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Abstract 
Acoustics of a simplified, non-adiabatic combustor chamber, including a duct followed by a 
downstream exit nozzle, are considered. This system features heat transfer to the environment 
and, therefore involves mean axial temperature gradient along the duct and the nozzle. The 
effect of heat transfer on the dynamics of the acoustic reflection and transmission in the duct 
and nozzle is investigated analytically. These involve development of analytical expressions for 
the response of non-adiabatic nozzles through compact acoustic modelling and also the effective 
length approach. Further, an existing work on the dynamics of heat transferring ducts is 
extended and combined with that of the nozzles. The acoustic responses of the combined non-
adiabatic system are, subsequently, characterized by analyzing the net reflection and 
transmission of an incident acoustic wave. The results show that heat transfer can considerably 
modify the dynamic behavior of the acoustic reflections and transmissions. Due to the multiple 
reflections in the system, the phase response features significant irregularities. It is argued that 
the observed modifications in the chamber acoustics can noticeably affect the thermoacoustics 
of the system.   
Keywords: Sound reflection; sound transmission; thermoacoustic response; combustor and 
nozzle system.  
 
1. Introduction  

The rapidly increasing concerns about the environmental impacts of power generation 
sector have led to imposing stringent emission regulations [1,2]. These regulations require gas 
turbine and aero-engine manufacturers to achieve very low levels of NOx emissions [2]. It is well 
demonstrated that lean premixed combustion technology is most efficient in reducing NOx 
formation in modern gas turbine combustors [2,3]. However, the high susceptibility of premixed 
flames to thermoacoustic instabilities has, so far, hindered the wide application of this 
combustion technology [1,3]. Thermoacoustic instabilities are the result of complex interactions 
between the flame heat release and combustion chamber acoustics [4,5]. Occurrence of these 
instabilities can lead to the generation of coherent, large amplitude pressure oscillations [1, 2]. 
In a gas turbine combustor, these can induce strong mechanical vibrations and increase the heat 
transfer rates and, therefore damage the system severely [1,2].  

Over the last few decades, there have been sustained efforts for understanding and 
suppression of thermoacoustic instabilities in various combustion systems, see Refs. [2-5] for 
reviews of the literature. Nonetheless, due to the substantial complexity of the thermoacoustic 
instabilities, they are still not fully understood [1,5]. Thus, the accurate prediction of these 
requires solving the fluid flow and combustion governing equations through the prohibitively 
expensive computations [5, 6]. The more practical approach to the problem of thermoacoustic 
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modelling is through the so-called "low order modelling" [7]. This approach is on the basis of 
the classical theory of control and essentially divides the system into two major dynamical, 
mutually interacting sub-systems [8]. The system dynamics are then analysed by the 
conventional black box method [9]. The sub-systems, or black boxes represent the flame 
dynamics and the chamber acoustics [4]. The former is often characterised through the 
experimental measurements [10,11], numerical simulations [12-14] or theoretical calculations 
[15]. The latter, however, is usually approximated by solving the quasi one-dimensional Euler 
equations in the combustion chamber [8]. A linear stability analysis is then conducted to explore 
the stability limits of the system [7-9]. Low order models of thermoacoustic systems include 
considerable simplifications and even have been fundamentally criticised [16]. Nonetheless, the 
practical feasibility of using low order models has turned them into an attractive choice for 
industry [2,7,8]. This has led to major attempts to improve these models through advancement 
of the combustion and acoustics sub-models. For instance, nonlinearities were included in the 
sub-models of flame dynamics by the introduction of flame describing functions [17]. Similarly, 
the acoustic sub-models of combustor were significantly refined [7]. Particularly in recent years, 
improving the analytical modelling of the acoustic boundary conditions has received a 
considerable attention [18-20].  

The problem of acoustic reflection and transmission is, generally, of importance in 
combustor acoustics [2,7]. This is due to the significant effects of the reflections on the 
thermoacoustic stability of combustors and the pertinence of the acoustic transmissions to the 
problem of combustion noise [1]. In particular, the correct prediction of the amplitude and 
phase of the acoustic reflections is central to the accurate stability analysis of combustors [7, 
21]. Further, the characteristics of the acoustic transmission directly affect the noise emission of 
the system [22,23]. It follows that incorporation of all the physical mechanisms capable of 
modifying the acoustic reflection and transmission, is a key step in improving the acoustic 
models of combustors. This will be, in turn, an important contribution to the development of 
more accurate, low order, thermoacoustic models.  

In general, any changes in the impedance of the propagation medium can cause reflection 
of the acoustic waves [24]. Considering the Euler equations as the theoretical framework, two 
principle mechanisms can be identified for the acoustic reflections in a combustor. These 
include modifications of the cross sectional area and changes in the flow density induced by the 
temperature variations. The first mechanism is active around the exit nozzle of the combustor. 
Modelling tools for the inclusion of this mechanism include the well-known model of Marble 
and Candel [25], as well as several recent extensions of this model [18-20,26]. The second 
mechanism, however, has received much less attention and, in fact, is currently being widely 
ignored by most thermoacoustic models. Nevertheless, so far, there have been very limited 
evaluations of the effects of mean temperature variations upon the chamber acoustics.  

Acoustics of inhomogeneous, density varying, media were analysed theoretically in the 
past, see for example Refs. [27,28]. In the context of thermoacoustics, Sujith et al. [29] 
investigated the acoustics of a duct with axial mean temperature variations and zero mean flow. 
They considered a prescribed distribution of the axial mean temperature along the duct and 
developed analytical solutions for the resultant inhomogeneous wave equation [29]. Their one-
dimensional results were, then, validated against experiments [29]. This work was later 
extended to the cases with nonlinear temperature distributions [30,31], and finite mean 
temperature and particulate damping [31,32]. These studies were intended to describe the 
acoustics of the combustors under heat transferring condition, in which there were variations in 
the axial mean temperature. However, they all expressed spatio-temporal pressure and velocity 
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perturbations and did not provide explicit information on the dynamics of the acoustic 
reflections and transmissions. This issue was resolved by Karimi et al. [33], in their analysis of 
frequency response of the disturbance and acoustic energy of a heat transferring duct. These 
authors showed that the variations in the axial mean temperature could cause significant, 
frequency dependent reflections [33]. The amplitude and phase response of this reflection were 
argued to be of importance in the thermoacoustics of the system [33].  

