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Abstract In this paper we present a novel Gaussian

Process (GP) prior model-based sensor fusion approach to

dealing with position uncertainty and lag in a system

composed of an external position sensing device (Kinect)

and inertial sensors embedded in a mobile device for user

performance improvement. To test the approach, we con-

ducted two experiments: (1) GPs sensor fusion simulation.

Experimental results show that the novel GP sensor fusion

helps improve the accuracy of position estimation, and

reduce the lag (0.11 s). (2) User study on a trajectory-based

target acquisition task in a spatially aware display appli-

cation. We implemented the real-time sensor fusion system

by augmenting the Kinect with a Nokia N9. In the trajec-

tory-based interaction experiment, each user performed

target selection tasks following a trajectory in (a) the

Kinect system and (b) the sensor fusion system. In com-

parison with the Kinect time-delay system, our system

enables the user to perform the task easier and faster. The

MSE of target selection was reduced by 38.3 % and the

average task completion time was reduced by 26.7 %.

Keywords Gaussian processes � Human-computer

interaction � Sensor fusion � Uncertainty � User interfaces

1 Introduction

The Microsoft Kinect sensor can be enhanced with the

built-in inertial sensors in a mobile device [3, 7, 8]. We will

explore the complementary properties of these sensors and

apply a Gaussian Process prior model for fusing the low-

sampling-rate position sensed by the Kinect and the higher

frequency accelerations measured by the mobile inertial

sensors. The sensor fusion helps stabilise the skeleton joint

position and reduce the lag.

As the advanced sensors are becoming ubiquitous,

many human-computer interaction systems are composed

of a range of elements which observe the world via a

diverse set of sensors [41]. These sensors might work at a

range of sampling rates, depending on power constraints,

they may measure different derivatives of measurands

(e.g. position, velocity, acceleration) in the world and they

might have different noise characteristics [17]. If we can

fuse information from such systems in an efficient and

principled manner, we can potentially improve the capa-

bility of the system without adding extra sensing hard-

ware. A concrete example of this is integration of inertial

data from mobile devices such as phones or tablets with

position sensing from an embedded Microsoft Kinect

sensor, but the same principle can be found in many

systems [47].

The Microsoft Kinect can be used for skeleton tracking

and the research is useful for novel styles of interaction

[59]. However, the two problems with the Microsoft Kinect

skeleton tracking include the joint position uncertainty and

the latency (0.1 s) [1]. For human motion tracking with the

Kinect, the noisy position measurement is a common

problem [4]. Advanced sensor fusion techniques could

improve the usability by providing more accurate position

data, but external states cannot be known with absolute
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accuracy and uncertainty always persists [56]. Besides

sensor sources, hand tremor and human motor variability

will also affect the sensor measurements and induce

uncertainty [46].

To address this problem, we need to apply filtering or

sensor fusion techniques. However, filtering will introduce

lags, which reduces the system responsiveness [4], poten-

tially causing lower satisfaction and poor productivity

among users [42]. For instance, in virtual reality, high

latency can induce unpleasant user experience [5]. Besides,

to minimize both jitter and lag with a filter in the Kinect

system is challenging. However, with additional, comple-

mentary sensors, e.g. the inertial sensors [27], we can

improve the position estimation, reducing the jitter and the

lag of the system.

In order to fuse the Kinect sensor and the inertial sensors

for state estimation, we need dynamical system modelling

techniques. Bayesian filtering is a general framework for

recursively estimating the state of a dynamic system [21].

The basic idea of Bayes filtering is that we estimate the

state of the system with probabilistic models including the

state transition model and the observation model. For

instance, the Kalman filter and its variants (EKF and UKF)

have been widely used for filtering and sensor fusion [54,

55, 60].

Although Bayesian parametric filters, e.g. the Kalman

filter, are efficient, the data flexibility and the predictive

capabilities are limited [22]. In recent years, Bayesian

nonparametric models have become popular. Gaussian

Process (GP) priors are examples of nonparametric models

and have been applied for regression problems such as

robotics and human motion analysis [21, 52].

One of the drawbacks of applying Gaussian processes

for dynamical system modelling is that it is computation-

ally expensive. The major computation in a GP is the

inversion of the covariance matrix. Our model is an

autoregressive model and the covariance matrix is a fixed

matrix for the constant sampling rate (90 Hz), making it

very computationally efficient.

In this work, our primary contribution is to propose a GP

prior model-based sensor fusion approach to dealing with

the position uncertainty and lag problem in a conventional

position sensing system (Kinect). We propose a variation

of a Gaussian Process prior model [38] that incorporates

the low-sampling-rate measurements and the high-sam-

pling-rate derivatives in multi-rate sensor fusion. It takes

into account the different sampling rates and the different

noise characteristics of the Kinect sensor and the inertial

sensors. Based on the GP model, the system can infer the

position (and its uncertainty) more accurately and with less

delay than other filters. To test this, we built an experi-

mental setup where users followed trajectories and

performed target selection in a spatially aware display

application. The targeting action of the user was facilitated

with the sensor fusion prediction. Experimental results

show that the improved accuracy, and reduced delay from

the sensor fusion system, compared to the filtered system

means that users can acquire the target more rapidly, and

with fewer errors. They also reported improved perfor-

mance in subjective questions.

2 Related work

We consider the problem of fusing the Kinect sensor and

the built-in inertial sensors in a mobile device for

improving the state estimation in a non-linear dynamical

system and demonstrate the benefits of the GP prior model-

based sensor fusion in a spatially aware display application.

We cover related work including multisensor data fusion

and probabilistic approaches, and other related work

including mobile spatial interaction and spatially aware

displays, and target acquisition.

This work focuses on sensor fusion with GPs instead of

optimizing and improving the surrogate modelling [10, 11,

15] to improve the GP regression results. The surrogate

modelling has been investigated in literature. Forrester

et al. [11] investigated the applications of correlated

Gaussian process based approximations to optimization

and demonstrated that correlating analyses at multiple

levels of fidelity can improve surrogate modelling. The

use of surrogate models in engineering design was pre-

sented in [10]. The surrogate modelling was also investi-

gated in [15] that used gradient-enhanced kriging and a

generalized hybrid bridge function to improve the vari-

able-fidelity surrogate modelling. In this paper, we used

the standard optimization algorithm to estimate the

hyperparameters of the GP, proposed and generalized the

GP prior model-based approach to modelling the sensor

fusion system. Cokriging methods have been investigated

to take advantage of the covariance between related

regionalized variables [13]. GPDM [52] and the proposed

GP prior model both deal with human motion modelling.

However, they have different focuses. Wang et al. [52]

proposed GPDM to learn models of human pose and

motion from high-dimensional motion capture data.

