We will call this potential problem 112 

homogenization because it leads to a spatial flattening of a model’s estimates and subsequent 113 

predictions.  Such scale-dependencies are inherent in all implementations of habitat models, 114 

however they may be fitted (e.g. via maximum likelihood, maximum entropy, or Bayesian 115 

methods) and they are likely to be more important when the study organisms respond non-116 

linearly to their environment and environmental composition is variable across the study region. 117 

    Non-linear responses are caused by the complex relationship between habitat availability, and 118 

demography, behaviour and physiology (Mauritzen et al. 2003, Hebblewhite and Merrill 2008, 119 

Beyer et al. 2010). Mysterud and Ims (1998) pointed out that habitat preference may vary as a 120 

non-linear function of habitat availability and called this a ‘functional response in habitat 121 

selection’: the dependence of preference for any given habitat on the availability of all habitats in 122 

the landscape (Arthur et al. 1996, Mysterud and Ims 1998; Beyer et al. 2010). The existence of 123 

functional responses has been empirically demonstrated in a variety of animal taxa (Orians and 124 

Wittenberger 1991, Mysterud and Ims 1998, Mauritzen et al. 2003, Hebblewhite and Merrill 125 

2008), making them a ubiquitous biological feature that habitat models need to account for. 126 

While the problems caused by functional responses have been discussed (Boyce and MacDonald 127 

1999, Mysterud and Ims 1999), they remained unresolved, due to a lack of practical treatment 128 
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and statistical implementation (Beyer et al. 2010). In 2011, Matthiopoulos et al. presented a 129 

method for incorporating functional responses into habitat models. Their derivation of a 130 

Generalized Functional Response (GFR) approach considers populations in different spatial 131 

regions, each with its own distinctive habitat composition. The GFR acknowledges that model 132 

coefficients must be allowed to vary when predicting spatial usage in different regions to reflect 133 

different animal responses to changes in the availability of all habitats in each region (Boyce, 134 

McDonald & Manly 1999). In biological terms, this quantifies how an individual uses the local 135 

habitat by taking into account the availability of all habitats within the surrounding region. 136 

Matthiopoulos at el. (2011) show that conditioning local usage on regional availability of 137 

habitats can be achieved by introducing into the model’s linear predictor the regional 138 

expectations ( E(X), E(X 2 ),E(X 3)...) of each environmental covariate. In the simplest case, a 139 

GFR using first-order expectations involves just the means of the environmental covariates 140 

across each region ( E(X)  X ). For example, in the case of a habitat x  characterized by two 141 

particular values ( x1 and x2 ) of two environmental covariates X1  and X2 , the linear predictor of 142 

a habitat model incorporating a first-expectation GFR would take the form: 143 

 
L(x)  0 1x1 2x2  1X1  2 X2  11x1X1  12x1X2  21x2 X1  22x2 X2   (1) 

144 

Where the  i ’s denote the coefficients of the ith environmental covariate, the i ’s are the 145 

coefficients of the regional means and the ij ’s denote the coefficients of the interaction between 146 

the ith predictor and the regional mean for the  jth covariate. With more available data, higher-147 

order expectations can also be included, but with diminishing gains in model performance. The 148 

coefficients of the linear predictor are estimated by fitting a model with an appropriate link 149 

function that depends on the usage data at-hand (see Aarts et al. 2012). 150 
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  The GFR attempts to unify the responses of a species to different regions under the same habitat 151 

model, so central to this approach is the combination of data from different regions or sampling 152 

instances. By drawing information from different sampling instances a GFR can learn how the 153 

organism might respond in, as-yet unobserved, scenarios of availability. For both simulated 154 

(Matthiopoulos et al. 2011; Aarts et al. 2013) and real data (Matthiopoulos et al. 2011), the 155 

method has displayed superior predictive performance compared to standard habitat models.  156 