In reality, the combustor duct and the exit nozzle both feature heat transfer. As a result of 
heat transfer, the mean temperature of the flow in both of these two components can decline. 
This introduces a reflection mechanism, which interacts with that induced by the variations in 
the cross-sectional areas [34]. Hence, the net acoustic reflection and transmission is due to the 
accumulative effects of heat transfer and cross-sectional changes [34]. Given the high sensitivity 
of thermoacoustic stability upon the dynamics of acoustic reflections, it is essential to predict 
these combined effects most accurately. As stated earlier, currently, there exist advanced 
models of acoustic reflections and transmissions from isothermal nozzles [18-20]. There have 
been also few attempts to express the acoustics of heat transferring ducts [29,33,34]. However, 
the acoustics of non-adiabatic nozzles, with temperature varying flows, remain entirely 
unexplored. Further, so far, there has been no study on the dynamics of acoustic reflections and 
transmissions in a system of duct and exit nozzle, featuring heat transfer and cross-sectional 
variations.  

The current work aims to address these issues and improve the current state of 
combustor acoustic modelling through the followings. First, it provides novel analytical models 
for the dynamics of acoustic reflection and transmission in heat transferring nozzles. These 
include compact models for low frequency limits, as well as phase responses through utilisation 
of the concept of effective length. Second, it extends the previous works on the heat transferring 
ducts to nonlinear axial temperature distributions. Finally, it combines the two effects of heat 
transfer and area variations in a combustion chamber, consisting of a duct and an exit nozzle, 
and finds the acoustic reflection and transmission coefficients.  

 
2. Theoretical analysis 
2. 1. Problem configuration   
Fig. 1 shows the schematic view of the problem under investigation. It includes a convergent-
divergent nozzle attached at the exit of a straight duct. Variation of the gas density in the duct, 
induced by the temperature change, and also modification of the cross sectional area in the 
nozzle alter the acoustic impedance of the system [7]. This causes reflections of the acoustic 
waves in the duct and nozzle [3, 33]. An acoustic incident wave (ε) enters the combustor and 
this generates reflected (Pc−) and transmitted (Pc+) acoustic waves. The transmitted wave 
propagates into the nozzle, while the reflected wave travels towards upstream section, which is 
an infinitely long duct. The transmitted wave generally produces three acoustic waves in the 
nozzle; P1,n

− , P2,n
+  and P2,n

− . In here, indices 1 and 2 represent the upstream and downstream of the 
nozzle throat, respectively. Further, n and c subscripts denote combustor and nozzle waves. In 
addition, + and – symbols indicate the waves travelling towards the downstream and upstream 
of the mean flow.  
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Fig. 1. Schematic view of the combustor and nozzle. 

 
The proceeding analysis include the following assumptions; 
(a) the working fluid is inviscid, non-heat-conducting ideal gas. 
(b)the heat transfer is purely radiative and unsteady heat transfer is negligible, 
(c) cooling does not change the critical statue of the nozzle, 
(d) there is no shock wave in the divergent part of the supercritical nozzle, 
(e) the mean flow and wave are one-dimensional and there is no friction losses, 
In the current work, the divergent section of the non-compact nozzle is ten times longer than 
that of the convergent section. As Table 1 illustrates [35], the area ratio is chosen such that the 
outlet Mach numbers do not change in the selected inlet Mach numbers. 
 

Table 1- The inlet and outlet Mach numbers and area ratios of the adiabatic nozzle from Ref. [35] 
Choked Unchoked 

 
𝑀𝑛,2 = 1.2 𝑀𝑛,2 = 0.4 

11.695  7.310  𝐴1/𝐴∗  𝑀𝑛,1 = 0.05  
1.032  1.000  𝐴2/𝐴∗  
5.873  3.671  𝐴1/𝐴∗  𝑀𝑛,1 = 0.1  
1.032  1.000  𝐴2/𝐴∗  

 
The details of the investigated cases study are provided in Tables 2 to 4 for the compact and 
non-compact cases. In these tables, θ is the ratio of the fluid stagnation temperature at the 
outlet to the inlet. 
 

Table2- The compact cases 
Mn,1   Nozzle regime 
0.1 Case 1 

Subcritical  
0.05 Case 2 
0.1 Case 3 

Supercritical  
0.05 Case 4 

 
Table3- The non-compact cases 

Overall θ Mn,1   Nozzle regime 
0.7 0.1 Case 5 

Subcritical  
0.7 0.05 Case 6 

0.85 0.1 Case 7 
0.85 0.05 Case 8 
0.7 0.1 Case 9 

Supercritical  
0.7 0.05 Case 10 

0.85 0.1 Case 11 
0.85 0.05 Case 12 

 
Table4- Thermal conditions of the combustor and nozzle 
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Overall θ θn  θc  

0.63 0.9 0.7 
0.66 0.91 0.73 
0.7 0.92 0.76 

0.73 0.93 0.79 
0.77 0.94 0.82 
0.81 0.95 0.85 
0.84 0.96 0.88 
0.88 0.97 0.91 
0.92 0.98 0.94 
0.96 0.99 0.97 

1 1 1 
 
2.2. Heat transfer effects 
2.2.1. Compact nozzle 
Considering the assumptions stated in section 2.1, the one-dimensional conservation equations 
of mass, momentum and energy are 

1
ρ
�∂ρ
∂t

+ u ∂ρ
∂x
� + ∂u

∂x
= 0,  (1) 

∂u
∂t

+ u ∂u
∂x

+ 1
ρ
∂p
∂x

= 0,  (2) 
Dρ
Dt

= ρ
γp

(Dp
Dt
− (γ − 1)q).  (3) 

