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Abstract  28 

Intrinsic immunity is an aspect of antiviral defence that operates through diverse mechanisms 29 

at the intracellular level through a wide range of constitutively expressed cellular proteins. In 30 

the case of herpesviruses, intrinsic resistance involves the repression of viral gene expression 31 

during the very early stages of infection, a process that is normally overcome by viral 32 

tegument and/or immediate-early proteins. Thus the balance between cellular repressors and 33 

viral counteracting proteins determines whether or not a cell becomes productively infected. 34 

One aspect of intrinsic resistance to herpes simplex virus type 1 (HSV-1) is conferred by 35 

components of PML Nuclear Bodies, which respond to infection by accumulating at sites that 36 

are closely associated with the incoming parental HSV-1 genomes. Other cellular proteins 37 

also respond to viral genomes in this manner, including IFI16 which has been implicating in 38 

sensing pathogen DNA and initiating signalling pathways that lead to an interferon response. 39 

Here, studies of the dynamics of the response of PML NB components and IFI16 to invading 40 

HSV-1 genomes demonstrate that this response is extremely rapid, occuring within the first 41 

hour after addition of the virus, and that hDaxx and IFI16 respond more rapidly than PML. In 42 

the absence of HSV-1 regulatory protein ICP0, which counteracts the recruitment process, the 43 

newly formed, viral genome induced PML NB-like foci can fuse with existing PML NBs. 44 

These data are consistent with a model involving viral genome sequestration into such 45 

structures thereby contributing to the low probability of initiation of lytic infection in the 46 

absence of ICP0.  47 

 48 

Importance 49 

Herpesviruses have intimate interactions with their hosts, with infection leading either to the 50 

productive lytic cycle or to a quiescent infection in which viral gene expression is suppressed 51 

while the viral genome is maintained in the host cell nucleus. Whether a cell becomes 52 

lytically or quiescently infected can be determined through the competing activities of 53 

cellular repressors and viral activators, some of which counteract cell mediated repression. 54 

Therefore the events that occur within the earliest stages of infection can be of crucial 55 

importance. Using live cell microscopy, this paper describes the extremely rapid response to 56 

herpes simplex virus type 1 infection of the cellular protein IFI16, a sensor of pathogen DNA, 57 

and also the PML Nuclear Body proteins PML and hDaxx. The data imply that these proteins 58 

can accumulate on or close to the viral genomes in a sequential manner which may lead to 59 

their sequenstration and repression.   60 
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INTRODUCTION 61 

Whether or not a cell becomes productively infected with herpes simplex virus type 1 (HSV-62 

1), as with other herpesviruses, depends on many factors that modulate the initial stages of 63 

infection. Amongst these are cellular proteins that respond in a restrictive manner to repress 64 

viral gene expression once the viral genomes have entered the nucleus, while the virus 65 

expresses proteins that counteract these repressive effects or stimulate viral gene expression 66 

more directly. Over the last decade, it has become clear that one class of restricting cellular 67 

factors comprises a number of components of promyelocytic leukaemia (PML) Nuclear 68 

Bodies (PML NBs, also known as ND10), including PML itself, Sp100, hDaxx and ATRX 69 

(reviewed in (1-3)). The HSV-1 Immediate-Early protein ICP0 is responsible for overcoming 70 

restriction mediated by these proteins through mechanisms that require its E3 ubiquitin ligase 71 

activity (reviewed in (1)). HSV-1 mutants that are unable to express active ICP0 have a very 72 

low probability of initiating lytic infection in restrictive cell types (4-6), but are able to 73 

replicate more efficiently in cells depleted of one or more of these PML NB proteins (7-10).  74 

There is considerable evidence that the restrictive effects of PML NB components 75 

depend on their dynamic response to infection. PML, Sp100 and hDaxx are recruited to sites 76 

that are closely associated with HSV-1 genomes during the earliest stages of infection (11, 77 

12) by mechanisms that involve sumoylation and/or their ability to interact with sumoylated 78 

proteins, and which are inhibited by ICP0 (7-9, 13). It is likely that other cellular proteins that 79 

accumulate on or near HSV-1 genomes in a SUMO pathway dependent manner will be 80 

identified in the future, and because ICP0 causes a wide ranging reduction in the levels of 81 

sumoylated species during infection (14-16) their recruitment may also be sensitive to ICP0. 82 

Interestingly, although PML is required for the assembly of PML NBs in uninfected cells (17, 83 

18) it is not required for recruitment of either hDaxx or Sp100 to viral genomes, and indeed 84 

these proteins may be recruited independently (7-9). Recruitment defective mutants of PML 85 

and hDaxx, unlike their wild type counterparts, are unable to reverse the stimulatory effects 86 

on ICP0 null mutant HSV-1 replication of shRNA mediated knock-down of the endogenous 87 

proteins (9, 13, 19). 88 

The signals that initiate the recruitment of PML NB components to HSV-1 genomes 89 

remain unknown. It is possible that it is related to a DNA repair response, and indeed several 90 

DNA repair proteins respond to infection in a similar manner (20), but recruitment of PML 91 

still occurs in DNA repair deficient cells (20). More recently, the cellular DNA sensor IFI16 92 

(21, 22) has also been implicated in the initiation of pathways that are inhibitory to HSV-1, 93 

either through initiating events leading to an interferon response (22, 23) or more direct 94 
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effects on viral gene expression (24-27). ICP0 null mutant HSV-1 has an increased plaque 95 

forming potential in cells depleted of IFI16 (24, 26). IFI16 is degraded during HSV-1 96 

infection by a mechanism that was originally thought to be ICP0-dependent (23), although 97 

later work showed that ICP0 was neither sufficient nor necessary for this degradation (24, 98 

28). Indeed, cellular factors (and cell type) also contribute to the stability of IFI16 during 99 