  The original version of the GFR, as presented by Matthiopoulos et al. (2011) used distinct 157 

sampling instances, and thus assumed that the spatial scale of the sampling instance was easy to 158 

define a-priori. This poses no problem when biologically informed study scales are available, 159 

such as the collective spatial extent of the wolf territories used by Matthiopoulos et al. (2011). In 160 

such cases, the scale of the study is identical to the scale of a sampling instance. If, however, 161 

such a scale does not readily recommend itself, then the GFR remains vulnerable to the 162 

dependence on study scale as outlined above. For example, in the case of nomadic animals, 163 

where decisions of space use are not made within the confines of an easily identifiable home 164 

range, it is not always clear how to define the spatial scale of a sampling instance. However, an 165 

alternative, pragmatic definition of the scale of the sampling instance would focus on the 166 

fundamental trade-off between homogenization and non-transferability (i.e. estimation v 167 

prediction bias). Assuming that data are available for study areas much larger than the range of a 168 

single individual, the appropriate scale for a sampling instance would be the one that finds an 169 

optimal conciliation between the two extremes. This poses a new problem: if the chosen scale to 170 

be used for sampling instances (and hence for calculating availability) is not the same as the size 171 

of each study area, then the sampling instance is not by default the same as the individual study.  172 

Instead, we suggest extracting multiple sampling instances at the appropriate scale from within 173 
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any-one study. GFRs compare multiple sampling instances to gain insight into how the same 174 

species uses space in different regions. In a single, sufficiently large and heterogeneous region 175 

we could equivalently ask whether a GFR can gain the same insights by looking at different 176 

segments of the landscape. Indeed, by considering each point on the landscape as a unique 177 

vantage point we can try to quantify local usage in terms of proximate habitat availability 178 

(defined over a circular buffer zone).  This would give rise to a point-by-point version of the 179 

GFR in a spatial grid, whereby the neighborhood of each cell in space is treated as a sampling 180 

instance.  181 

  We will use simulation to illustrate the implications of large and small study scales on the 182 

coefficients and predictions of habitat models. We will outline a set of diagnostic tools that are 183 

used to measure aspects of study scale dependence in model performance. Using these measures, 184 

we will investigate how landscapes with varying levels of fragmentation, resource gradients and 185 

resource abundances impact upon model performance. In each scenario, we assess the 186 

performance of a point-by-point GFR using as our baseline a habitat model fitted as a GLM.  187 

 188 

Methods 189 

Terminology on spatial scales 190 

We consider three distinct spatial scales (Fig. 1a). We will use the term landscape to imply a 191 

spatial extent greater than the range which a single study animal can access and use. The study 192 

scale (a subset of the landscape) is the area over which data collection is carried out. Within the 193 

study scale, the objective is to model usage of each cell in the grid as a function of environmental 194 

covariates (e.g. the two layers in Figs 1b and 1c). Finally, the spatial scale of a sampling instance 195 

is referred to as the sampling scale, defined by a circle of radius r around a point in the study 196 
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region. For a standard GFR, the sampling scale is the same as the study scale, whereas for a point 197 

by-point GFR, the sampling instance is decoupled from the study scale.  198 

  For example, consider a landscape described by environmental variables (Figs 1b and 1c) 199 

recorded on a grid of arbitrarily fine resolution. In contrast to the standard GFR which uses a 200 

landscape-wide expectation of availability for each covariate, the point-by-point GFR would 201 

evaluate local expectations from a sampling scale r around each grid cell in the study area for 202 

which usage data (e.g. via telemetry, transects or quadrats) was available. Practically, this 203 

process yields additional data layers containing the expected values of each covariate within the 204 

radius of the sampling instance around each cell in the study area (e.g. Figs 1d and 1e). 205 

Simulation 206 

  We used a set of features based on the simulated free-ranging foragers of Matthiopoulos et al. 207 

(2011) implemented in ‘R’ v3.0.3 (R Core Team 2014). We used a landscape of dimensions 208 

100x100 with torroidal movement boundaries (animals exiting at one edge of the landscape re-209 

entered at the opposite edge). Two resource layers were generated over the landscape as follows: 210 

For each resource, a pre-defined number of resource foci were placed randomly on the landscape 211 

(according to a planar intensity gradient of a given steepness). A pre-determined total amount of 212 

the resource was divided equally between the foci and the amount of resource at each focus was 213 

redistributed according to a Gaussian kernel, to create a given degree of spatial autocorrelation. 214 