Instead of learning a representation of the nonlinear

dynamics in human motion, we proposed the GP model to

fuse data from different sensors and to improve user

performance with the GP-based sensor fusion approach.

As the sensor measurements are noisy, we apply the GPs

to fuse data, taking account of the complementary prop-

erties of the sensors and the smoothness of human motion

measured by multiple sensors.
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2.1 Sensor fusion

Multisensor data fusion combines data from multiple sen-

sors, and related information from associated databases, to

achieve improved accuracies and more specific inferences

than could be achieved by the use of a single sensor alone

[14]. The sensor data can be combined at the data level, the

feature level and the decision level [14, 23]. It requires

interdisciplinary knowledge and techniques drawn from

digital signal processing, statistical estimation and proba-

bility, control theory and artificial intelligence [14, 28]. It

has widespread applications including military applica-

tions, e.g. multitarget tracking [43], and civilian applica-

tions, e.g. robotics [48]

The role of sensor fusion is to minimize the user’s

uncertainty of information [26, 32]. For any location-aware

system, position uncertainty is critical to the effective use

and acceptance of the system [2, 46]. In robotics, a primary

challenge is to deal with uncertainty, which arises for many

reasons, including the limitations of the model, the limited

perceptual capabilities of the sensors and the noisy mea-

surements, and the approximate nature of the algorithm.

Probabilistic approaches, among which Kalman filter is a

popular method are described in [48].

Sensor fusion, combining position sensor and inertial

sensors has been applied in inertial navigation system

(INS) and the motion control of robots [19]. For inertial

navigation applications, an INS-GPS integration system

combines INS measurements with GPS, providing greater

precision than any single system alone [49]. For motion

control of robots, the combination of vision sensors and

inertial sensors has been investigated in literature [6, 18].

Integration of visual and inertial sensing modalities opens

new application directions for robotics and other

fields [6].

Probabilistic data fusion methods, e.g. the Kalman filter

and its variants, the Monte Carlo and the Sequential Monte

Carlo, are widely used in robotics. Although many sensor

fusion algorithms exist in literature, there is no standard

and well-established evaluation framework to assess the

performance of data fusion algorithms [20].

The Gaussian Process prior has been studied in [29]. The

Kalman filter can be seen as a special case of Gaussian

processes (GPs) [24, 40]. However, the Kalman filter uses

the physical state equations, that is, it uses the state tran-

sition model and the measurement model for prediction and

updating respectively while the covariance function in the

GP defines similarity between data-points, allowing us to

make predictions based on the closeness of these data-

points.

Gaussian processes have been widely used for sensor

fusion. In [44], Gaussian processes provide an approach to

nonparametric modelling which allows a straightforward

combination of function and derivative observations in an

empirical model. In [33], the transformed Gaussian Process

priors were applied for estimating the derivatives of noisy

sensor measurements and sensor fusion. In [51], Gaussian

processes were applied for terrain data fusion.

2.2 Other related work

2.2.1 Mobile spatial interaction and spatial aware display

Ubiquitous computing provides the potential to associate

information with physical spaces. Mobile spatial interac-

tion is an emerging field in the location-aware applications

[46]. Spatially aware displays provide access to more

information by mapping physical movement of the device

to the movement in virtual space. In this way, the screen of

handheld device is like a window, through which the user

can see the virtual information stored in the physical space.

Fitzmaurice proposed this idea in 1993 [9]. Peephole dis-

plays [58] show a movable window on the large 2D virtual

space and augment the physical space around a user with

digital information.

2.2.2 Target acquisition

Target acquisition has been studied in HCI and plays an

important role in mobile augmented reality (AR) applica-

tions [39]. However, lags significantly degrade human

performance in target acquisition tasks [30, 53]. Besides,

position uncertainty, i.e. spatial jitter, may also affect

performance [37]. Latency and jitter adversely affect

human performance in 2D pointing tasks with stationary

targets [36].

3 Gaussian Process model for sensor fusion

3.1 GP regression

3.1.1 GP prior prediction

Consider a nonlinear dynamical system g(x) with known

inputs x and observed outputs y. At each time instant i, the

measurement yi is a function of the latent state xi.

yi ¼ gðxiÞ þ ei; ð1Þ

where ei denotes Gaussian system noise, and ei �Nð0; r2Þ,
where r is the standard deviation.

Given a set of N training data-points xi; yi; i ¼ 1;f
. . .;Ng, where X ¼ x1; . . .; xN½ �T is an N-dimensional vector

of inputs. In this work, the time instants are used as the

training inputs. Y ¼ y1; . . .; yN½ �T is a vector of output data

Int. J. Mach. Learn. & Cyber.

123



and assumed to be drawn from an N-dimensional normal

distribution,

Y �N 0;Rð Þ; ð2Þ

where R is the N � N covariance matrix, the elements of

which are functions of inputs X. The covariance function is

of the form

covðf ðxiÞ; f ðxjÞÞ ¼ v0 exp �
X

k

xk xi;k � xj;k
� �2

 !
þ r2ndij;

ð3Þ

where v0;xk; r2n
� �

are the hyperparameters. v0 represents

the signal variance. k ¼ 1. x1 is related with the length

scale and r2n represents the noise variance.

Based on the training input X, the covariance matrix C

can be determined according to (3). Given a new input

vector x�, we can find the predictive distribution of the

corresponding output y� according to (4) and (5).

lðx�Þ ¼ Cðx�;XÞ CðX;XÞ þ r2nI
� ��1

Y ; ð4Þ

where r2n represents the variance of the Gaussian noise

defined in (1).

r2ðx�Þ ¼ Cðx�; x�Þ � Cðx�;XÞ CðX;XÞ þ r2nI
� ��1

CðX; x�Þ;
ð5Þ

where Cðx�; x�Þ represents the covariance matrix between

the test inputs and themselves. Cðx�;XÞ represents the

covariance matrix between the test inputs and the training

inputs. C(X, X) represents the covariance matrix between

the training inputs and themselves.

3.1.2 Transformations of Gaussian Process priors

Instead of observing Y directly, we assume that the

observation m is a transformation of the latent variables y.

In the continuous case,

output ¼
Z

X
system� input dX; ð6Þ

mðtÞ ¼
Z

Kðt; xÞyðxÞ dx; ð7Þ

which in discrete sampled form is

mk ¼
XN

i¼1

KkiYi: ð8Þ

The input-output relationship of a continuous system is

expressed in (6), where the input is convolved with the

system to yield the output and X is defined as the inde-

pendent variable (the domain). In (7), we define a kernel

function K(t, x). The sensor characteristics described in

K(t, x) could be nonlinear, changing with state x, while

retaining a linear transformation on discretisation. Note

that although the discretised form K is a linear transfor-

mation, the original kernel K(t, x) could represent a non-

linear mapping. Equation (7) is defined as a general form to

represent the relationship between the transformation m

and the latent variables y. Its discrete sampled form is (8).