HSV-1 infection (24, 25, 27). Nonetheless during a normal experimental infection IFI16 is 100 

degraded more rapidly during a wild type (wt) than an ICP0 null mutant infection, unless the 101 

latter is conducted at very high multiplicity. Like the PML NB components, IFI16 also 102 

localizes to HSV-1 genomes during the early stages of infection (23-29), and ICP0 inhibits 103 

this process (24). 104 

In order to study the dynamic responses of this group of cellular proteins during the 105 

very earliest stages of HSV-1 infection, analyses were conducted in live cells expressing near 106 

endogenous levels of PML, hDaxx or IFI16, or combinations thereof, tagged with EYFP, 107 

ECFP or a dual fusion protein that expresses red fluorescence constitutively and in addition 108 

green fluorescence after photoactivation. These studies revealed the extremely rapid and in 109 

some cases transient responses of these proteins during HSV-1 infection. Within the first hour 110 

after addition of the virus, IFI16 was observed to form distinct but highly transient foci that 111 

are almost certainly associated with HSV-1 genomes. This occurred with both wt and ICP0-112 

null mutant viruses, but in the latter case a second and more stable phase of recruitment of 113 

IFI16 was observed. Recruitment of IFI16 to HSV-1 genomes was observed with equal 114 

efficiency in PML-depleted cells. Efficient recruitment of hDaxx to these foci also occurred 115 

very rapidly, but that of PML took place more slowly. These events occur in both wt and 116 

ICP0 null mutant infections, but were very transient in the former, presumably because of the 117 

effects of ICP0. Photoactivation experiments illustrated that hDaxx molecules in one part of 118 

the cell nucleus could be recruited to viral genomes in the opposite half of the nucleus within 119 

seconds. These studies reveal highly dynamic and in some cases sequential or transient events 120 

of cellular protein recruitment to HSV-1 genomes that would not be amenable to study by 121 

fixed cell methods. Importantly, the results reveal that the cell responds to the entry of viral 122 

genomes into the nucleus certainly within minutes and probably within seconds, long before a 123 

cell can be detected as being infected through the production of viral proteins. 124 
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MATERIALS AND METHODS 125 

Viruses and cells 126 

HSV-1 strain 17+ was the wt strain used, from which the ICP0-null mutant dl1403 was 127 

derived (5). Virus dl0C4, a derivative of dl1403 that expresses ECFP-linked ICP4, was 128 

constructed as described (4). All viruses were grown in BHK cells and titrated in U2OS cells, 129 

in which ICP0 is not required for efficient HSV-1 replication (6). Human diploid fibroblasts 130 

(HFs), PML-depleted HFs (7), telomerase immortalized HFs (HFTs, a gift from Chris 131 

Boutell), U2OS and HEK-293T cells were grown in Dulbecco’s Modified Eagles’ Medium 132 

supplemented with 10% fetal calf serum (FCS). BHK cells were grown in Glasgow Modified 133 

Eagles’ Medium supplemented with 10% new born calf serum and 10% tryptose phosphate 134 

broth. HepaRG cells were grown in William’s Medium E supplemented with 10% fetal 135 

bovine serum Gold (PAA Laboratories Ltd), 2 mM glutamine, 5 µg/ml insulin and 500 nM 136 

hydrocortisone. All cell growth media were supplemented with 100 units/ml penicillin and 137 

0.1 mg/ml streptomycin. Lentivirus transduced cells were maintained with continuous 138 

antibiotic selection, as appropriate. 139 

Lentiviral vectors 140 

Lentiviral vectors expressing EYFP-linked PML isoform I or hDaxx from the weak HSV-1 141 

glycoprotein D promoter and including G418 resistance have been described previously (9, 142 

13, 19). Derivatives of these were constructed in which the G418 resistance marker was 143 

replaced by puromycin resistance, while versions were also constructed in which ECFP was 144 

used in place of EYFP. The same backbone was used to express EYFP-linked IFI16 using a 145 

cDNA purchased from Origene. IFI16 mutant m3 (S27A/L28A/D50A; (30)) was constructed 146 

by replacement of the wt cDNA with the complete m3 cDNA made by PCR from a plasmid 147 

supplied by Jungsan Sohn. Derivative ΔHIN2 which lacks IFI16 codons 518 – 729 was 148 

constructed by PCR splicing and replacement of the wt sequence. Lentiviral vectors 149 

expressing PML isoform I or hDaxx linked to a fusion of photoactivatable EGFP and 150 

constitutively fluorescent mCherry were constructed by replacement of the EYFP coding 151 

region of vectors pLNGY-PML.I and pLNGY-hDaxx with the dual fluorescent (GAPC) 152 

cassette (31). Lentivirus transduction, selection of transduced cells and maintenance of cell 153 

lines were as described previously (7). Sequential transduction was used to prepare cells 154 

expressing EYFP-IFI16 with either ECFP-hDaxx or ECFP-PML, or EYFP-hDaxx with 155 

ECFP-PML. Selection during routine culture used G418 at 0.5 mg/ml and/or puromycin at 156 

500 ng/ml as relevant. The antibiotic was omitted from cells seeded for and during 157 

experimentation. 158 
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Antibodies 159 

The following antibodies were used: anti-actin mAb AC-40 (Sigma-Aldrich), anti-PML 160 

rabbit polyclonal (rAb) ABD030 (Jena Bioscience) or mAb 5E10 (32), anti-IFI16 mAb 161 

ab55328 (Abcam), anti-hDaxx rAb 07-471 (Upstate), anti-ICP4 mAb 58S (33) and anti-162 