The animal was assumed to acquire resources according to a Holling Type II functional response 215 

and the two resources were assumed to be non-substitutable. The animal accumulated one 216 

resource until satiation, before switching to the other. The reserves of the organism for each 217 

resource were depleted at a constant rate per unit of reserve. The simulation ran for a total of 218 

1x106 units of time. If the individual’s reserves of either resource reached zero, then the animal 219 
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was assumed dead, and a new individual was generated at the centre-point of the landscape. If 220 

5x103 iterations passed with no animal mortality, then a new animal was generated at a random 221 

point in the landscape, replacing the original. The data used for model fitting comprised the 222 

counts of total visits to different cells in the grid and the two environmental layers. Landscape 223 

parameter values were set at the start of each experiment, specifying the number of foci and their 224 

associated smoothing intensity (collectively determining resource fragmentation), the steepness 225 

of the planar gradient (determining the placement of foci), as well as the total abundance of both 226 

resources in the landscape.  227 

   First, resource fragmentation was increased by reducing the number of resource foci from 1000 228 

to 50 (Manipulation 1, Fig. 2 - the degree of Gaussian smoothing at each focus was kept fixed 229 

throughout). Secondly, a southwest-to-northeast gradient of increasing steepness (starting from a 230 

zero slope) was applied to the distribution of foci in the landscape (Manipulation 2, Fig. 2). 231 

Finally, we altered the overall quantity of resource distributed across the system from 20 to 1 232 

arbitrary units (Manipulation 3, Fig. 2). The overall amounts of food were calibrated to the 233 

energetic requirements of our simulated organism, to make sure that 20 units corresponded to 234 

superabundance and 1 corresponded to a value where survival became difficult. Each of these 235 

manipulations was applied, in isolation, to a baseline environmental scenario (Fig. 2) specified 236 

by 1000 foci (high homogeneity), 0% Gradient (no gradient) and 20 resource units (high 237 

resource abundance). Each simulation experiment was replicated 30 times for each set of 238 

parameters, to control for the effect of spurious (Monte Carlo) variation.  239 

 240 
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Model fitting 241 

To study the effect of changing the scale of habitat availability on the coefficients of the habitat 242 

model, we sub-sampled the landscape at 36 study scales ranging from grids of 5x5 up to 40x40, 243 

centred at the mid-point of the landscape (see Fig. 1a). We also used a buffer zone comprising 244 

the outer 10 cells in the grid to mitigate against edge effects (dark edges in Fig. 1) in the resource 245 

distributions due to the smoothing operation used to generate the covariate layers. For each study 246 

scale, a GLM and a point-by-point GFR were fit to the data. Given that our usage data were 247 

recorded as counts on a grid, a log-link was fitted directly to the usage data. The linear predictor 248 

for this GLM took the form (compare with eq. (1)): 249 

 L(x)   0 1x1  2x2   (2) 
250 

This GLM is used as our baseline habitat model for this paper. The data frame for the baseline 251 

habitat model comprised a row for each cell in the given grid (the cells contained in the dashed 252 

square in Fig. 1a). Each data frame row contained data on the usage of that cell and the local 253 

densities of the two resources within the cell. We assumed a complete survey of the cells in the 254 

study area, but a smaller sample would have been analysed identically. 255 

  The point-by-point GFR took the form of eq. (1), also fitted as a GLM, an extension of the 256 

baseline habitat model. However, instead of the terms X1  and X2  corresponding to landscape-257 

wide expectations, they now denote data for local averages within the sampling instance (Figs 258 

1d, 1e).  The data frame for this model was identical to the one used for the baseline habitat 259 

model, but it was augmented with two columns containing these expectations.  In order to decide 260 

on an appropriate sampling scale for the point-by-point GFR, for each study scale, radii of length 261 

1-10 were tested. The models generated from different sampling scale sizes were compared using 262 

the Akaike Information Criterion (AIC), with the optimal model for each scale used for 263 
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comparison with the baseline habitat model. To compare the performance of the point-by-point 264 