In other words, for the vector of latents Y, we observe

outputs M ¼ KY with known K, and Y being the unknown

state of the latent GP. For instance, this could correspond to

an inverse problem such as image restoration, where the

observable is the image, the system is the lens, and the

scenery is the input. The K represents the operations, e.g.

filters, or differentiation, applied to the latent variables

before observation, reflecting sensor characteristics or

intervening transformation of the states.

The vector M is drawn from an n-dimensional normal

distribution:

M�N 0;KRKT þ RM

� �
; ð9Þ

where R is the covariance matrix defined in (2) and RM is

the diagonal matrix of observation variances.

The transformed GP priors approach can be generalized to

solve the data fusion problem in a wider range of sensor fusion

systems. Although the transformations are limited to approxi-

mations of derivative transformations in this paper, thismethod

can be generalized through the transformation matrixK. In this

paper, we have two sources, that is, the positioning sensor and

the mobile device that measures the acceleration. In the case of

observationMcomposed of a number of vectorsMi ¼ KiY , we

can generalize (8) in the following way.

M1

M2

..

.

Mn

2

66664

3

77775
¼

K1

K2

..

.

Kn

2

66664

3

77775
Y ; ð10Þ

where Mi represents the measurements sensed by sensor i,

i ¼ 1; . . .; n. Ki denotes the corresponding transformation

matrix. In this way, we can apply the transformations of GP

priors to fuse data from multiple sources.

3.2 Gaussian Process model for multi-rate sensor

fusion

3.2.1 Problem statement for dynamical system modelling

We consider the situation when the user holds a mobile

device in the hand and tries to explore the digital infor-

mation embedded in the Kinect space in the room. The

system state desired to estimate is the position of the hand

(phone). The problem is that the Kinect position mea-

surements are noisy and delayed. We aim to increase the

stability of the position and reduce the lag by using the GP
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prior model-based sensor fusion approach to fusing the

low-sampling-rate position sensed by the Kinect and the

higher frequency acceleration measured by mobile inertial

sensors. We define the Kinect latency to be 0.1 s [1, 25].

The human and the environment can be thought of as a

combined dynamical system, in which the human motion is

observable with multiple sensors. The skeleton data sensed

by the Kinect and the hand motion data sensed by mobile

inertial sensors are shared via Wireless LAN. This is a

closed-loop system with two subsystems, as illustrated in

Fig. 1. The human is subsystem 1 while the computing

device system, including the mobile phone, the multiple

sensors and the PC used for sensor fusion, can be treated as

subsystem 2.

In subsystem 2, the phone can be seen as a moving

target when the hand is moving. The user controls the

moving of the phone. We can treat the phone as a flying

machine, the input of which is the force of the hand. The

motion of the phone is observed by multiple sensors. The

trajectory is sensed by the Kinect sensor. Meanwhile, the

orientation and the acceleration of the phone are observed

by the built-in inertial sensors. The subsystem 2 is

observable as we can determine the state of the system

through the position observations and the acceleration

measurements. This subsystem 2 is a time-delay system as

the position is sensed by the Kinect, which has latency. The

acceleration is sensed by the inertial sensors at a much

higher sampling rate. We treat the acceleration as a non-

delayed measurement. Our goal is to model this dynamical

system with the GP prior method. The phone (hand)

trajectory is defined by the movement of the user’s muscles

which drive nonlinear trajectories of the rigid body. The

system we are modelling is a nonlinear dynamical system

g(x) with known inputs x and observed outputs y. At each

time instant i, we get a measurement yi, which is a function

of the latent state xi.

yi ¼ gðxiÞ þ ei; ð11Þ

where ei denotes Gaussian system noise.

In order to estimate the system state by fusing all the

available observations including the positions and the

accelerations, we need to illustrate the data availability in

the sensor fusion system.

3.2.2 Data availability in the sensor fusion system

Now we illustrate the data availability with Fig. 2. In order

to illustrate the availability of sensor measurements at

different time instants, we need to take account of the time

delay (0.1 s) of the Kinect system.

In Fig. 2, we show the timing information and the

delayed observations at t ¼ 15
90

s. The first row represents

the timing information and the second row represents the

acceleration measurements from the inertial sensors. In the

third row, considering the effect of latency, the corre-

sponding Kinect outputs are denoted as pdi ; i ¼ 1; 2; 3; 4. In

the fourth row, it is shown that the actual available

observations at t ¼ 13
90

s include 13 acceleration measure-

ments and 2 position measurements, which are the noisy

version of the system state (position) at t ¼ 1
90

s and

t ¼ 4
90

s, respectively. We denote them as p3 and p4. The

corresponding Kinect outputs become pd3 and pd4, which are

acquired at t ¼ 10
90

s and t ¼ 13
90

s, respectively.

3.2.3 Autoregressive GP model

Our proposed model is an autoregressive model, which acts

like a moving ‘‘window’’. Gaussian Process regression is a

Fig. 1 Illustration of a closed-loop system with two subsystems

including subsystem 1 (the human) and subsystem 2 (the computing

system consists of the mobile phone, the multiple sensors and the PC)

1
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90

s 3
90
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90
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90
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90
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90
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90

s 9
90
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90

s 11
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s 12
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s 14
90
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90

s

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a 15a

1
dp 2

dp 3
dp 4

dp

3p 4p

Fig. 2 Illustration of data availability: (1) The first row represents the

time instants (90 Hz) (2) The second row represents the non-delayed

acceleration measurements. (3) The third row represents the Kinect

position measurements. They are the delayed noisy version of the

system state (position). (4) Due to the 0.1 s latency, we assume that at

t ¼ 13
90
s, the available position measurements include pd1, p

d
2, p

d
3 and p

d
4.

pd3 and pd4 represent the delayed noisy version of the system state

(position) at t ¼ 1
90
s and t ¼ 4

90
s
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linear smoother [38] and the autoregressive Gaussian

Process (ARGP) was applied for time series modelling in

[12, 50]. In an ARGP of order L, the past L values YðLÞ are

taken as the GP input while the output is yt.

yt ¼ f YðLÞ
� �

þ et; ð12Þ

where the GP function f �GP 0; kð Þ (k is the covariance

matrix) and the white noise et �N 0; r2ð Þ, where r is the

standard deviation.

Here we put the ARGP model in a sensor fusion

framework. The sensor observations are the inputs of the

ARGP model. The problem is that the sensor observations

include the delayed low-sampling-rate positions sensed by

the Kinect and the high-sampling-rate accelerations mea-

sured by the inertial sensors. We want to build a GP prior

model that incorporates these observations and takes into

account the different noise characteristics of these sensors.