EGFP rAb ab290 (Abcam).  163 

Immunofluorescence 164 

Cells on 13 mm glass coverslips were fixed with formaldehyde and prepared for 165 

immunofluorescence using standard methods. The secondary antibodies used were FITC-166 

conjugated sheep anti-mouse IgG (Sigma), Alexa 555 conjugated goat anti-mouse or anti-167 

rabbit IgG and Alexa 633 conjugated goat anti-rabbit IgG (Invitrogen). The samples were 168 

examined using a Zeiss LSM 710 confocal microscope, with 488 nm, 561 nm and 633 nm 169 

laser lines, scanning each channel separately under image capture conditions that eliminated 170 

channel overlap. The images were exported as tif files, minimally adjusted using Photoshop, 171 

then assembled into the figures using Illustrator. 172 

Live cell microscopy 173 

Cells were seeded into Nunc Lab-Tec chambered coverglass live cell chambers at 1 x 105 174 

cells per well (4 chambered unit) then infected or not as relevant the following day. 175 

Immediately prior to infection the cells were washed with DMEM without phenol red, and 176 

after virus adsorption they were overlayed with the same medium containing 2% FCS and 177 

antibiotics as above. For high multiplicity of infection (MOI) experiments, a range of MOI 178 

between 25 and 100 was used. The nature of the results was not essentially influenced by 179 

choice of MOI, except that events occurred more commonly and were thus easier to detect as 180 

the MOI was increased. If plaques were later to be examined, the medium in the overlay also 181 

included 1% human serum. If the cells were to be examined immediately, the virus 182 

absorption period was 15 minutes, then the cells were placed into the microscope incubation 183 

chamber (pre-heated to 37 oC) and imaging was commenced as soon as possible. In this latter 184 

case, times stated in the figures relate to time after addition of the virus. The microscope was 185 

a Zeiss Axio Observer Z1 equipped with definite focus control to maintain the correct focal 186 

plane during a time course. The S1 environmental system was used to maintain CO2 at 5% 187 

and temperature and humidity. Filter sets 47 HE and 46 HE were used for detecting ECFP 188 

and EYFP respectively, using illumination from an HXP 120V unit. The samples were 189 

examined using either x40 NA 1.3 or x63 NA 1.4 oil immersion lenses. Image capture 190 

conditions generally utilised 70% or 50% HXP power with 2x gain and 4x4 binning, with 191 

exposure times of the order of 100 – 200 ms for both channels. The time intervals between 192 
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images are noted in each figure as relevant. Imaging conditions were adjusted so that the cells 193 

did not suffer detectably from light poisoning and so that any photobleaching was minimized 194 

during the course of the experiment. Generally this was not a problem for EYFP-IFI16 or 195 

ECFP-PML, but ECFP-hDaxx gave weaker fluorescence and was subject to photobleaching 196 

if image capture frequency or illumination intensity was too high. Cells were selected for 197 

imaging on the basis of signal intensities to ensure sufficient image quality. For IFI16 this 198 

was fairly uninform, but cells expressing sufficient ECFP-hDaxx were in a minority. 199 

Relevant segments of the image series were cropped and exported as avi files (for the 200 

Supplemental movies) or saved separately for excision of individual frames for presentation 201 

in the figures, after adjustment of minimum and maximum thresholds for each channel for 202 

ease of visualization. Due to space constraints, only a small number of examples of each 203 

phenomenon can be presented in the figures. In some cases, additional events of the same 204 

nature can be seen in the accompanying Supplemental Movies (which may cover a longer 205 

time frame). In all cases, the data presented are representative of several independent 206 

experiments. 207 

For the photoactivation experiments, cells were examined in a live cell adapted Zeiss 208 

LSM 510 META microscope with incubation at 37oC and 5% CO2. Selected cells were first 209 

imaged for mCherry, then regions of interest were illuminated with the 405 nm laser at 50% 210 

power for 10 reiterations using the bleach programme in the LSM 510 software. Subsequent 211 

imaging was performed at timed intervals thereafter for both EGFP and mCherry using the 212 

488 nm and 543 nm lasers respectively. For GAPC-hDaxx, images were acquired at 2 second 213 

intervals after bleaching, while 15 second intervals were used for GAPC-PML.I. 214 

 215 

RESULTS 216 

Description of the basic experimental system and underlying assumptions and 217 

extrapolations 218 

Gerd Maul was first to observe that the genomes of many DNA viruses, particularly HSV-1 219 

and HCMV, could be observed to be in association with PML NBs during the early stages of 220 

infection (34, 35). These studies used the difficult technique of fluorescence in situ 221 

hybridisation (FISH) to detect the viral genomes, which although providing direct evidence, 222 

is limited because antibody staining techniques to detect viral or cellular proteins are not 223 

always compatible with the required harshness of the hybridisation procedure. Later it was 224 

discovered that in cells at the edges of developing plaques, viral genomes could be detected 225 

frequently in large numbers of foci that formed characteristic arcs just inside the nuclear 226 
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envelope. These genomes could be detected by FISH, but also importantly by simple 227 

fluorescence detection of the viral transcriptional activator protein ICP4 (11). This occurs 228 

because ICP4 binds avidly to viral DNA. Thus in such cells an asymmetric pattern of ICP4 229 

foci near the nuclear periphery could be taken to identify viral genome sites, without the need 230 

for FISH. Because this highly asymmetric staining pattern is completely distinct from the 231 

normal situation in uninfected cells, it can be safely deduced that PML NB protein foci in this 232 

arrangement are also associated with the mutant viral genomes, even if neither FISH nor 233 