GFR with the baseline habitat model we devised two novel diagnostics. 265 

Firstly, we sought to establish how the habitat model’s regression coefficients varied across 266 

different study scales. Coefficents derived from small regions of the landscape were expected to 267 

be highly specific to the circumstances in those regions (non-transferability). In contrast, we 268 

expect coefficients estimated from large study scales to be more general, and stable. As we move 269 

from small scales, to larger ones, we would therefore expect the coefficients to converge to their 270 

stable values. On this basis, we benchmarked model coefficents against the corresponding 271 

coefficent values (i,40) estimated at the largest study scale (40x40) of each experiment. Hence, 272 

the deviation of the ith coefficient at scale j was measured as i,40 i, j . A measure of non-273 

transferability Cj

 

at the study scale j, was constructed by comparing the deviation at that study 274 

scale with the maximum deviation observed over all scales. The measure estimated for a given 275 

coefficient at the scale j was averaged over all 30 trials of a given experiment and added across 276 

all coefficients (i) in the model, 277 

 
Cj 

1

30

 i,40  i, j

max  i ,40  i, j 






















i

   (3) 
278 

When calculating C j  of point-by-point GFR models, only the coeffients shared with the baseline 279 

habitat model were included.   The transferability of habitat model coefficients that tends to 280 

minimize Cj  at larger scales is the result of the model using fixed coefficients to describe both 281 

weak and strong responses to the same habitat, at different points in the landscape. We therefore 282 

suggest that (particularly with the use of global smoothness models such as the GLMs used 283 

here), this will result in spatially dampened model output that under-estimates the peaks and 284 
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over-estimates the troughs of usage distributions. This effect can be identified from a scatter-plot 285 

of the fitted values against the actual usage data (Fig. 3). The slope (s) of the regression line in 286 

that scatter plot can identify if there is a dampening of model estimates by comparing it to a line 287 

of slope 1, corresponding to perfectly unbiased estimates (the black line in Fig. 3). Slopes below 288 

one indicate under-estimation of usage hotspots and over-estimation of cold spots (red line, Fig. 289 

3). One minus this slope s will therefore give a measure of how much under-estimation is 290 

occurring, with values closest to zero indicating minimal under prediction, and vice versa. This is 291 

a quantitative representation of the effect of homogenization described earlier in the paper. It is 292 

conceivable for the converse of this to occur at smaller study scales (݉ ൐ 1ሻ, whereby the 293 

amplitude of predictions is increased due to the exclusion of the broader context of availability. 294 

However, this effect was only stochastically observed in individual trials of our experiments, and 295 

did not survive the averaging across the 30 replicates of simulation experiments. 296 

    
297 

Results 298 

  Results from the three simulated experiments manipulating resource fragmentation, gradient 299 

and abundance are shown in Fig. 4. Values plotted are averages across the 30 simulation repeats 300 

(more detailed plots showing simulation error can be found in the supplementary material). The 301 

size of each point is a proxy for the size of the study scale. The ideal value for both metrics is 302 

zero, because we desire transferable models that do not homogenize spatial predictions. Non-303 

transferrability can be seen in all scenarios, particularly at small study scales. Homogenization is 304 

found only in heterogeneous environments, such as landscapes with fragmented or steeply 305 

graded resources (Figs 4c-e and 4h-j). In these heterogeneous landscapes, a trade-off between 306 

transferability and homogenization is observed, with larger study-scales yielding high 307 
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transferability, but also high homogenization, and vice versa. This can be thought of as a 308 

manifestation of the bias-variance trade-off (Hastie, Tibshirani & Friedman 2011). 309 

 310 

  Under these heterogeneous conditions (Figs 4c-e and 4h-j), the point-by-point GFR performs 311 

better with regards to both metrics. Biologically, the GFR is better able to fit local hotspots of 312 

usage across all study scales, and generates models that (for the same study scale) are more 313 

transferrable. In the final resource abundance-altering set of experiments (Figs 4k-o), the 314 

performances of the baseline habitat model and point-by-point GFR are comparable, probably 315 

because overall resource abundance has no impact on landscape heterogeneity.  316 

 317 

Discussion 318 

With accelerating climate change and habitat loss, spatial predictions from habitat models have 319 

become important in the conservation and management of threatened or invasive species (Austin 320 