We define the state of interest yt as

yt ¼ f pðLÞ; aðlaÞ
� �

; ð13Þ

where yt represents the GP predictive positions. The last L

position measurements sensed by the Kinect are denoted as

pðLÞ, whereas aðlaÞ are the last la acceleration measurements

sensed by the inertial sensors, and la ¼ 3Lþ N0 � 2. The

past L Kinect positions are the low-sampling-rate mea-

surements in the assumed high-sampling-rate position

space.

Considering the different sampling rates of these sen-

sors, we have more acceleration measurements than posi-

tion measurements. We define N0 for alignment of delayed

position and non-delayed acceleration. N0 is a number that

represents the latency between the Kinect position mea-

surements and the acceleration measurements.

N0 ¼
dT

Dt
¼ dT � f0; ð14Þ

where dT denotes the time delay ( 0.1 s) [1]. f0 denotes the

sampling rate of the inertial sensors, i.e. 90 Hz. Thus,

N0 ¼ 9.

The graphical model for the GP sensor fusion is shown

in Fig. 3. As defined in (13), every time the ‘‘window’’

takes the most recent L position measurements and the

most recent la acceleration measurements. During the

time period when the position measurements are

unavailable, i.e. the most recent 0.1 s latency, the GPs

make position prediction based on the most recent L

position measurements and the most recent la acceleration

measurements.

Now we have the state equation of the dynamical sys-

tem, as defined in (13). Following this, we propose a novel

Gaussian Process prior model for the dynamical system

modelling. In our work, the human motion is relatively

continuous and smooth in the trajectory-based target

acquisition task. Here the covariance function chosen is a

general smoother, the parameters of which are tuned to

typical human motion. The parameters for the model are

learnt from the training data using the maximum likelihood

method. The GP model training was done offline, thus did

not affect the performance of the online prediction. As GP

regression is a linear smoother, the prediction is a linear

combination of the training targets.

For sensor fusion with the GP prior model, the targets

include the L positions and the la accelerations. If we can

place an appropriate prior on the function space of the

combination of position and acceleration, we can make

position predictions based on the non-delayed accelerations

during the 0.1 s. In order to find the joint distribution of the

low-sampling-rate position Plow and the high-sampling-rate

acceleration Acchigh, we apply the GP prior method and

calculate an overall covariance matrix Call, so

Plow

Acchigh

� 	
�N 0;Callð Þ: ð15Þ

So the following work is to apply GPs in a sensor fusion

manner and find this joint distribution of the low-sampling-

rate position and the high-sampling-rate acceleration with

the GP prior method. Firstly, we discuss the GP prior

prediction. Following this, we present the transformed GP

priors and propose the novel and improved GP prior model

for multi-rate sensor fusion, and give a detailed description

on how to apply this model for fusing the Kinect sensor and

inertial sensors.

3.2.4 GP prior model-based sensor fusion

The Gaussian Process prior framework can incorporate

measurements and measurements of derivative

1t 2t 3t 4t

1f 2f 3f 4f

1a

1p 2p

4a2a 3a 5a

5f

5t

Fig. 3 Graphical model for the GP sensor fusion. The position pi
(i ¼ 1; 2; . . .) and acceleration aj (j ¼ 1; 2; . . .). The sensors have

different sampling rates (30 Hz and 90 Hz respectively, dt ¼ 1=90 s).

The higher frequency acceleration can augment the low-sampling-rate

position. The Autoregressive GP model acts like a ‘‘slide window’’,

taking the most recent L (L ¼ 5) position observations and the

corresponding la acceleration measurements, and giving the predic-

tive positions
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information, and allows GPs to perform sensor fusion of

multiple observations in the form of multiple levels of

derivatives of a measurand. In this paper, we further

develop the work on GP priors in [33] by proposing a novel

and improved GP prior model, which takes account of the

different sampling rates and different noise characteristics

of the sensors, and the Kinect latency in our problem.

Consider N observations of inputs X, i.e. the time

instants (the time step is 1
90

s ) and outputs Yhigh, i.e. the

targets in the assumed high-sampling-rate position space,

assuming Yhigh are drawn from an N-dimensional normal

distribution.

Yhigh �N 0;Rð Þ; ð16Þ

where R is the N � N covariance matrix, the elements of

which are functions of inputs X.

We denote the Kinect measurements as Ylow, which are

the low-sampling-rate observations in the high-sampling-

rate position space. Ylow ¼ ½y1; . . .; yn�T is denoted as Mp,

and the high-sampling-rate acceleration measurement

Ma ¼ ½a1; . . .; aN �T .
Following this, we assume the observations M ¼ KYhigh,

K is the transformation matrix. For the Kinect, the low-

sampling-rate position measurements Mp ¼ KpYhigh, where

Kp is defined in (17). For the mobile device, Ka is defined

in (18), the acceleration measurements Ma ¼ KaYhigh and

Dt ¼ 1
90
s.

Kp ¼

1 0 0 0 0 0 0 0 0 � � �
0 0 0 1 0 0 0 0 0 � � �
0 0 0 0 0 0 1 0 0 � � �

..

. . .
.

2
66664

3
77775

ð17Þ

Ka ¼
1

Dt2

1 �2 1

1 �2 1

. .
. . .

.

1 �2 1

2

66664

3

77775

ð18Þ

Ka is the classic second difference (derivative) operator

(off-diagonal elements equal zeros). The connection

between the low-sampling-rate positions and the high-

sampling-rate accelerations can be expressed in an overall

Kall matrix, which is defined in (19). By constructing an

overall Kall matrix, we can build a Gaussian Process prior

model for sensor fusion.

Kall ¼
Kp

Ka

� 	
: ð19Þ

According to (15), we need to find the joint distribution of

low-sampling-rate position and the high-sampling-rate

acceleration. The GP training target Mall includes the

position and acceleration.

Mall ¼
Mp

Ma

� 	
¼ pn�Lþ1; . . .; pn; al�laþ1; . . .; al½ �T ; ð20Þ

where the most recent position pn and the most recent

acceleration al are acquired at the same time instant.

With the transformed GP prior method, we have this

joint distribution

Mall ¼
Mp

Ma

� 	
�N 0;KallRK

T
all þ

Rp

Ra

� 	
 �
; ð21Þ

where the Rp and Ra represent the diagonal matrices of

position and acceleration observation variances respec-

tively (off-diagonal elements equal zeros). Rp has equal

constants on the diagonal. Ra also has equal constants on

the diagonal. We estimated these parameters by measuring

the sensor noise characteristics. We determined the vari-

ance of the measurement noise through the sensor mea-

surement of uncertainty illustrated with a histogram, and its

Gaussian fit.