ICP4 staining are included in the protocol. Several experiments in this report are dependent 234 

on this deduction. Analogous recruitment can also be observed in wt HSV-1 infections, but 235 

this is difficult to detect because the effects of ICP0 render it weak and transient (11). Having 236 

established these facts, it becomes possible to infer that small novel foci of relevant cellular 237 

proteins that can be detected only after a cell is infected are also highly likely to be associated 238 

with viral genomes. This is an important extrapolation in a number of the following 239 

experiments, but it is also supported by additional data where possible. These reasonable 240 

deductions and extrapolations are necessary because it is not possible to utilise FISH in live 241 

cells, and it is sometimes difficult to combine an experimental protocol with the use of a virus 242 

expressing fluorescently tagged ICP4. As examples of these phenomena, various phenotypes 243 

of PML and hDaxx recruited to ICP4 foci in cells at the edge of a developing ICP0 null 244 

mutant plaque are presented in Fig. 1, and for IFI16 in Fig. 2. 245 

The pyrin domain of IFI16 is required for its recruitment to HSV-1 genomes 246 

We and others have observed that IFI16 is also recruited efficiently to HSV-1 genomes at the 247 

early stages of infection (23-29). In order to study this in more detail, we used a lentiviral 248 

vector system for expressing EYFP-tagged IFI16 (Fig. 2A). Transduced human fibroblasts 249 

were selected with G418 then EYFP-positive cells were enriched by FACS. Analysis of the 250 

resultant cell line by western blotting showed that the cells expressed EYFP-linked IFI16 at 251 

levels of the same order as the three endogenous isoforms (Fig. 2B). We used the same 252 

system to express two mutant forms of IFI16, one with three point mutations in the pyrin 253 

domain (mutant m3) (30) and one a deletion of the second DNA binding HIN domain 254 

(ΔHIN2) (Fig. 2C). The EYFP-IFI16 proteins expressed in these cell lines were distributed 255 

similarly in the nucleus, with a general diffuse signal throughout the nucleoplasm and a 256 

concentration in the nucleoli (Fig. 2D). This is very similar to endogenous IFI16 in HFs (24, 257 

26). As with the endogenous protein (24), wt EYFP-IFI16 was clearly recruited to sites 258 

associated with HSV-1 genomes (detected by ICP4) in cells at the edge of developing ICP0 259 

null mutant plaques (Fig. 2E, upper row). This recruitment is not detectable in this way in wt 260 
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infected cells because of ICP0 activity (24). The recruitment of EYFP-IFI16 also occurred 261 

normally in the case of the ΔHIN2 mutant (Fig. 2E, bottom row), showing that one DNA 262 

binding HIN domain is sufficient for this activity, but the PYD mutant m3 was not efficiently 263 

recruited (Fig. 2E, middle row). The pyrin domain is required for oligomerization of IFI16 264 

when bound to DNA (30), and therefore the recruitment of IFI16 probably represents 265 

assembly of IFI16 oligomers on the viral DNA at this stage of infection, soon after it is 266 

released into the nucleus in an unchromatinised form. It was not possible to test whether 267 

deletion of both HIN domains also inhibited recruitment as further deletion upstream of HIN2 268 

caused loss of expression in this system. 269 

Depletion of PML does not compromise recruitment of IFI16 to HSV-1 genomes 270 

It was of interest to determine whether or not PML is involved in the recruitment of IFI16 to 271 

HSV-1 genomes. HFs depleted of PML using a lentiviral shRNA vector (7) were infected 272 

with ICP0 null mutant HSV-1 and the distributions of hDaxx and IFI16 in cells at the edges 273 

of developing plaques were investigated. Infected cells could be identified by the 274 

characteristic redistribution of hDaxx (see Fig. 1), and as expected IFI16 was similarly re-275 

distributed in such cells (Fig. 2F, left). The same distributions of hDaxx and IFI16 were 276 

observed in infected PML depleted cells, while in uninfected cells hDaxx was dispersed 277 

throughout the nucleoplasm (Fig. 2F, right). These data demonstrate that while PML is 278 

required for hDaxx to be present in PML NB foci in uninfected cells (as reported previously; 279 

(17, 18)), PML depletion compromises recruitment of neither hDaxx (in agreement with 280 

previous data; (8)) nor IFI16. Thus recruitment of IFI16 to HSV-1 genomes is independent of 281 

the events that lead to the transient co-localization of IFI16 with PML during the early stages 282 

of wt HSV-1 infection (23, 24). 283 

Rapid response of IFI16 to HSV-1 genomes as they enter the nucleus 284 

Having developed a cell line expressing EYFP-linked wt IFI16, it was now possible to 285 

examine the behaviour of the protein in live infected cells. An unexpected observation was 286 

that high multiplicity ICP0 null mutant HSV-1 infection induced the formation of small, 287 

discrete novel IFI16 foci, often just inside the nuclear periphery. These were highly transient, 288 

in that they could appear and then disappear within 5 minutes, with others subsequently 289 

appearing similarly in a different part of the cell (Fig. 3A and Supplemental Movie 1). Such 290 

events also occurred during wt HSV-1 infection (Fig. 3B and Supplemental Movie 2). The 291 

appearance of these foci was completely dependent on infection, and generally occurred 292 

within the first hour or two after addition of the virus to the cell monolayer. Given their size 293 

and location, it seemed possible that they represent transient recruitment of IFI16 onto HSV-1 294 
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genomes at the time and point that they are released into the nucleus. Support for this 295 

explanation came from study of cells at the edge of a developing ICP0 null mutant plaque. 296 

Such cells will be infected at much higher multiplicity than can be achieved by adding a virus 297 

inoculum to the cell monolayer, and would thus be expected to display more of such foci. 298 

This was indeed the case, with many examples of such transient foci being plainly visible in 299 

Fig. 3C and Supplemental Movie 3.  300 

Further support for this hypothesis came from infection of HFs expressing EYFP-301 