 
In Eqs. (1-3), p, ρ, u  and t are respectively the static pressure (Pa), fluid density (kg/m3), 
velocity (m/s) and time (s). q is the heat loss per unit volume (W/m3). Equations (1-3) 
constitute the Euler equations and therefore do not include heat and momentum diffusion 
effects. It should be noted that the use of Euler equations for describing combustor acoustics is 
common practice, see Refs. [2,7,18,19]. 
Flow variable are then substituted by the summation of the steady and disturbance parts. That 
is g = g� + g′, in which g is a flow property and g�, g′ represent respectively, the time averaging 
and perturbation components. Ignoring the second order terms results in the linearized mass, 
momentum and energy equations of (1)-(3). These are 
 

( ∂
∂t

+ u� ∂
∂x

) ρ́
ρ�

+ u� ∂
∂x

(ú
u�

) = 0,  (4) 
∂
∂t
�ú
u�
� + u� ∂

∂x
�ú
u�
� + ρ́

ρ�
∂u�
∂x

+ 2ρ�u� ú
u�
∂u�
∂x

+ p� ∂
∂x
�ṕ
p�
� + ṕ

p�
∂ṕ
∂p�

= 0,  (5) 
D
Dt

(p
′

γp����
+ ρ′

ρ�
) = q�R

p�
�q

′

q�
− u′

u�
− p′

p�
�.  (6) 

 
Combining Eqs. (4) and (6) yields 
 

� ∂
∂t

+ u� ∂
∂x
� � ṕ

γp�
� + u� ∂

∂x
�u

′

u�
� = q�R

p�
�q

′

q�
− u′

u�
− p′

p�
�.  (8) 

 
The acoustic waves are assumed to be the planar propagating waves in both directions of the 
one-dimensional domain. Thus, 
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(9) 𝑝′

𝛾�̅�
= 𝑃+ 𝑒𝑒𝑒 �𝑖𝑖 �𝑡 − 𝑥

𝑢�+𝑐
��+ 𝑃− 𝑒𝑒𝑒 �𝑖𝑖 �𝑡 − 𝑥

𝑢�−𝑐
�� ,  

(10) 𝑢′

𝑐
= 𝑈+ 𝑒𝑒𝑒 �𝑖𝑖 �𝑡 − 𝑥

𝑢�+𝑐
�� + 𝑈− 𝑒𝑒𝑒 �𝑖𝑖 �𝑡 − 𝑥

𝑢�−𝑐
�� ,  

 
in which ω is the angular frequency. Relations (9) and (10) are applied to the homogenous flow 
regions, located immediately upstream or downstream of the nozzle. 
Through substitution of the harmonic distribution for pressure, velocity and heat flux into Eqs. 
(4) and (8), the following expressions can be developed,  
 

ρ+ = U+,  (11-a) 
ρ− = −U−,  (11-b) 
U+ = P+,  (11-c) 

U− = −P−,  (11-d) 
q+ = P+ �γ + 1

M
� + P− �γ − 1

M
�.  (11-e) 

 
Conservation of mass in the nozzle results in 
 

1
M
�ú
c
� + ρ′

ρ�
= const.  (12) 

  
Because of the heat transfer effects on acoustic waves, an energy balance should be introduced. 
This reads 

�̇� = �̇�𝐶𝑝(𝑇𝑡2 − 𝑇𝑡1), (13) 
where Tt, ṁ  and q̇ are the stagnation temperature, mass flow rate and heat transfer rate. 

Linearizing Eq. (13) and considering �ḿ̇
ṁ�
�

1
= �ḿ̇

ṁ�
�

2
 [35] for the two parts of the nozzle reveals 

that  
�́�𝑡1
𝑇�𝑡1

+ �́̇�
�̇��𝐶𝑝𝑇�𝑡1

= �́�𝑡2
𝑇�𝑡2
�1 + 1

 𝐵
� + 1

𝐵
�́̇�
�̇��

.  (14) 

As mentioned before, q is the heat transfer per unit volume and 
𝑞 = �̇�

𝑉
𝐶𝑝∆𝑇𝑡 = 𝜌1𝑢1

𝑉
𝐴

𝐶𝑝∆𝑇𝑡.  (15) 

By linearizing Eq. (15), the heat transfer fluctuation can be expressed as  
𝑞′
𝑞�

= 𝐴 𝑇′𝑡2
𝑇�𝑡2

− 𝐵 𝑇′𝑡1
𝑇�𝑡1

+ 𝜌′1
𝜌�1

+ 𝑢′1
𝑢�1

,  (16-a) 

in which 

𝐴 = − 𝑇�𝑡2
𝑇�𝑡2−𝑇�𝑡1

,  (16-b) 

𝐵 = − 𝑇�𝑡1
𝑇�𝑡2−𝑇�𝑡1

.  (16-c) 

 
The stagnation temperature is  
 

Tt = T(1 + γ−1
2

M2)  (17) 
 
Linearization of this yields 
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T́t
T�t

= 1

1+1
2(γ−1)M2

�γ �p
′

γp�
� − ρ́

ρ
+ (γ − 1) Mú

c
� = 1

1+1
2(γ−1)M2

�(γ − 1) �p
′

γp�
� − ś

cp
+

(γ − 1)Mú
c
�.  

(18) 

 
Heat transfer modifies the Mach number at the outlet of a conduit with a constant cross section 
[36]. Expectedly, the variation of Mach number through a heat transferring conduit with 
variable area section (e.g. a nozzle) differs from that of a constant area conduit traditionally 
presented by Rayleigh line [37]. Considering the nozzle geometry, inlet condition and variation 
of the stagnation temperature, the outlet Mach number of the nozzle can be found by an 
iterative method [37]. The inlet Mach number of the combustor is then calculated by Rayleigh 
line [37]. 

Here, the acoustic response of a heat transferring nozzle to an incident acoustic wave by 
the strength of 𝑃1

+ is analysed. Considering Eqs. (11) and (12) in the subcritical regime, a 
relation among the transmitted acoustic wave in the diverging part and the acoustic 
components in the converging section is derived. This is 

(19) 𝑃𝑛,2
+ = 1

𝑀𝑛,1(1+𝑀𝑛,2)
�𝑀𝑛,2�𝑃𝑛,1

+−𝑃𝑛,1
−�+ 𝑀𝑛,1𝑀𝑛,2�𝑃𝑛,1

++𝑃𝑛,1
−��.  