2007, Elith & Leathwick 2009). Despite their widespread use, problems remain with the 321 

implementation of habitat models depending on the scale at which the spatial data were 322 

collected. Practical advice exists for selecting the study scale of a habitat model (Boyce 2006, 323 

Beyer et al. 2010, Northup et al. 2013), but in species (such as nomadic animals) where there is 324 

limited understanding of spatial limits, there is a risk of arriving at incorrect predictions by 325 

selecting a biologically irrelevant sampling scale.  326 

 In this paper, we identify an important scale-related trade-off between the processes of model 327 

transferability (prediction bias) and homogenization (estimation bias). Models fitted across large 328 

scales tend to estimate generic coefficients that are unable to describe extreme responses to 329 

habitat at particular regions in space. Such models tend to homogenize the true responses by 330 
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under-estimating areas of high usage  and over-estimating low-usage areas. Our simulated 331 

experiments suggested that the issue of homogenization is likely to be lowest at small study 332 

scales, but in those cases coefficients are non-transferable and model predictions are the least 333 

robust to environmental change. Resolving this trade-off between sampling scales is more 334 

challenging in heterogeneous landscapes. Our simulations further identified that these scale-335 

related effects become more pronounced in systems where habitats are fragmented or where 336 

resources are distributed over steep gradients.  337 

 In the literature, these issues have been identified with reference to particular types of data 338 

(e.g. Beyer et al. 2010 focus on use-availability designs) or particular model-fitting 339 

methodologies (e.g. Matthiopoulos et al. 2011 look at selection functions implemented as 340 

GLMs). However, problems of availability will potentially affect any study of mobile species in 341 

heterogeneous environments. Non-transferability and homogenization will occur in any study 342 

that i) collects data or generates predictions at a spatial resolution finer than the range of a single 343 

individual (so that single individuals may be observed using multiple grid cells) and, ii) is 344 

conducted over a region large and variable enough to encompass the ranges of many individuals 345 

(so that different individuals can be found in different habitat availabilities within their ranges). 346 

Therefore, our methods will be particularly useful for habitat models fitted to fine-resolution and 347 

expansive datasets from animal species.  348 

 Predictive maps across space and time are likely to be the most pertinent for conservationists 349 

and managers (Guisan et al. 2013). An ever-expanding body of literature demonstrates that 350 

habitat models derived from one landscape are unlikely to make valid predictions elsewhere 351 

(Randin et al. 2006, Zurell et al 2009, McLaughlin et al. 2010, Sinclair et al. 2010, 352 

Matthiopoulos et al. 2011, Wenger & Olden 2012). This can be attributed to how habitat models 353 
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deal with habitat availability; they assume that as the availability of a habitat decreases or 354 

increases, then so too will its use by the animal. Animal responses are, however, not this 355 

straightforward, and the use of any type of habitat can vary non-linearly with availability (this is 356 

described as a “functional response in habitat selection” – Arthur et al. 1998, Mysterud & Ims 357 

1998). As a result, predictions made in one landscape are unlikely to be adequate descriptions of 358 

animal responses in a system of differing habitat availability. Methodologies for dealing with 359 

functional responses (Mauritzen et al. 2003, Gilles et al. 2006, Hebblewhite and Merrill 2008, 360 

Matthiopoulos et al. 2011) compare multiple sampling instances to construct a picture of how the 361 

individual responds to changes in habitat availabilities.  362 

  Our present extension of the GFR framework that was introduced by Matthiopoulos et al. 363 

(2011) includes a continuous, point-by-point availability definition, which treats each point in the 364 

landscape as a sampling instance for which an appropriate r can be retrieved via standard model-365 

selection criteria. Here, we have found that the proposed point-by-point GFR performs 366 

favourably in comparison to a standard habitat model. By including interaction terms between 367 

environmental covariates and the mean values within the sampling instance, the point-by-point 368 

GFR is better equipped to capture patterns of space use even when the broader palette of 369 

environmental information is not available, as demonstrated by the method’s ability to improve 370 

transferability of models based on small study scales.  371 

Collinearity between the local value of a variable and its expected value within a radius r will 372 

arise if the radius is small, or if the resolution of the explanatory data is coarse. In such cases, the 373 

additional explanatory power of the expectation terms of the model will be low. If the study 374 

organisms perceive and respond to their environment over larger sampling scales, then 375 

collinearity should not be an issue because higher values of r will automatically be selected by 376 
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AIC. If, however, the animals are relatively sessile (responding to local conditions only), then 377 

issues of habitat availability do not arise and the GFR approach is not strictly necessary. 378 