IFI16 with dl0C4, an ICP0 null mutant HSV-1 expressing ECFP-linked ICP4 (4). The 302 

compilation in Fig. 3D and Supplemental Movie 4 shows a cell at the edge of a developing 303 

plaque from an image sequence that began before any IFI16 foci were detected. The 304 

displayed images illustrate the appearance of transient IFI16 foci at various locations within 305 

the first 42 minutes, mostly in the lower left quadrant of the cell but also elsewhere. As time 306 

continues, the foci in this region become more stable and prominent, and develop into an arc-307 

like mass. The ECFP signal indicates that these apparently more stable IFI16 accumulations 308 

are very close to where ICP4 foci begin to accumulate, marking the positions of viral 309 

genomes. These data are consistent with the interpretation that this cell is being infected by 310 

genomes arriving mostly in the lower left quadrant of the nucleus which initially induce 311 

transient foci of IFI16. As infection develops, and ICP4 expression becomes detectable (and 312 

likely DNA replication begins, as judged from the expansion of the ICP4 compartments), the 313 

accumulations of IFI16 become more marked and longer lasting. From previous results, it can 314 

also be deduced that this second phase is inhibited by ICP0, but the first phase takes place too 315 

rapidly for it to be inhibited as it probably occurs before ICP0 is expressed in sufficient 316 

quantities.  317 

Rapid recruitment of hDaxx from the nucleoplasm to HSV-1 genomes 318 

Previous work using fluorescence recovery after photobleaching (FRAP) had demonstrated 319 

that hDaxx is highly mobile in the nucleus, with an exchange rate between PML NBs and the 320 

general nucleoplasm measured in terms of seconds, while that for PML was slower but still in 321 

the low numbers of minutes (11, 36-38). It had previously been suggested that this dynamics 322 

behaviour would enable the formation of novel PML NB-like foci in association with HSV-1 323 

genomes without the need for movement of pre-existing PML NBs (11). To address this point 324 

further, lentiviral vectors were constructed that express either hDaxx or PML linked to a 325 

fusion protein that includes mCherry and a photoactivatable version of EGFP (31). Thus the 326 

expressed proteins are constitutively red fluorescent, but also are green fluorescent after 327 

photoactivation by pulses of a 405 nm laser. In this way, the movement of molecules from 328 
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activated to unactivated parts of the nucleus could be monitored. This technique was 329 

therefore adopted to examine the dynamics of recruitment of both hDaxx and PML from one 330 

region of the nucleus to another in which viral genome foci were present. Experiments in 331 

uninfected cells illustrated that photoactivation of both the PML and hDaxx fusion proteins 332 

occurred as expected, and subsequently the migration of activated molecules to the 333 

unactivated part of the nucleus could be observed. In the case of PML, this took place over a 334 

period of minutes, while with hDaxx the timescale was in seconds, to the extent that some 335 

transfer into the unactivated part of the nucleus was seen as soon as an image could be 336 

captured after photoactivation (Fig. 4A). These results are consistent with the previous FRAP 337 

experiments (11, 36-38). By applying this technique to cells at the edge of developing ICP0 338 

null mutant HSV-1 plaques, characteristic recruited patterns of hDaxx and PML could be 339 

seen via the mCherry fluorescence. After photoactivation of molecules in the opposite part of 340 

the nucleus, the presence of activated hDaxx in the viral genome associated foci could be 341 

detected at the earliest possible time point, becoming more pronounced within 15 seconds 342 

(Fig. 4B, upper row). The same occurred with PML over a longer time course (Fig. 4B, lower 343 

row). Therefore recruitment of hDaxx in particular to viral genome associated foci is 344 

extremely rapid. 345 

IFI16 and hDaxx respond to HSV-1 genomes more rapidly than PML 346 

Given that both IFI16 and hDaxx can be recruited very rapidly to sites associated with HSV-1 347 

genomes, it was of interest to determine whether a temporal order of IFI16 and PML NB 348 

components could be determined. Therefore cells were constructed that express EYFP-IFI16 349 

and either ECFP linked hDaxx or PML. The EYFP-IFI16/ECFP-hDaxx cells were infected at 350 

high multiplicity with ICP0 null mutant HSV-1 then an image sequence was captured during 351 

the very early stages of infection (Fig. 5). As before, in a proportion of cells transient virus-352 

induced small foci of IFI16 appeared, to which hDaxx was also recruited de novo either at the 353 

same time point or very shortly thereafter. Therefore these proteins respond with similar 354 

kinetics to HSV-1 infection. That hDaxx is also recruited to these novel, virus-induced IFI16 355 

foci is further evidence that they are associated with viral genomes because it has been 356 

established that hDaxx responds in this manner. As time proceeds, the IFI16 signal is lost 357 

from these foci but they remain hDaxx positive. 358 

A similar experiment was performed using EYFP-IFI16/ECFP-PML cells infected 359 

with ICP0 null mutant HSV-1. Fig. 6 shows a cell infected at high MOI in which an example 360 

of an event that commonly occurs in such cells was observed. First, a small accumulation of 361 

IFI16 appears near the nuclear periphery which at this point contains no detectable PML (Fig. 362 
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6, 3 min time point). As before IFI16 appears only transiently, but at the 7 min time point this 363 

dot also contains PML. At later time points, IFI16 is no longer detectable in this dot, while 364 

PML remains in this novel focus. Over the following minutes the new PML dot becomes 365 

closer to a pre-exiting PML NB and then appears to merge with it. The top three rows of Fig. 366 

6 show the IFI16, PML and merged signals of the cell in question over an 11 minute period, 367 

while the lower three panels show enlargements of these images covering the event in 368 

question. Examination of similar times over a longer period indicated that these events were 369 

quite common, although the novel foci did not always merge with pre-existing PML NBs 370 