In the subcritical nozzle, there is no acoustic wave in the downstream section and thus, 𝑃𝑛,2
− is 

assumed to be zero. Combining Eqs. (11), (16) and (18) gives 

(20-a) 𝑃𝑛,1
− = 𝐾1

+

𝐾1
− 𝑃𝑛,1

+,  

where 

(20-b) 
𝐾1

+ = −𝐵 �1 + 1
2

(𝛾 − 1)𝑀2
2� (𝛾 − 1)(1 + 𝑀1) + 𝐴 �1 + 1

2
(𝛾 − 1)𝑀1

2� (𝛾 − 1) �𝑀2
𝑀1

+

𝑀2� + �1 + 1
2

(𝛾 − 1)𝑀1
2� �1 + 1

2
(𝛾 − 1)𝑀2

2� (−(𝛾𝑀2+1)
𝑀1(1+𝑀2) −

(𝛾𝑀2+1)
(1+𝑀2) + (𝛾 − 1)), 

 

(20-c) 
𝐾1

− = 𝐵 �1 + 1
2

(𝛾 − 1)𝑀2
2� (𝛾 − 1)(1 −𝑀1) + 𝐴 �1 + 1

2
(𝛾 − 1)𝑀1

2� (𝛾 − 1) �𝑀2
𝑀1
−

𝑀2� + �1 + 1
2

(𝛾 − 1)𝑀1
2� �1 + 1

2
(𝛾 − 1)𝑀2

2� �(𝛾𝑀2+1)
(1+𝑀2) −

(𝛾𝑀2+1)
𝑀1(1+𝑀2) + (𝛾 − 1)�.  

The transmitted acoustic wave in the downstream section is found by substituting Eq. (20-a) 
into Eq. (19), which gives 

(21) 𝑃𝑛,2
+ = 1

𝑀𝑛,1(1+𝑀𝑛,2)
�𝑀𝑛,2 �1 − 𝐾1

+

𝐾1
−� + 𝑀𝑛,1𝑀𝑛,2 �1 + 𝐾1

+

𝐾1
−�� 𝑃𝑛,1

+.  

In the supercritical regime, relations derived by Marble and Candel [25] are still valid. These are 

(22) 𝑃𝑛,1
− =

1−1
2
(𝛾−1)𝑀1

1+1
2
(𝛾−1)𝑀1

𝑃𝑛,1
+,  

(23) 𝑃𝑛,2
+ =

1+1
2
(𝛾−1)𝑀2

1+1
2
(𝛾−1)𝑀1

𝑃𝑛,1
+,  

(24) 𝑃𝑛,2
− =

1−1
2
(𝛾−1)𝑀2

1+1
2
(𝛾−1)𝑀1

𝑃𝑛,1
+.  

However, the outlet Mach number should be now calculated with the consideration of heat 
transfer effect. It is also worth noting that Eqs. (22)-(24) are not limited to adiabatic flows and 
remain equally valid for the current hear exchanging flows [25]. 
2.2.2. Non-compact nozzle 
This section extends the analysis of non-adiabatic flow to non-compact nozzles. Similar to Ref. 
[19], the concept of "effective length" is utilized here. Effective length approximates a nozzle 
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with two connected conduits without any change in cross sectional area (Fig. 2). Each conduit 
has its own length as an effective length.  

 
Fig. 2. (a) A convergent-divergent nozzle (b) Equivalent conduits of constant cross sectional areas 

rendering the effective lengths. 
 
To find the effective length, the linearized equations of mass, momentum and energy (Eqs. (4), 
(5) and (6)) are considered. Dimensionless, harmonic, flow perturbations may be written as 

(25) 𝑝′

𝛾�̅�
= �̂�(𝑋)𝑒𝑖𝑖𝑡   , 𝜌′

𝜌�
= 𝜌�(𝑋)𝑒𝑖𝑖𝑡  , 𝑢′

𝑢�
= 𝑢�(𝑋)𝑒𝑖𝑖𝑡 ,  

in which 𝑋 = 𝑒/𝑙 and 𝑙 is the axial nozzle length. 
 
In a choked nozzle, Mach number and the dimensionless perturbation frequency may be 
presented with respect to the flow velocity at the throat (i.e. sound speed c). Thus, 

𝑀∗ = 𝑢�
𝑐∗

, 𝛺𝑛 = 𝑖𝜔
𝑐∗

  
in which, the superscript * denotes the throat of a choked nozzle, 𝛺𝑛 is the dimensionless 
frequency (Strouhal number) and subscript n denotes nozzle. 
After removal of the steady flow component and using the dimensionless perturbation, the mass 
conservation equation is written as [19]  

(26) 𝑖𝛺𝑛𝜌� + 𝑀∗ �𝑑𝑢�
𝑑𝑑

+ 𝑑𝜌�
𝑑𝑑
� = 0.  

The energy equation reduces to 
(27) 𝑖𝛺𝑛(�̂� − 𝜌�) +𝑀∗ �𝑑𝑝�

𝑑𝑑
+ 𝑑𝜌�

𝑑𝑑
� = 𝑀∗ 𝛥𝑇𝑡

𝑇�
(𝑞� − �̂� − 𝑢�).  

Further, conservation of the total enthalpy in the mean flow results in 

(28) 𝑐̅2 = 𝑐∗2

2
(𝛾 + 1) − 𝑢�2

2
(𝛾 + 1) + 𝑄�(𝛾 − 1).  

It should be noted that the unit of 𝑞� in Eq. (3) is W/m3. However, the unit of 𝑄�  in Eq. (28) is J/kg. 
Thus, 

(29) 𝑄� = 𝑞� 𝑉
�̇�

= 𝑐𝑝𝛥𝑇𝑡.  
Employing Eqs. (28) and (29), the momentum equation becomes 

(30) 𝑖𝛺𝑛𝑢� + 𝑀∗ 𝑑𝑢�
𝑑𝑑

+ 𝑑𝑀∗

𝑑𝑑
(2𝑢� + 𝜌� − 𝛾�̂�) + 1

2
𝑑𝑝�
𝑑𝑑
�𝛾+1
𝑀∗ − (𝛾 − 1)𝑀∗ + 2𝑐𝑝𝛥𝑇𝑡

𝑀∗𝑐∗2 (𝛾 − 1)� = 0.  