According to (22) and (23), we can calculate the con-

ditional mean and variance of the predictive position Pfusion

with GP sensor fusion method.

l2j1 ¼ IlaR12K
T
all KallRK

T
all

� ��1
Mall; ð22Þ

R2j1 ¼ R2 � IlaR12K
T
all KallRK

T
all

� ��1
KallR21I

T
la
; ð23Þ

Pfusion ¼ IlaR12Kall
T KallRKall

T þ
Rp

Ra

� 	
 ��1

Mall;

ð24Þ

where Ila is the identity matrix of size la. Pfusion represent

the predictive positions with the sensor fusion approach.

R12 represents the covariance matrix between the training

inputs and the test inputs, whereas R denotes the covari-

ance matrix between the training inputs and themselves.

The Rp and Ra represent the diagonal matrices of position

and acceleration observation variances (off-diagonal ele-

ments equal zeros) respectively. R is a la � la matrix. Kall is

a ðLþ laÞ � la matrix as Kp is a L� la matrix in the form

of (17) and Ka is a la � la matrix in the form of (18).
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3.3 Use of GP model to fuse Kinect and inertial sensors

We illustrate how to take the proposed sensor fusion

approach to predicting the position in the Algorithm 1.

In Experiment 1 in Sect. 5, we used L ¼ 5. Now we

illustrate how to construct a Kall matrix when n ¼ 2\L.

From (17), (18) and (19), we know how to construct the

overall Kall matrix. How does it relate to the measure-

ments including the positions and the accelerations here?

In Fig. 2, by the time we have two observations pd3
and pd4, we have 13 accelerations in the meantime.

Here Kp is a 2� 13 matrix and Ka is a 13� 13 matrix.

Thus,

Kall;L¼2 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0
1

Dt2
�2

Dt2
1

Dt2

. .
.

. .
.

. .
.

1

Dt2
�2

Dt2
1

Dt2

2
66666666666666664

3
77777777777777775

:

ð25Þ

From (25), we can see that there are 3Lþ 7 accelera-

tions (13 here) when there are L position observations

(2 here). There are 9 more accelerations (a5; . . .; a13
here).

Kall;L¼2Yt¼13
90
s ¼ Mall;L¼2; ð26Þ

where Yt¼13
90s

is the assumed high-sampling-rate position

observations and Mall;L¼2 ¼ pd3p
d
4a1a2. . .a13

� �T
are the

targets including the low-sampling-rate positions and the

high-sampling-rate accelerations. If we set the test inputs to

t ¼ 5
90
s; . . .; 13

90
s, the prediction is based on a5; . . .; a13 dur-

ing the test inputs period and we get 9 predictive positions

with GPs according to (24).

4 System overview

The equipment includes Microsoft Kinect, SHAKE SK71

[57] and Nokia N9. The frame rate of the Kinect sensor is

30 Hz, whereas the sampling rate of inertial sensors is

much higher, 90 Hz. The OpenNI drivers and the motion

tracking middleware (NITE) are used [35].

4.1 Augmenting the Kinect system with a mobile

device in a spatially aware display

The system architecture of our spatially-aware display

application is shown in Fig. 4. Our design focuses on a 2D

(the vertical XY plane) version of a spatially-aware display.

We aim to test whether a sensor fusion system improves

user performance by designing a trajectory-based target

acquisition task with this system.

An example application is shown in Fig. 5. A user is

exploring the digital information stored in the physical

space. By moving his phone to different locations follow-

ing a trajectory, he can perform a target selection task.

Imagine this is a virtual bookshelf application [34]. We

store different digital books in different targets’ locations.

Then the user can search and browse those digital books by

category. Since accurate positioning and feedback is criti-

cal to this application, we need to deal with the Kinect

position jitter. The lags and overshoot problems occur

when we apply a position-only Kalman filter for filtering

the fast jitter on the hand movement data. Our novel GP

sensor fusion method helps reduce the lags and deal with

the overshoot problems when the user tries to find the

target by moving the hand quickly.

The Nokia N9 is equipped with a 3-axis accelerometer,

which can be used to estimate the hand acceleration. The

Kinect is put on a table. The user stands in front of the

Kinect with the N9 held in the right hand, and is directly

1 http://code.google.com/p/shake-drivers/.
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facing the XY plane, i.e. the vertical interaction plane.2 The

information (the trajectory and the targets) is spread out on

a flat virtual space. The phone acts as a movable window

(size 48 mm � 86 mm) on this much larger 2D virtual

canvas. The 2D canvas covers a 2 m � 1 m area.

When the user moves the hand in the 2D plane in front

of the Kinect, he/she tries to explore the digital information

stored in the physical space. The trajectory and the targets

are located on the virtual canvas, which is shown in

Fig. 11. There is a mapping between the 2D real world

space (mm) and the 2D virtual canvas (pixels). In our

application, 1 mm � 1 mm = 10 pixels � 10 pixels. Along

the x-axis, the range is ð�1000; 1000Þ mm, whereas

(0, 1000) mm for the y-axis.

The 2D plane is like a big virtual canvas, and the phone

screen is a small movable window, through which we can

see a part of the virtual canvas. The hand position

(x, y) indicates the phone position. When the hand moves,

the Kinect and the accelerometers sense this, and the pre-

dictive position from the GP sensor fusion is sent to the

phone to update the display on the phone screen. The user

needs to move the hand along the trajectory. When a target

appears on the screen, the user performs target selection. A

selection occurs when the virtual button on the phone screen

is tapped. On the N9, we designed a square virtual button

and put it at the right side of the screen as shown in Fig. 10.

Whenever the user presses the button, the phone will send a

signal and the PC will record the current hand position.

In the augmented system, a Wireless LAN is used for

data transmission. The hand tracking positions sensed with

the Kinect and the accelerometer data from the N9 are sent

to the PC via WiFi. The position measurements and the

accelerations are fused with our proposed GP model

method for position prediction. The data transmission

between the phone and the PC includes three parts:

1. The phone transmits the accelerometer data to the PC.

2. Sensor fusion with our novel GP model on the PC. The

PC sends the GPs predictive position (x, y) to the

phone.

3. The phone sends a signal to the PC when the user

presses the virtual button to select the target.

This can be seen in Fig. 4.

Four coordinate systems are involved in our sensor

fusion system. (1) Earth’s North-East-Down (NED) frame

(e): this is SK7’s reference frame. (2) Kinect frame (k): the

joint’s 3D coordinates are expressed in this coordinate

Fig. 4 System architecture. A Wireless LAN is used for UDP

connection. The OpenNI and NITE middleware are used. The Kinect

senses the hand position and sends it to the PC. The accelerometer

data from the phone is also sent to the PC. Our novel GP sensor fusion

model is applied for fusing the position and the acceleration. The GP

predictive position is sent to the phone. The phone is a movable

window on the 2D virtual canvas, on which we put a pre-designed

trajectory and 6 targets. When the virtual button on the phone screen

is pressed, the target on the canvas is selected and the current hand

position is sent back to the PC

Fig. 5 Spatially aware display application. A phone user performs a

trajectory-based target selection task in 2D space

2 In this implementation a fixed rotation matrix between the phone

body frame and the Kinect frame is assumed.
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system. (3) SK7 / N9 body frame (b). (4) N9 phone image

frame (i): The top left corner is (0, 0) (pixels) in the

landscape mode. A detailed description on how to estimate

the acceleration through inertial sensor fusion can be found

in [7]. In this paper, we focus on how to use the proposed

GP prior model to fuse the Kinect position and the accel-

eration measured by mobile inertial sensors.