(Supplemental movie 6). A possible interpretation of the these observations will be presented 371 

in the Discussion, but for now it can be concluded that these events are most easily explained 372 

by a local and transient accumulation of IFI16 at viral genomes after their entry into the 373 

nucleus, which is followed by a more stable recruitment of PML. 374 

Recruitment of hDaxx is detectable before that of PML 375 

The results of Figs. 5 and 6 suggest that hDaxx responds more quickly than PML to virus 376 

infection, because there is a delay before the latter is detectable at the novel IFI16 foci, while 377 

the former appears commonly within the same time frame. To test this directly, the relative 378 

dynamics of recruitment of hDaxx and PML to HSV-1 induced foci were compared in HFs 379 

constructed to express ECFP-hDaxx and EYFP-PML. A common phenomenon observed in 380 

such cells near the periphery of developing ICP0-null mutant HSV-1 plaques was the 381 

appearance of novel foci that first included hDaxx, then at a slightly later time PML was also 382 

present. Many such examples are visible in the images of a time course presented in Fig. 7. A 383 

longer period of the time course of this cell is shown in Supplemental movie 7. A detail of 384 

one such example (boxed in the merged image of the first time point) is shown in the lowest 385 

row of Fig 7. At the first time point, a dot which is green only is present, which at 15 minutes 386 

is less intense (probably because it has moved slightly out of the focal plane) but by this time 387 

it also includes PML. At the 35 min time point another new green dot has appeared at the 388 

lower left of the detail (also clearly seen in the image of the whole cell nucleus; this also later 389 

accumulates PML) while one of the pre-existing PML NBs has moved out of this segment, 390 

leaving the dot that was green only at the start in the centre of detail. By the 45 min time 391 

point this appears to merge with its nearest neighboring PML NB. Detailed examination of 392 

the complete time course (see Supplemental movie 7) illustrates that these events are very 393 

common in such cells; novel foci including only hDaxx appear, which later include both 394 

hDaxx and PML, and which sometimes, but not always, merge with neighboring PML NBs.  395 
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 Such events can only be detected by live cell analysis, which reveals these transient 396 

and subtle events that occur in cells close to developing plaques. Previous examination of 397 

such cells using fixed cell methods has concentrated on those in which marked  viral genome 398 

associated foci in arcs near the edge of the nucleus have been formed, because in these cases 399 

it was clear that these novel foci were virus induced. The live cell analysis extends these 400 

findings to reveal virus induced events in many cells that do not or have not yet formed the 401 

characteristic peri-nuclear arcs of foci, and which could not be detected at such time points by 402 

co-staining for ICP4. 403 

 404 
DISCUSSION 405 

The results presented in this paper allow an extension of previous models of the interactions 406 

between HSV-1 genomes and PML NB proteins during the earliest stages of infection 407 

(summarised in Fig. 8). At a very early stage of infection, probably within seconds and 408 

certainly within minutes of the release of the viral genome through the nuclear pore into the 409 

nucleoplasm, IFI16 can be seen to accumulate in distinct foci that are very likely to be closely 410 

associated with the viral genomes. This event is PML independent, but it requires the pyrin 411 

domain of IFI16 which is involved in its oligomerization on naked DNA (30). Equally 412 

rapidly, hDaxx also accumulates in these foci, co-localizing with IFI16 transiently while after 413 

a few minutes the IFI16 signal is dispersed. As the IFI16 signal weakens, PML then also 414 

accumulates in the foci, co-localizing with hDaxx. All these events can be observed in both 415 

wt and ICP0 null mutant infections, but in the latter the recruitment of hDaxx and PML is 416 

much more difficult to detect because of the activity of ICP0 (9, 11, 13). In the absence of 417 

ICP0, at high multiplicity and in cells which enter the lytic cycle, hDaxx and PML remain 418 

associated at sites close to the viral genomes as replication compartments develop, and a 419 

second and more stable phase of IFI16 recruitment occurs. At low multiplicity however, it is 420 

known that the majority of ICP0 null mutant HSV-1 genomes are repressed. The evidence 421 

here suggests that these genomes may remain stably associated with hDaxx and PML, 422 

perhaps sequestered within these modified PML NB-like structures, which in some cases 423 

appear to fuse with pre-existing PML NBs. This hypothesis is consistent with the observation 424 

that quiescent HSV-1 genomes can be detected within enlarged PML NBs in fibroblasts (39) 425 

(and in similar structures in latently infected mouse neurones; (40)). Unlike in the case of 426 

active replication in which IFI16 more stably accumulates close to the viral genomes (Fig. 2), 427 

IFI16 was not detected within PML NBs in quiescently infected cells (data not shown). 428 

Therefore recruitment of IFI16 appears to be a transient event.    429 
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 In previous studies on the recruitment of PML NB proteins to incoming HSV-1 430 

genomes, the analysis has concentrated on cells in which there are abundant numbers of ICP4 431 

foci close to the edge of the nucleus. This was because the asymmetric pattern of PML NB 432 

protein foci could be clearly distinguished from their normal distribution in uninfected cells, 433 

and therefore clear unequivocal conclusions could be made. The observation of virus induced 434 

IFI16 foci in this study has allowed a more detailed analysis, because IFI16 never forms 435 

small punctate foci in uninfected cells. The use of dual labelled cells, combining EYFP-IFI16 436 

with either ECFP-hDaxx or ECFP-PML, also increases the compelling nature of the 437 

observations. Because of these factors, the virus induced foci could be studied in cells in 438 

which they are neither abundant nor routinely close to the nuclear envelop, within cells at the 439 

early stages of a normal infection as well as of cells at the edges of developing plaques, and 440 

also within a background of pre-existing PML NBs. The live cell sequences thus clearly show 441 

the formation of novel virus-induced PML NB-like structures, that in some cases later fuse 442 

with pre-existing PML NBs, events that could underlie the detection of multiple quiescent 443 

viral genomes within enlarged PML NBs (39).   444 

The mechanism of the recruitment of IFI16 to HSV-1 genomes involves several 445 

factors. One important aspect is likely to be that at the point of delivery into the nucleoplasm 446 

the viral DNA is not chromatinized, and this naked configuration is likely to underlie its 447 

recognition by IFI16 (30). ChIP assays performed by others have confirmed a direct 448 

association between IFI16 and HSV-1 DNA (25). IFI16 binds to DNA through its HIN 449 

domains, and it can form oligomers on DNA through pyrin domain interactions (30). A single 450 