An algebraic manipulation of Eqs. (26), (27) and (30) reveals 

(31) 
𝑖𝛺𝑛 �𝑀∗(2𝑢� + 𝜌� − �̂�) − 1

𝑀∗ (𝜌� + �̂�)� + 𝑑
𝑑𝑑
��𝑀∗2 − 1�(2𝑢� + 𝜌� − 𝛾�̂�)� +  

𝑑𝑝�
𝑑𝑑

2𝑐𝑝𝛥𝑇𝑡
𝑐∗2 (𝛾 − 1) + �𝑀∗2 − 1� 𝛥𝑇𝑡

𝑇�
(𝑞� − �̂� − 𝑢�) = 0.  

Flow perturbations may be presented by the following asymptotic expansions 
(32-a) �̂� = �̂�0 + 𝑖𝛺𝑛�̂�1 + 𝑂�𝛺𝑛2�  
(32-b) 𝜌� = 𝜌�0 + 𝑖𝛺𝑛𝜌�1 + 𝑂�𝛺𝑛2�  
(32-c) 𝑢� = 𝑢�0 + 𝑖𝛺𝑛𝑢�1 + 𝑂(𝛺𝑛2)  

By substituting Eq. (32) into Eq. (31), the boundary conditions of a choked nozzle for the zeroth 
order are derived. These are 
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(33) 2𝑢�0 + 𝜌�0 − 𝛾�̂�0 = 0,  
(34) 𝑞�0 − 𝑢�0 − �̂�0 = 0.  

Due to neglecting the higher order terms, Eqs. (32a-c), Eqs. (33) and (34) are valid for a 
compact nozzle. Eq. (33) had first derived by Stow et al. [38] and was verified by Goh and 
Morgans [19]. It is noted that Eq. (34) is essentially the same as Eq. (12). 
The first order of asymptotic expansion of Eq. (31) is integrated. This reveals  

(35) 
�(𝑀∗2 − 1)(2𝑢�1 + 𝜌�1 − �̂�1)�𝑑1

𝑑2 = (𝜌�0 + �̂�0)∫ 𝑑𝑑
𝑀∗

𝑑2
𝑑1

− (2𝑢�0 + 𝜌�0 − �̂�0)∫ 𝑀∗𝑑𝑋𝑑2
𝑑1

−

2(𝛾 − 1)𝑐𝑝𝛥𝑇𝑡 ∫
𝑀∗2

𝑢�2 𝑑�̂�1
𝑑2
𝑑1

− ∫ 𝛥𝑇𝑡
𝑇�
�𝑀∗2 + 1�(𝑞�1 − �̂�1 − 𝑢�1)𝑑𝑋.𝑑2

𝑑1
  

By using Eq. (35) in the range of 𝑋 = 𝑋𝑖𝑛 to 𝑋 = 𝑋∗and consideration of 𝑐̅ = �𝛾𝛾𝑇� and 
𝑐𝑝
𝛾𝛾

(𝛾 − 1) = 1, the effective length of the convergent part is found as follows, 

(36) 𝑙1 = ∫ 𝑀�𝑛,1
𝑀�𝑛

�
1+𝛾−1

2 𝑀�2−𝛥𝛥𝑡1
𝛥�

1+𝛾−1
2 𝑀�0

2−𝛥𝛥𝑡1
𝛥�1

𝑑𝑋𝑑∗

𝑑𝑖𝑛
.  

in which 𝑇�1 and 𝑇�𝑡1are mean and stagnation inlet temperature, respectively, and 𝛥𝑇𝑡1 = 𝑇∗ −
𝑇𝑡1. It should be noted that due to 𝑀∗ ≪ 1 in deriving Eq. (35), the terms including the 
multiplication of 𝑀∗ can be neglected compared to those including 1/𝑀∗.  
For the divergent part, Eq. (35) should be implemented between 𝑋 = 𝑋∗ and 𝑋 = 𝑋𝑜𝑢𝑡. In 
accordance with Eq. (33), the effective length of the divergent part is obtained as 

(37) 𝑙2 =
2𝑝�0 ∫

1
𝑀∗𝑑𝑑

𝑋∗
𝑋𝑖𝑛

−(𝛾−1)𝑝�0 ∫ 𝑀∗𝑑𝑑𝑋∗
𝑋𝑖𝑛

�𝑝�0+𝜌�0�
𝑀∗𝑛,2

−(𝛾−1)𝑝�0𝑀∗𝑛.2
,  

where 𝑀∗
𝑛,2 is the outlet nozzle Mach number which can be rewritten with accordance to the 

first law of thermodynamics, 

(38) 𝑀𝑛,2
∗ = �

𝛾+1
2

1+𝛾−1
2 𝑀�2−𝛥𝛥𝑡2

𝛥�2

.  

Duran and Moreaue [26] showed that indirect noise source prevails only at low frequencies. 
Hence, to assess the entropy noise, the values of �̂�0+𝜌�0 and �̂�0 are substituted from the results 
of the compact nozzle in section of 2.2.1. The nozzle response to acoustic waves are 

(39) 𝑃2
+

𝑃1
+ = �𝑃2

+

𝑃1
+� 𝑒𝑖𝑘2

+𝜔2+𝑖𝑘1
+𝜔1 + 𝑂�𝛺𝑛2�,  

(40) 𝑃2
−

𝑃1
+ = �𝑃2

−

𝑃1
+� 𝑒𝑖𝑘2

−𝜔2+𝑖𝑘1
+𝜔1 + 𝑂�𝛺𝑛2�,  

in which 𝑘2
+ = 𝑖/(𝑐2̅ + 𝑢�2), 𝑘2

− = 𝑖/(𝑐2̅ − 𝑢�2) and 𝑘1
+ = 𝑖

𝑐1̅+𝑢�1
. 