5 Experiments

5.1 Experiment 1 : sensor fusion

We conducted an experiment to test the performance of the

proposed GP prior model-based sensor fusion system. In

this experiment, we used a leap motion controller to sense

the hand position (90 Hz). The V2 Tracking Beta SDK

provides the hand tracking with high accuracy and near-

zero latency [31]. This was used as the baseline for eval-

uating the performance of the GP sensor fusion method.

Meanwhile, we collected the hand position data sensed by

the Kinect and the hand acceleration measured by the

mobile inertial sensors. We compared the sensor fusion

approach with the position-only Kalman filter prediction

method and the position-only GP, and concluded that the

GP prior model-based sensor fusion is superior to the two

methods. The proposed approach helps improve the accu-

racy of position estimation and reduce the lag.

5.1.1 Experiment design

Before starting the experiment, we calibrated the position

tracking systems including the Leap Motion Controller and

the Kinect sensor. The inertial sensors were also calibrated.

We aligned the Kinect frame and the Leap Motion tracking

frame, and analysed the hand movement along the x-axis as

an example. In this way, the two frames have the same

origin along the x-axis in the space.

In this experiment, the user’s right hand motion was

sensed by the Leap Motion Controller, the Kinect and the

inertial sensors pack. The user put the hand above the Leap

Motion Controller (the height is approximately 20 cm), and

performed a hand movement with a mobile device (SK7)

held in the hand in the Kinect field of view. The distance

between the Kinect and the Controller is 1.5 m. At the

beginning, the user put the hand above the controller, then

moved the hand along the þx-axis (the distance is approx-

imately 20 cm) and then stopped. The process took 2 s.

5.1.2 Experimental method

In this experiment, we test the GP prior model-based sensor

fusion approach. We chose L ¼ 5 as this can give a good

prediction result and is very computationally efficient. For

a constant sampling rate (90Hz), the covariance matrix is a

fixed matrix ð27� 27Þ (20). We built a position-only

Kalman filter, which uses a continuous Wiener process

acceleration model as discussed in [7]. This position-only

KF makes 1 step ( 1
30

s) prediction first, then the Kinect

position measurement is used to update the system state.

Based on the updated state, this KF makes 3 steps ahead

prediction to deal with the 0.1 s delay. We also compared

the GP sensor fusion with the position-only autoregressive

GP method, which uses the most recent L position mea-

surements for multi-step ahead prediction. As there is a 0.1

s delay and the sampling rate of the Kinect is 30 Hz, the

position-only GP makes 3 steps prediction. The position-

only GP and the GP sensor fusion use the same hyperpa-

rameters, the maximum likelihood estimate of which can

be calculated using the time-stamped human motion

training data and the standard optimisation algorithm. We

collected and used the time-stamped position measure-

ments (10 s, 300 data-points) sensed by the Kinect as the

training dataset.

The uncertainty of Kinect position measurements is

measured to be (SD) r ¼ 8 mm. The uncertainty of the

acceleration estimation in the Kinect system is measured to

be (SD) ra ¼ 100 mm/s2. The GP hyperparameters are set

to v0 ¼ 5:66� 104, x1 ¼ 4:19, r2y ¼ 64 and r2a ¼ 1002.

5.1.3 Experimental results

Measurements

In the experiment, the Kinect sensed the hand position.

The hand acceleration was measured by mobile inertial

sensors held in the hand. The hand position sensed by the

leap motion controller was used as the baseline. Figure 6

illustrates the x-axial position measurements (in the upper

panel) and the corresponding x-axial acceleration mea-

surements (in the lower panel). We can see that the Kinect

position measurements are noisy and delayed. The GP

sensor fusion is to fuse the noisy, delayed low-sampling-

rate position observations and the higher frequency accel-

eration measurements with the proposed GP prior model.

Sensor Fusion and Comparison In this part, We fuse the

Kinect position observations and the acceleration mea-

surements with the GP prior model-based sensor fusion

approach. We compare it with the position-only KF and the

position-only GP.

1. The position-only Kalman filter prediction

Figure 7 shows 3 signals, including (1) the baseline

data, (2) the position measurements and (3) the predictive

positions with the position-only KF. We analysed the

accuracy of the position predicted with this position-only

KF by comparing the prediction results with the baseline

data. The results are summarised in Table 1.
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2. Comparison with the position-only GP

In addition to the position-only KF, we also compare the

GP sensor fusion with the position-only GP. The experi-

mental results are shown in Fig. 8, which shows 4 signals,

including (1) the baseline data, (2) the Kinect position

measurements, (3) the position-only GP prediction result

and (4) the predictive positions with the GP sensor fusion

method. We use the method described in the Algorithm 1.

We can see that the position prediction with the GP sensor

fusion is smoother in comparison with the position-only GP
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estimated with inertial sensors

and expressed in Kinect
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result. Besides, the uncertainty of position prediction with

the GP sensor fusion is much smaller. Moreover, the sys-

tem lag is reduced with the GP sensor fusion approach.

This proves that the high-sampling-rate acceleration can

compensate for the effect of position uncertainty and lag in

the Kinect system.

3. Accuracy of position estimation

In order to analyse the accuracy of the mean position

prediction, we calculate the RMSE based on the baseline

data. For the KF, the position-only GP and the GP sensor

fusion approach, this RMSE is the root of the average of

the squares of the difference between the mean predictive

positions and the baseline data. We compare the GP sensor

fusion approach with the position-only KF prediction and

the position-only GP prediction method. The results are

summarised in Table 1.

In comparison with the baseline position data, the RMSE

of the noisy and delayed position measurements sensed by

the Kinect is 19.75 mm. The measured uncertainty is 8 mm.

The RMSE of the mean position predicted by the position-

only KF is 29.19 mm. The uncertainty (standard deviation

SD) after convergence is 15.84 mm. The RMSE and uncer-

tainty of the mean position predicted with the GP approaches

are illustrated in Table 1. We can see that the sensor fusion

with GP helps reduce the error of mean position prediction

and the uncertainty of the prediction. In comparison with the

position-only GP, the RMSE of the mean position prediction

is reduced by 35.8 % and the uncertainty of the mean posi-

tion prediction was reduced by 59.7 %.