The point-by-point implementation extends the reach of the GFR framework because, by treating 379 

each point (rather than each study) as a sampling instance, it exploits the information and 380 

contrast, available within even single studies, on how animals respond to changes in regional 381 

availability (assuming, of course, that single studies are expansive enough to have recorded 382 

contrasting responses to a heterogeneous landscape). 383 

  The point-by-point GFR was also less susceptible to homogenisation, with coefficients which 384 

did not under-predict usage hotspots to the same degree as a standard habitat model. It may be 385 

argued that this comparison is not stringent enough because, by using a simple GLM, our 386 

baseline habitat model implementation was not sufficiently flexible to capture extremes in usage. 387 

For instance, a Generalized Additive Model (Hastie and Tibshirani 1990, Wood 2006) would 388 

have automatically directed sufficient local flexibility to the areas where the data presented 389 

extreme low/high responses. However, a GAM approach to extreme responses offers a purely 390 

heuristic description of the data, treating extremes in usage, almost as “exceptions to the rules”. 391 

Putting aside, for the moment, individual variation in behaviour (which was absent from our 392 

simulation experiments), the apparent extremes in space use remain the manifestations of the 393 

same underlying behavioural rules. All animals in a population interact with their environment 394 

using a similar length of memory, range of perception and individual mobility. By managing to 395 

capture patterns of space use, while still inferring a single global sampling scale r, our approach 396 

remains faithful to this basic biological fact. A further reason for not using more elaborate 397 

models such as GAMs here is the fact that they remain vulnerable to non-transferability under 398 

environmental change. The ability of a GAM, or any other habitat model, to extrapolate under 399 
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changing habitat availability remains limited, unless it is augmented with terms capturing 400 

functional responses in habitat use. Implementation of GAMs with GFRs is possible (see 401 

supplementary material in Aarts et al.  2013) but computationally quite costly.  402 

Our approach uses resource averages calculated at variable radii around each grid cell in the data. 403 

Superficially, this could be confused with two other data analysis tricks encountered in landscape 404 

ecology. The first consists of fitting the spatial model at ever-coarser scales to try and reduce 405 

residual spatial autocorrelation in the results (Gibson et al. 2004, Whittaker and Lindzey 2004, 406 

Boyce 2006). This approach however leads to loss of information which our modeling retains by 407 

contrasting the finest resolution of the data together with expectations at the biologically relevant 408 

scale r. The second trick sometimes employed by spatial analysts is the use of regional 409 

availability around points as additional covariates to capture neighborhood effects in the 410 

response data (Compton, Rhymer, & McCollough 2002, Swanson et al. 2013). This yields data 411 

frames identical to the ones we have used here for model fitting. However, our use of these 412 

neighborhood covariates in the model formula is different because it arises from the extension of 413 

habitat models by the GFR (complete with all pairwise interactions between neighborhood 414 

averages and local covariate values – see eq. 1).    415 

 As we have identified from our simulated data, study scales that minimize homogenization 416 

are typically the worst cases for transferability, and vice versa. The severity of this trade-off in 417 

real data sets remains to be investigated, however our simulation results suggest that it is likely 418 

to be the worst under conditions of high fragmentation and steep environmental gradients. When 419 

these symptoms of habitat availability are likely to be severe, the point-by-point GFR offers an 420 

easy to implement compromise between predictive accuracy and robustness under environmental 421 

change. Importantly, if in any given wildlife application the GFR does not outperform more 422 



 

 20

standard models (in the sense of model selection), then this will be readily measurable via 423 

methods such as information criteria or cross validation.  424 

 Our use of the AIC to identify the appropriate scale for measuring habitat availability is 425 

appealing from a statistical perspective. Model selection methods (such as the AIC) aim for a 426 

compromise between goodness of fit (estimation ability) and model parsimony (predictive 427 

ability), an objective that chimes well with our balancing a type of estimation error 428 