 
 
2.2.3.Non-compact combustor 
Sujith et al. [29] showed that in a duct with zero mean flow and axial temperature gradient, the 
acoustic wave equation can be written as 

𝑑2𝑃′

𝑑𝑥2 + 1
𝑇�
𝑑𝑇�
𝑑𝑥

𝑑𝑃′

𝑑𝑥
+ 𝑖2

𝛾𝛾𝑇�
𝑃′ = 0,  (41) 

in which 𝑒′(𝑒, 𝑡) = 𝑃′(𝑒)𝑒𝑒𝑒 (𝑖𝑖𝑡). An exponential temperature gradient, as an extension of the 
work of Karimi et al. [33] was considered here. Following Sujith et al. [29] the mean 
temperature distribution along the duct is given by 

𝑇� = 𝑊𝑒𝑒𝑒(−𝑚𝑒), (42) 
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where W and m are constants. Sujith et al. [29] then introduced a new independent variable 𝑧 
defined as 

𝑧 = 2𝑖
𝑚�𝛾𝛾𝑇�

.  (43) 

Substituting Eqs. (42) and (43) into Eq. (41) then yields 
𝑑2𝑃′

𝑑𝑑2 + 1
𝑑
𝑑𝑃′

𝑑𝑑
+ 𝑃′ = 0,  (44) 

which is a zeroth order of Bessel equation and its general solution is of the form of 
𝑃′ = [𝑎1𝐽1 �

𝑖𝜔
√𝜃
� + 𝑎2𝑌1 �

𝑖𝜔
√𝜃
�], (45) 

where,  𝐽1 and 𝑌1 are Bessel and Neumann functions, while 𝛿 is a constant given by the following 
expression, 

𝛿 = 2/(𝑚�𝛾𝛾).  (46) 
By applying the linearized momentum equation (Eq. (5)), it can be demonstrated that the 
acoustic velocity perturbation is expressed by [29] 
𝑈′(𝑒) = 𝑖𝜔

2√𝑇�
[𝑎1(𝐽0 �

𝑖𝜔
√𝑇�
� − 𝐽2 �

𝑖𝜔
√𝑇�
�) + 𝑎2(𝑌0 �

𝑖𝜔
√𝑇�
� − 𝑌2 �

𝑖𝜔
√𝑇�
�)]. (47) 

In this equation, 𝑎1 and 𝑎2 are given by the boundary conditions which are derived from the 
problem configuration. Assuming that the incident acoustic wave of 𝜀 in Fig. 1 features an 
associated velocity perturbation in the form of 

𝑈′(0) = 𝜅. (48) 
where 𝜅 is a constant velocity amplitude. The configuration of the combustor is assumed as an 
infinitely long ducts at the both ends of the temperature varying region. The mean temperatures 
in these two semi-infinite ducts are constant and equal to those at the ends of the temperature 
varying part (see Fig. 1). Hence, the homogeneous wave equation remains valid in these two 
regions. Further, due to the lack of reflection the propagating wave in the downstream semi-
infinite duct contains only the right travelling component, which is expressed as 

𝑃′(𝑒) = 𝐻. 𝑒𝑒𝑒 (𝑖𝑖𝑒/𝑐𝐿), (49) 
and 

𝑈′(𝑒) = ( 𝐻
𝜌�𝐿𝑐�̅�

). 𝑒𝑒𝑒 (𝑖𝑖𝑒/𝑐𝐿)  (50) 

in which 𝐻 is a complex constant, �̅� is a mean density and 𝑐̅ is a mean sound speed. In Fig. 1, the 
temperature does not jump at the interface of the semi-infinite duct and the temperature 
varying part. Hence, the pressure and velocity perturbations at the infinitesimal upstream and 
downstream of the interface are the same, i.e. 

𝑃′(𝐿−) = 𝑃′(𝐿+),      𝑈′(𝐿−) = 𝑈′(𝐿+)  (51) 
Combining Eq. (49) with the solution of the homogeneous wave equation in the downstream 
semi-infinite part of Fig. 1 renders the anechoic boundary condition 

𝑒′(𝐿, 𝑡) = �̅�𝐿𝑐�̅�𝑢′(𝐿, 𝑡).  (52) 
Eqs. (48) and (52) then allow the evaluation of the constants 𝑎1and 𝑎2 in Eqs. (45) and (47) as 
given by in Appendix A.  
In a homogeneous and one dimensional medium, a solution of the form 𝑒′(𝑒, 𝑡) = 𝑓(−𝑘𝑒 +
𝑖𝑡) + 𝑔(𝑘𝑒 + 𝑖𝑡) satisfies the wave equation and identifies the left and right travelling 
characteristics. By applying such solution in the homogenous parts at either side of the 
inhomogeneous region (Fig. 1), the pressure and velocity perturbations can be found. At 𝑒 = 0 
they are  

𝑃′(0) = 𝜀 + 𝑃𝑐−,    𝑈′(0) = 1
𝜌�0𝑐0̅

(𝜀 − 𝑃𝑐−), (53) 

and similarly at the end of the region 
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𝑃′(𝐿) = 𝑃𝑐+,    𝑈′(𝐿) = 1
𝜌�𝐿𝑐�̅�

(𝑃𝑐+).  (54) 

where 𝜀, 𝑃𝑐− and 𝑃𝑐+ are respectively the incident, reflected and transmitted acoustic waves. 
Finally, employing Eqs. (45) and (47) to determine the pressure and velocity at the beginning of 
the temperature varying region 𝑒 = 0, the ratio of the reflected and incident waves can be 
written as 

𝑃𝑐−

𝜀
=

1
√𝜃

[𝑑1𝐽1�
𝜔𝜔
𝑊 �+𝑑2𝑌1�

𝜔𝜔
√𝑊

�]−𝜌0𝑊�𝛾𝛾

�𝑑1𝐽1�
𝜔𝜔
√𝑊

�+𝑑2𝑌1�
𝜔𝜔
√𝑊

��+𝜌0𝑊�𝛾𝛾
.  (55) 

Adopting a similar approach for the transmitted wave renders the following relation for the 
ratio of the transmitted and incident waves, 