Thus, the proposed approach is superior to the position-

only KF and the position-only GP. As the KF is a special

case of a GP and the proposed approach can be put in a KF

framework and implemented by carefully designing a

customised variant of the multi-rate KF, there is no need to

compare the proposed approach with a sensor fusion-based

KF. We conclude that the proposed approach helps

improve the accuracy of the position estimation.

4. Lag reduction

Now we use the unbiased estimate of the cross-correlation

function to analyse the time delay between the GP predictive

position signal and the Kinect position measurement signal.

Figure 9 shows the cross-correlation sequence in a length

359 vector, where the GP predictive position signal and the

Kinect measurement signal are both vectors of length 180

(interpolation 90 Hz), respectively. The peak was acquired at

190. Thus, the lag was reduced by 0.11 s.

5.1.4 Summary on experiment 1

In this experiment, we tested the proposed GP prior model-

based sensor fusion approach. The sensor fusion with the

Table 1 Comparison of accuracy—compare the GP sensor fusion

approach with the position-only KF and the position-only GP method

Methods Accuracy (mm)

RMSE of mean prediction SD (r)

Position-only KF 29.19 15.84

Position-only GP 10.76 29.89

GP sensor fusion 6.91 12.04
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Fig. 8 Comparison of position-

only GP and sensor fusion with

GP (L = 5). Plots show the mean

�2r. The figure shows 4
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the position measurements (3)

the position-only GP prediction

(4) the prediction with the GP

sensor fusion
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proposed GP prior model helps improve the accuracy of

position estimation, and reduce the lag of the conventional

Kinect system by 0.11 s.

5.2 Experiment 2: user study—trajectory-based

target acquisition task

Our user study aims to test our sensor fusion system when

the user performs a 2D trajectory-based target selection

task in a spatially aware display application.

5.2.1 Participants and apparatus

There were 12 participants in total ( 6 male, 6 female).

They were aged between 20 and 35 years (mean age 28).

Participants were recruited by email, and some volunteered

from the academic community in our school. The task was

performed on a Nokia N9, which is a phone with 3.9 inches

display ( 480 pixels � 854 pixels or 48 mm � 86 mm).

5.2.2 Data collection and analysis

We aim at analysing the accuracy of target selection and

the task completion time. In the task, we recorded the hand

position sensed by the Kinect and the hand acceleration

measured by the Nokia N9. When the participant per-

formed the target selection task, the hand position was

recorded. We analysed the accuracy of target selection.

Besides, we measured and analysed the task completion

time. Following the experiment, the participants completed

the NASA Task Load Index [16] questionnaire, which

gathered subjective assessment of usability of the system.

5.2.3 Experiment design

The participants were instructed to interact with the system

in a comfortable way. Then they were instructed to perform

a trajectory-based target selection task as accurately and

quickly as possible. Each participant performed the task in

(1) the Kinect system (2) the sensor fusion system. After

each session, the user completed the questionnaire. The

users were not informed which system they were using.

Task 1 and task 2 were denoted on the questionnaire.

At the beginning of the experiment, the user stood in

front of the Kinect with a mobile device (Nokia N9) held in

the hand and was directly facing the XY plane, i.e. the

vertical interaction plane. Once skeleton tracking locked

on, the user moved his hand following the pre-designed

trajectory, which was only shown on the phone screen. No

visual information is present in the real world outside the

device’s display. Whenever a target appeared on the tra-

jectory, the user selected it by pressing the virtual button on

the phone screen. Meanwhile, this position was recorded

and sent back to the PC. It was compared with the ground

truth data (we know the real position for the targets) for

error rate analysis. This can be seen in Fig. 10.

5.2.3.1 Trajectory design We used a combination of a

straight line and a square wave curve for modelling the

trajectory for the target selection task. Six targets were
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located along the trajectory. The pre-design trajectory and

the targets are shown in Fig. 11.

5.2.4 Experimental method

The Kinect senses the position of the hand and the N9

accelerometer measures the hand acceleration. The

accelerometer embedded in the N9 was calibrated before

the experiment started. When the PC receives the Kinect

position and the acceleration sensed by the N9, the GP

prior model is applied for sensor fusion. We use the same

setting (L ¼ 5) as in Experiment 1. The GP predictive

positions, i.e. (x, y) mm coordinates, are sent to the phone

for updating the canvas display. The predictive hand

position is treated as the position of the screen centre. Thus,

the digital content (e.g. a part of the trajectory) located in

this area can be displayed on the screen. We compared our

system with the conventional Kinect system, in which a

position-only Kalman filter [7] that uses a continuous

Wiener process acceleration model was applied for filtering

the noisy position measurements. The filtered position was

sent to the phone for updating the canvas display. We

compared this Kinect system with our sensor fusion

system.

5.2.5 Experimental results

Accuracy of target selection The target selection accuracy

is a subjective measurement. When the user presses the

button, the recorded position is the place where the user

believes the target is located. We compared the target

selection position with the ground truth data, i.e. the real

target position defined on the virtual canvas. In order to

compare the accuracy of target selection in two systems,

we calculated mean square error (MSE) and the root mean

square error (RMSE).

The comparison results are shown in Fig. 12. The MSE

of target selection in the Kinect system is 3:7263� 105

pixel2 (SD 2:1096� 105). For the sensor fusion system, it

is 2:2975� 105 pixel2 (SD 1:2452� 105). The MSE is

reduced by 38.3 %. The RMSE of target selection in the

Kinect system is 610.44 pixel. For the sensor fusion sys-

tem, it is 479.32 pixel. The RMSE is reduced by 21:5%.

Results were analysed using a repeated measures

Analysis of Variance (ANOVA). The sensor fusion system

has a statistically significant effect on the target selection

accuracy, Fð1; 11Þ ¼ 10:86, p ¼ 0:0071.

Task completion time

The task completion time for our sensor fusion system

(M = 32.41 s, SD = 12.04 s) is shorter than that for the

Fig. 10 The interface on the Nokia N9 phone screen in the spatially

aware display application. A user was performing the trajectory-based

target selection task. The first target was shown on the screen. The

square box on the right of the screen is the virtual button. When the

button is pressed, the target is selected. Meanwhile, visual feedback

(the color of the button changes) is provided for the user during the

target selection task

Fig. 11 2D virtual canvas

design. The canvas covers a 2 m

� 1 m area in the Kinect XY

plane. N9 is a phone with 3.9

inches display ( 480 pixels �
854 pixels) (size 48 mm � 86

mm). Thus, when the size of the

canvas is expressed in pixels, it

is 20,000 pixels � 10,000

pixels. We use the straight line

and square wave for modelling

the trajectory, on which 6

targets are located
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Kinect system (M = 44.21 s, SD = 14.77 s). The average

task completion time is reduced by 26:7%. A comparison

of the average task completion time is shown in Fig. 13.