HIN domain was sufficient IFI16 to accumulate on HSV-1 genomes, and the pyrin domain 451 

was essential for this abundant accumulation (Fig. 2). It is possible that the pyrin domain 452 

mutant protein still binds to viral DNA, but lack of oligomerization may reduce its 453 

accumulation on viral genomes to below a level detectable by microscopy. The recruitment of 454 

several PML NB proteins to HSV-1 genomes occurs through SUMO-related pathways, but 455 

whether sumoylation is also involved in the recruitment of IFI16 remains to be determined. 456 

IFI16 has been identified as a substrate for sumoylation in proteomic screens (16, 41), but an 457 

abundantly sumoylated form is not evident on western blots. Whatever the mechanisms 458 

involved, they are clearly inhibited by ICP0. As abundant recruitment of IFI16 does not occur 459 

in wt HSV-1 infected cells even when it remains easily detectable by fluorescence (24), this 460 

inhibition is not a simple consequence of the degradation of IFI16 that occurs at later times of 461 

wt HSV-1 infection (23, 24).  462 
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The transient nature of IFI16 accumulation in the virus induced foci is intriguing. It is 463 

not a simple case of the entity in question moving out of focus (although this can occur), 464 

because the hDaxx or PML signal remains. Clearly the recruitment of IFI16 is a very early 465 

event, and it is possible that as the viral genome is assembled into more complex 466 

nucleoprotein complexes, including nucleosomal structures, such that the parental viral DNA 467 

ceases to be in a naked form required for IFI16 accumulation. The more stable accumulation 468 

of IFI16 that occurs as replication compartments develop in ICP0 null mutant infections 469 

could reflect the production of newly replicated naked DNA in these structures. However, 470 

IFI16 does not co-localize with viral replication compartments in the same way as ICP8 and 471 

ICP4 even in ICP0 null mutant infections, but instead it often forms tangled filament-like 472 

structures that are associated with the replication compartments (24). These thread-like 473 

structures are likely to represent oligomers of IFI16, but how they relate to the viral DNA 474 

remains to be determined. 475 

 A fundamental question that is beyond the scope of this current study is whether or 476 

not IFI16 plays an important role in the recruitment of other proteins to the HSV-1 genome. 477 

This hypothesis would provide an interesting aspect to the role of IFI16 as a sensor of 478 

pathogen DNA. Previously it was shown that in cells depleted of IFI16, the recruitment of 479 

hDaxx appeared to be delayed, in that it was much more difficult to detect hDaxx in the 480 

asymmetric staining pattern characteristic of infected cells prior to detectable expression of 481 

ICP4 (in other words, cells of the phenotype of cell d in Fig. 1B were very rare in IFI16 482 

depleted cells) (24). However, recruitment of both PML and hDaxx was readily detectable in 483 

the majority of IFI16 depleted cells once ICP4 was expressed (24). Although depletion of 484 

IFI16 was efficient in these cells, it is possible that trace remaining levels were sufficient for 485 

a hypothetical function in which recruitment of IFI16 is a necessary step prior to recruitment 486 

of the other proteins. Alternatively, the recruitment of IFI16 may be unlinked that that of 487 

PML NB proteins, and is more involved in regulation of chromatin assembly on the viral 488 

genome, as proposed by others (25, 26). Whatever the functions of the events described here, 489 

it is clear that detailed examination in live cells reveals striking and unexpected aspects of the 490 

dynamic nature of the interaction between cellular proteins and the invading HSV-1 491 

genomes. 492 
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 506 

FIGURE LEGENDS 507 

Figure 1 508 

Examples of recruitment of PML NB proteins to sites associated with HSV-1 genomes, as 509 

detected by staining for ICP4. The panels show views of cells close to developing ICP0 null 510 

mutant HSV-1 plaques in HFs, stained for ICP4 (green) and PML (red) (A) or ICP4 (green) 511 

and hDaxx (red) (B). Cells indicated by ‘a’ show the pattern of PML or hDaxx expected of 512 

uninfected cells. Cells labelled ‘b’ show various typical asymmetric patterns of ICP4 and 513 

PML NB protein staining showing recruitment of PML or hDaxx to sites associated with 514 

HSV-1 DNA. The cell labelled ‘c’ in (B) exhibits some faint foci of ICP4, each of which is 515 

associated with hDaxx staining. The cell labelled ‘d’ in (B) shows a less common phenotype, 516 

in which hDaxx foci are distributed in a highly asymmetric pattern, very likely associated 517 

with parental HSV-1 genomes, but before ICP4 expression has reached a detectable level. 518 

 519 

Figure 2 520 

The PYD domain is required for the recruitment of IFI16 to HSV-1 genomes. A. A map of a 521 

lentivirus vector that expresses EYFP-linked IFI16. B. Western blot analysis of cell extracts 522 

from a cell line transduced with the vector, analysed for IFI16 (left) and EGFP (right). There 523 

are three endogenous IFI16 isoforms, which differ in the number of ‘S’ regions in the hinge 524 

region between Hin-200A and Hin-200B. Only a single EYFP-linked isoform is expressed in 525 

these cells. C. A map of the coding sequence of IFI16, indicating the PYD and the two HIN 526 

domains, with two linker sequences (S1, S2). Also marked are the locations of the triple point 527 

mutations in mutant m3, and the region deleted in the mutant ΔHIN2. D. The nuclear 528 

distribution of wild type (wt) and mutant m3 and ΔHIN2 mutant forms of IFI16, detected by 529 

autofluorescence in transduced cell lines. E. The distributions of wt and mutant m3 and 530 
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ΔHIN2 mutant forms of IFI16 in cells at the edge of developing ICP0 null mutant plaques, 531 

indicating prominent recruitment of wt and ΔHIN2 IFI16, but not the m3 mutant, to sites that 532 

are closely associated with HSV-1 genomes (detected by staining for ICP4). F. Depletion of 533 