𝑝𝑐+

𝜀
= 2

1
�𝜃𝑙

[𝑑1𝐽1�
𝜔𝜔
�𝜃𝑙

�+𝑑2𝑌1�
𝜔𝜔
�𝜃𝑙

�],

1
√𝑊

�𝑑1𝐽1�
𝜔𝜔
√𝑊

�+𝑑2𝑌1�
𝜔𝜔
√𝑊

��+𝜌0�𝛾𝛾𝑊
.  (56) 

 
2.2.4. Reflected and transmitted wave series 
When an incident acoustic wave (𝜀) enters the combustor, it produces transmitted and reflected 
waves. The transmitted component propagate through the nozzle (𝑃𝑛,1

+ ) and generates further 
transmitted and reflected waves (𝑃𝑛,1

− ,𝑃𝑛,2
+  𝑎𝑛𝑑  𝑃𝑛,2

− ). The reflection of the nozzle (𝑃𝑛,1
− 𝑜𝑜 𝑃𝑛,2

− ) 
travels back into the combustor and this acts as a new incident wave and the preceding process 
is repeated forming a series of events. The reflected wave from the nozzle travels into the 
combustor. It, then, experiences the inverse temperature gradient compared to the incident 
wave. Due to the linearity of the system, the response of the combustor becomes: 

𝑇𝑜𝑎𝑛𝑇𝑚𝑖𝑇𝑇𝑖𝑜𝑛 = 𝛾𝑡,𝑐(𝜀) + 𝛾𝑡,𝑐�𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝜀))� +⋯,  (57) 
𝛾𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝛾𝑟,𝑐(𝜀) + 𝛾𝑟,𝑐�𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝜀))�+ ⋯.  (58) 

where subscripts of 𝑛, 𝑐, 𝑜  and 𝑡 denote nozzle, combustor, reflected and transmitted responses, 
respectively. For the nozzle 
 

𝑇𝑜𝑎𝑛𝑇𝑚𝑖𝑇𝑇𝑖𝑜𝑛 = 𝛾𝑡,𝑛(𝛾𝑡,𝑐(𝜀)) + 𝛾𝑡,𝑛(𝛾𝑡,𝑐(𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝜀))) + ⋯,  (59) 
𝛾𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝜀)) + 𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝛾𝑟,𝑛(𝛾𝑡,𝑐(𝜀))) + ⋯  (60) 

in which 𝛾𝑡,𝑐(𝜀) = 𝑃𝑛,1
+ . Reflection of the combustor and transmission of the nozzle, series of 

(58) and (59), will respectively be the total reflection and transmission of the system subject to 
the acoustic wave (𝜀). As stated earlier, the reflection and transmission response of the system 
are developed by the sum of all propagating acoustic waves. The series, therefore, includes 
infinite terms. Many terms of the series, however, have infinitesimal values. This is due to the 
light quota of the reflection wave energy of the nozzle traveling upstream compared to energy 
of the inlet wave [33,34]. In the current work, the terms of series (58) and (59) which are less 
than 2 percent of the incident wave amplitude (𝜀) are neglected. In other words, this limit 
introduces the first term of the truncated series of the transmissions or reflections. All the 
calculations were done assuming an exponential temperature gradient. In reality, the process of 
reflection and transmission continues many times and in each reflection the amplitude of the 
reflected wave decreases. It is therefore, reasonable, to say that at certain stage the amplitude 
becomes negligible and the process effectively stops. Determination of this threshold is, 
somehow, subjective. In the current work, the terms of series (58) and (59) which are less than 
2 percent of the incident wave amplitude (𝜀) are neglected. In other words, this limit introduces 
the first term of the truncated series of the transmissions or reflections. All the calculations 
were done assuming an exponential temperature gradient. 
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2.2.5. Validation  
To ensure the validity of the relations derived in this section, the following points are 
considered.  (1) When the variation of the stagnation temperature tends to zero (flow becomes 
adiabatic), the values of 𝐴 and 𝐵 in Eq. (16) approach infinity. Under this condition, Eqs. (19) 
and (20-a) reduce to those of Marble and Candel [25]. Further, Eqs. (22) to (24) are the same as 
those of Marble and Candel [25] when the Mach number becomes independent of the thermal 
conditions (i.e. the nozzle becomes adiabatic). In this case, the relations of effective length, Eqs. 
(36) and (37), reduce to those of Goh and Morgans [19]. (2) Phase change in the second part of a 
supercritical adiabatic nozzle with an acoustic incident wave is calculated and compared with 
the results of Goh and Morgans [19] in Fig. 3. The results show complete coincidence, as the 
relations of (39) and (40) approach those of Goh and Morgans [19] in the limit of adiabatic 
nozzle.  

  
(a) (b) 

Fig. 3. Phase of the transmitted wave in an adiabatic supercritical nozzle subject to an incident acoustic 
wave: (a) 𝑃2

+/𝑃1
+,(b) 𝑃2

−

𝑃1
+, comparison with the results of Goh and Morgans [19]. 

 
(3) The phase change in a nozzle (relations (39) and (40)) with no cross-sectional variation 
should be identical to those derived for a duct, i.e. relations (55) and (56). Fig. 4 illustrates 
comparison between these for the transmission wave (ε) when the cooling ratio is 0.5. This 
figure depicts good agreement. 

 
Fig. 4. The acoustic phase change derived by the nozzle relations with no cross-sectional variation and 
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that of a duct (combustor). 
 
This series of evidence serve as the validation of the current work. 
 