(homogenization) with prediction error (non-transferability). However, statistical model selection 429 

is not the only way to think about the problem. From a biological viewpoint it may be possible to 430 

derive, or explain, scales of availability in terms of an organism’s cognitive and movement 431 

abilities (sensu Compton et al. 2002). Such comparisons between statistically and ecologically 432 

proposed scales of availability will form an interesting component of the application of the point-433 

by-point GFR to real data.  434 

 Elith and Leathwick conclude their 2009 review of SDMs by suggesting that augmenting 435 

methodologies with ecological theory would be beneficial for the advancement of the field. We 436 

strongly support this suggestion. The point-by-point GFR, proposed here, is a good example of 437 

an approach that is motivated by reasoning about the scales at which ecological phenomena 438 

(habitat selection) take place, but can in turn motivate ecological hypotheses by estimating 439 

characteristic scales from spatial data. 440 
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Figure legends 537 

Figure 1 (a): Example spatial plot depicting two simulated resource layers (blue and orange) 538 

within the landscape (solid black border). The study scale (dashed black border) is the region for 539 

which data on usage were collected (variable study scales are examined in this paper). Under our 540 

proposed point-by-point GFR, the solid yellow point at the top left of the study area is the centre 541 

of a sampling instance and the yellow shaded circle  indicates the disc of radius r that makes up 542 

the sampling scale for the calculation of habitat availability. Within the study area, each point in 543 

the grey shaded area is in turn considered as a sampling instance with the circumscribed 544 

sampling scale r. (b-c): Spatial plots depicting the individual resource layers ( X1   and X2 ) 545 

within the study region. (d-e): Plots of the average values ( X1   and X2 ) of each resource around 546 

every point in the study region. The local averaging operation is carried out at the sampling scale 547 

(i.e. over a disc of radius r).  548 

  549 

Figure 2: Environmental manipulations used for our simulated experiments. Of all scenarios, our 550 

baseline scenario was the most homogeneous and resource-rich. To this, we applied three 551 

manipulations. Manipulation 1: Fragmentation was generated by decreasing the number of foci 552 

seeded into the landscape. This led to areas of high and low richness by dividing the same 553 

amount of total resource among fewer patches. Manipulation 2: A resource gradient was 554 

generated by inclining the intensity with which foci were seeded along a southwest to northeast 555 

axis. Manipulation 3: Resource abundance was changed by reducing the amount of resource 556 

allocated to each focus.  557 

 558 
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Figure 3: An example from a habitat model fitted to simulated data of animal movement 559 

showing the log-transformed fitted and observed values of space-use in each grid cell of the 560 

spatial arena. The solid black line has slope 1 and represents exact matching of fitted and 561 

observed values. The difference between this and the slope of the regression line (dashed line) 562 

through the points indicates the problem of homogenization, whereby the habitat model under-563 

estimates regions of high usage and over-estimates areas of low usage. 564 

 565 

Figure 4: Scatterplots of homogenization against non-transferability measures, across the three 566 

manipulations (see Fig. 2) of habitat fragmentation (plates a-e), resource gradient (f-j) and 567 

abundance (k-o). Values for the simple habitat model (GLM) are shown in blue, and those for 568 

the point-by-point GFR in green. The size of the symbol used for each point in the scatterplot 569 

represents the study scale of the data set. A value of zero is desirable for both metrics, and is 570 

marked on both axes in red. Homogenization is low in landscapes with no gradient or little 571 

fragmentation (a, b, f, g and k-o). However, in fragmented (c-e) and steeply graded landscapes 572 

(h-i) homogenization occurs at all study scales, but is most severe at large ones. Non-573 

transferability exists in all landscapes, with the coefficients of small study scales highly mobile, 574 

and those of larger scales more stable. In spatially variable environments a scale-related trade-off 575 

is observable; larger scales incur a penalty in homogenization, while smaller scales are non-576 

transferable. The point-by-point GFR is shown to be superior with regards to both of these 577 

metrics, reducing homogenization at all study scales, and giving more transferable model 578 

coefficients at smaller scales. � 579 
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Figure 4  598 


	matt
	1
	2-3
	4