Results were analysed using a repeated measures anal-

ysis of variance (ANOVA). The GPs sensor fusion system

has a statistically significant effect on the task completion

time, Fð1; 11Þ ¼ 12:05, p ¼ 0:0052.

Questionnaire

Following each session of the experiment, each partic-

ipant was asked to complete the NASA Task Load Index

questionnaire. For each scale, the line is divided into 20

intervals. From left (low) to right (high), scores range from

0 to 20 [45]. A lower score indicates a better performance.

The conventional Kinect system obtained a score of 619,
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whereas our sensor fusion system obtained a score of 513.

The subjective load varied in line with the objective

measures of speed and accuracy.

For each scale, we calculated the mean score and the

standard deviation. The results are shown in Table 2. We

can see that the average subjective assessment of usability

of our sensor fusion system is better than that of the Kinect

system.

The comparison results of the NASA Task Load Index

for the Kinect system and the sensor fusion system are

shown in Fig. 14. The lower score of each scale indicates a

better performance of the system. In Fig. 14, the Boxplot

shows the distribution of each scale data for two systems.

We have two systems and need to do a paired sample

test. Results were analysed using a Wilcoxon signed-rank

test. We get the following results: (1) The mental demand,

p ¼ 0:0137. (2) The physical demand, p ¼ 0:0898. (3) The

temporal demand, p ¼ 0:0508. (4) The performance,

p ¼ 0:0249. (5) The effort, p ¼ 0:1611. (6) The frustration,

p ¼ 0:0195. It can be seen that the GPs sensor fusion

system has a statistically significant effect on the mental

demand, the temporal demand, the performance and the

frustration. Thus, the sensor fusion system outperforms the

Kinect system in the subjective assessment of usability of

the system.

5.2.6 Summary on experiment 2

Experimental results show that our system enables the user

to perform the task more accurately and more quickly in

comparison with the Kinect time-delay system. The target

selection error and the task completion time are both

reduced by the GP sensor fusion. Moreover, the partici-

pants reported improved performance in our system.

6 Discussion

The proposed GP prior model-based sensor fusion method

was used to fuse the position sensed by the Kinect and the

acceleration measured by the mobile device in this paper.

We built this Kinect-augmented system to test the proposed

GP sensor fusion approach, which can be generalized for a

wider range of applications. The idea is to change the

transformation matrix K in (7). In this paper, the transfor-

mations are limited to approximations of derivative trans-

formations, so the K was set as the classic second

derivative operator, i.e. Ka in (18). As long as we have this

transformation matrix K, we can find the corresponding

Table 2 The NASA Task Load Index

Scale Scores for different systems

Kinect system Sensor fusion system

Mean SD Mean SD

Mental demand 7.17 3.64 5.08 2.78

Physical demand 7.75 3.11 7.17 3.54

Temporal demand 11.25 3.47 9.92 4.01

Performance 6.50 4.06 5.25 3.08

Effort 10.92 4.66 9.33 4.38

Frustration 8.17 4.37 6 4.11
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16

18

M. D. M. D. P. D. P. D. T. D. T. D. Perf. Perf. Eff. Eff. Frus. Frus.
Kinect GPs Kinect GPs Kinect GPs Kinect GPs Kinect GPs Kinect GPs

Comparison of NASA Task Load Index

S
co

re

Fig. 14 The Boxplot shows the

comparison results of the NASA

Task Load Index for the Kinect

system and the sensor fusion

system. The 6 scales along the

x-axis are (1) Mental demand

(2) Physical demand (3)

Temporal demand (4)

Performance (5) Effort (6)

Frustration. The ‘‘Kinect’’

(along the x-axis) represents the

Kinect system. The ‘‘GPs’’

(along the x-axis) represents the

sensor fusion system. A lower

score indicates a better

performance
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distribution of M ¼ KY based on Y. This provides us a

feasible way to fuse data from multiple sources, as dis-

cussed in Sect. 3.1.2.

In this way, we can fuse multiple observations that

might be a mixture of readings from different physical

sensors or different operators applied to the data, to derive

a model based on a latent variable, which is compatible

with all of them.

7 Conclusion

This paper presents a novel GP prior model-based sensor

fusion approach to modelling sensor fusion system. The

interaction system in our work improves the accuracy of

the skeleton joint position estimation and reducing the lag

by fusing the Kinect and the built-in inertial sensors in a

mobile device. The proposed novel and improved GP prior

model incorporates the low-sampling-rate position mea-

surements and the higher frequency acceleration, taking the

different noise characteristics of these sensors into account.

This type of sensor fusion system is of great benefit for

location-aware applications. Firstly, the sensor fusion can

improve the quality of inferred joint positions, as the high-

sampling-rate acceleration signal can augment the low-

sampling-rate, noisy position measurements. It can also

help to reduce the lag, as the inertial sensing has a lower

latency than the position sensed by the Kinect.

We conducted two experiments to test the GP prior

model-based sensor fusion system. Experimental results

show that the GP sensor fusion helps improve the accuracy

of position estimation, and reduce the lag (0.11 s). In the

second experiment, we built a spatially aware display

application for user study. The user performed the trajec-

tory-based target acquisition tasks in two different systems:

(1) the Kinect system; (2) the sensor fusion system. In

comparison with the Kinect system, the user performed the

trajectory-based target acquisition task more quickly and

more accurately in our sensor fusion system. The average

task completion time was reduced by 26.7 % and the MSE

of target selection was reduced by 38.3 %. We used the

NASA Task Load Index to analyse the subjective assess-

ment of usability of the system. The experimental results

show that the GPs sensor fusion system has a statistically

significant effect on the mental demand, the temporal

demand, the performance and the frustration. We conclude

that the GP prior model-based approach helps improve the

user performance in the sensor fusion system. Moreover,

we generalize the proposed approach and discuss that the

GP prior model-based sensor fusion has the potential to be

used in a wider range of sensor fusion systems.
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11. Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity opti-

mization via surrogate modelling. In: Proceedings of the royal

society of london a: mathematical, physical and engineering

sciences, vol 463. The Royal Society, pp 3251–3269

12. Girard A, Rasmussen CE, Candela JQ, Murray-Smith R (2003)

Gaussian process priors with uncertain inputs—application to

multiple-step ahead time series forecasting. In: Becker STS,

Obermayer K (eds) Advances in neural information processing

systems, vol 15. MIT Press, Cambridge, pp 529–536

13. Goovaerts P (1998) Ordinary cokriging revisited. Math Geol

30:21–42

14. Hall DL, Llinas J (1997) An introduction to multisensor data

fusion. Proc IEEE 85:6–23 (IEEE)
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