PML does not compromise efficient recruitment of IFI16 to HSV-1 genomes. The panels 534 

show either uninfected HFs or examples of cells at the edge of ICP0 null mutant HSV-1 535 

plaques stained for hDaxx and IFI16, in control and PML depleted cells (left- and right-hand 536 

pairs of images, respectively).  537 

 538 

Figure 3 539 

Detection of the rapid response of IFI16 to HSV-1 infection. A. HFs expressing EYFP-IFI16 540 

were infected with ICP0 null mutant HSV-1 (MOI 50) then images were captured at the 541 

indicated times after addition of the virus. B. A similar experiment was conducted using wt 542 

HSV-1 infection (MOI 20). C. Images from a sequence of a cell close to the edge of an ICP0 543 

null mutant HSV-1 plaque. D. HFs expressing EYFP-IFI16 were infected with virus dl0C4 544 

and images from a sequence of a cell at the edge of a developing plaque are presented, 545 

showing the IFI16, ICP4 and merged signals as indicated. 546 

 547 

Figure 4 548 

Dynamics of PML.I and hDaxx in uninfected cells and their rapid recruitment to sites 549 

associated with HSV-1 genomes. (A). Uninfected HepaRG cells transduced to express either 550 

GAPC-PML.I or GAPC-hDaxx were imaged before and after photoactivation of the PA-551 

EGFP moiety within the red boxed area. Detection of PA-EGFP at intervals after 552 

photoactivation reveals migration of activated molecules from the activated region to the rest 553 

of the nucleoplasm. (B). As for A, but cells at the edge of developing ICP0 mutant HSV-1 554 

plaques with characteristic asymmetrically distributed foci were examined under the same 555 

activation and time course conditions. Activated hDaxx can be detected in the asymmetric 556 

foci at the first time point after bleaching (about 2 seconds), becoming more prominent as 557 

time progresses. Activated PML accumulates in the foci at the nuclear periphery more 558 

slowly. 559 

 560 

Figure 5 561 

IFI16 and hDaxx respond to HSV-1 infection with similar kinetics. HFs expressing EYFP-562 

IFI16 and ECFP-hDaxx were infected with ICP0 null mutant HSV-1 (MOI 100). After a 15 563 

minute absorption period, the cells were examined by live cell microscopy, with images 564 
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captured every 90 sec. A selection of images is shown, with the times after adding the virus 565 

indicated in the top row. The upper three rows show the IFI16, hDaxx and merged channels, 566 

with the numbered arrows pointing to IFI16 foci that transiently appear during the sequence. 567 

The corresponding foci are also indicated on the hDaxx and merged panels. The sets of 568 

smaller images show details from each time point of the boxed areas marked in the 48 min 569 

sample. The left- and right-hand columns of these images for each time point show the 570 

images corresponding to the lower and upper boxes respectively, using the same numbering 571 

system. In this sequence covering just 9 minutes, four IFI16 foci appear simultaneously with 572 

an hDaxx signal, although in dot 3 the latter is weak at the 55.5 min time point.  The presence 573 

of IFI16 is transient in dots 1 and 2 in this sequence, while hDaxx is more stable. A longer 574 

sequence from the same time course is shown in Supplemental movie 5, in which several 575 

other examples of the same phenomena can be seen. 576 

 577 

Figure 6 578 

IFI16 responds to HSV-1 infection more rapidly than PML. HFs expressing EYFP-IFI16 and 579 

ECFP-PML were infected with ICP0 null mutant HSV-1 (MOI 25). After a 20 minute 580 

absorption period, the cells were examined by live cell microscopy, with images captured 581 

every minute, starting 35 min after addition of the virus. A selection of images from the time 582 

course are presented, showing a cell in which a novel focus of IFI16 appears, which later 583 

becomes PML positive before merging with a pre-exiting PML NB structure. The lower set 584 

of three rows presents expansions for each time point of the boxed are in the merged image of 585 

the 82 min time point. Further details are provided in the text.  586 

  587 

Figure 7 588 

hDaxx responds more rapidly than PML to HSV-1 infection. HFs expressing both ECFP-589 

hDaxx and EYFP-PML were infected with ICP0-null mutant HSV-1 and cells at the edge of a 590 

developing plaque were examined. A selection of images from an image sequence are 591 

presented, indicating the time (arbitrary) after the first image shown (which is image 54 of the 592 

original sequence, frame 24 as presented in Supplemental movie 7). The lowermost row 593 

shows a magnified view of the region that is boxed in the merged image of the leftmost 594 

column. Further details are provided in the text. 595 

 596 

 597 

 598 
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Figure 8 599 

A model for the dynamics of IFI16 and PML NB components to HSV-1 genomes. A full 600 

explanation is provided in the text. The hexagon on the left represents a full capsid bound to 601 

the outer side of a nuclear pore through which the naked viral genome (tangled line) is 602 

transferred into the nucleoplasm. 603 

 604 
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0 min                 21 min                42 min                63 min                84 min                105 min             120 min
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48 min                49.5 min            51 min               52.5 min             54 min               55.5 min             57 min
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HFs, EYFP-IFI16 and ECFP-hDaxx, infected with ∆ICP0 HSV-1 (MOI 100), times after addition of virus



HFs, EYFP-IFI16 and ECFP-PML, infected with ∆ICP0 HSV-1 (MOI 25), times after addition of virus
82 min                85 min               89 min                90 min               91 min                92 min               93 min
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HFs, ECFP-hDaxx and EYFP-PML, infected with ∆ICP0 HSV-1, cell at edge of plaque, times after first image
0 min                15 min                25 min                35 min                45 min                55 min               65 min
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