3. Results and discussions 
6.1. Compact combustor and nozzle 
Figs. 5 and 6 show respectively the total reflection and transmission response of the system 
subject to an incident acoustic wave for the subcritical and supercritical nozzle conditions. The 
horizontal axis in this figure represents the nozzle outlet to the combustor inlet stagnation 
temperature ratio (θ). This figure also contains the results of Marble and Candel [25], which are 
independent of the variations in the stagnation temperature because of the assumption of an 
adiabatic flow. The reflection observed is caused by the temperature change along the duct and 
nozzle as well as the area change through the nozzle. Accordingly, when the system is adiabatic, 
the responses reduce to that of the exit adiabatic nozzle only. As Figs. 5 and 6 show, in this 
statue (overall θ=1), the results tend to those of Marble and Candel [25], which further confirm 
the validity of the relations derived for the nozzle. As these figures describe, by increasing 
cooling, the reflection is subsided, while the transmission is raised. Heat transfer from the 
system appears to act as a mechanism of sound generation [34]. In keeping with the existing 
works, the transmission appreciates by increasing the cooling [33, 34]. The reflected 
component, however, propagates towards the opposite direction, senses a positive temperature 
gradient and demonstrates an inverse trend compared to the transmission [33]. The decrement 
is about 45 percent for both cases 1 and 3 (the inlet nozzle Mach number of 0.05) by 37 percent 
reduction in the overall θ. This is, however, 38 percent for case 2 and 4 (the inlet nozzle Mach 
number of 0.1). The transmission illustrates respectively an increment of more than 500 and 
300 percent in case 1 and 3. For the case 2 and 4, somewhat 600 and 400 percent growth is 
observed. Accordingly, the response value is more altered by cooling when a subcritical nozzle 
is attached at the system outlet. It is clear that variation of the transmission by cooling is much 
larger than the reflection. Furthermore, the reflection response is more intensive for lower inlet 
Mach number of the nozzle. The response for the inlet nozzle Mach number of 0.05 could be 
higher than that of 0.1 up to 12 and 21 percent for reflection and transmission, respectively. 
This is highlighted at lower values of the overall θ.  
The transmission amplitude is higher in comparison to the system reflection in all studied cases. 
The transmission value is found to be higher in subcritical nozzle regime compared to that of 
the supercritical condition, while the reflection value is lower. Similarly, the variation range of 
transmission against heat transfer is higher for subcritical nozzle condition in comparison to the 
supercritical nozzle condition, while variation range of the reflection is somewhat lower. For 
instance, the transmission range of case 2 is higher up to 40 percent than that of case 4 by 
changing through the studied overall θ. Nonetheless, the reflection range of case 2 is lower 
compared to the case 4 up to 16 percent. Figs. 5 and 6 further depict that all the responses 
feature monotonic trends. 
.  
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(a) 

  
(b) 

Fig. 5. Total reflection response of the system per incident acoustic wave for compact combustor and 
nozzle; (a) subcritical nozzle, (b) supercritical nozzle 
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(b) 

Fig. 6. Total Transmission response of the system per incident acoustic wave for compact combustor 
and nozzle; (a) subcritical nozzle, (b) supercritical nozzle 

 
Next, sum of the acoustic energy reflection (ΣR) and transmission (ΣT) coefficients, as given in 
Ref. [34], is calculated. This is 

|ΣR + ΣT| =
(1 − M�0)2

(1 + M�0)2 �
𝑒𝑐−

ε �
2

+
Alρ�0c�0(1 + M�2)2

A0ρ�2c�2(1 + M�0)2
�
𝑒𝑐+

ε
�
2

, 

 
(61) 

M, A, c and ρ are the Mach number, cross sectional area, sound speed and density, respectively. 
The indices 0 and l indicate the inlet and outlet of the combustor or nozzle.  
Fig. 7 illustrates the total acoustic energy generated in the system. It is clear from this figure 
that the acoustic energy generation is zero for adiabatic system with no mean temperature 
change. This is to be expected as in such system there is no mechanism of sound generation. 
However, for non-zero overall mean temperature ratios, acoustic energy is generated. The 
extent of this is inversely proportional with 𝜃 and the generation of acoustic energy remains 
small for values of 𝜃 close to unity. Nonetheless, the finite change in the level of acoustic energy 
is of significance in analysis of thermoacoustic systems [33]. 
 

 
Fig. 7. Sum of the acoustic energy of the reflection and transmission coefficients versus the stagnation 
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temperature ratio (𝑀0���� = 0.1). 
 

 
6.2. Non-compact combustor and nozzle 
6.2.1. System reflection response 
Figs. 8 and 9 illustrate the frequency response of the amplitude of the reflected wave for two 
thermal condition, and the subcritical and supercritical nozzles, respectively. The amplitude is 
plotted versus a Strouhal number defined on the basis of the average sound velocity, 𝑐̅, and the 
region length, 𝑙 + 𝐿. That is, 

𝛺 = 2𝑖(𝜔+𝐿)
�𝛾𝛾𝑇𝑡,𝑐1+�𝛾𝛾𝑇𝑡,𝑛2

.  (62) 

The magnitude of the reflected waves drops from a maximum at zero frequency limit. A series of 
peaks and troughs are observed. The peaks are slightly higher when the cooling is weakened. 
The reflection value at the very low frequencies, where the compact assumption holds, is nearly 
coincided with the results of Fig. 5, which once again expresses a validation of the current 
analyses. The difference between the two cases shown in each figure becomes negligible by 
increasing the frequency. This difference, however, is lower for the supercritical nozzle 
compared with the subcritical nozzle. This shows that the dynamics of the reflection have a 
minor sensitivity to the Mach number at low values. Nonetheless, as seen for a compact nozzle, 
the difference becomes more pronounced for lower overall θ and at low frequencies. Reflection 
approaches to negligible value in lower Strouhal number of the subcritical condition compared 
to that of the supercritical condition. This behavior is also found for overall θ=0.7 (cases 9 and 
10) compared to that of overall θ=0.85 (cases 11 and 12). The reflection shows higher value for 
a system with supercritical exit nozzle, especially when the cooling is subsided.  
Figure 10 shows the phase difference between the total reflected and the incident wave in the 
supercritical nozzle condition. It is essential to note that the process of acoustic reflection in the 
current problem involves multiple reflections (see Equation (57)-(60) of the revised 
manuscript). As stated in our response to the last comment, heat transfer and the resultant 
density variation in the duct causes some reflection. The change of cross sectional area in the 
nozzle also induces reflections. Each reflection modifies the phase of the reflected wave. 
Further, the reflected wave coming back from the nozzle is an incident upstream travelling 
wave to the duct, which in turn generates a reflection. In reality, this process repeats itself 
infinite times and the amplitude of the reflected wave becomes progressively smaller. In the 
current analysis, we have defined a threshold below that we consider the reflection to be 
negligible. Yet, the total phase presented in the manuscript is the result of many 
reflection/incident processes that has happened in the system. Thus, the total phase change is 
the summation of these phase variations as found in the series (58) in the text. That is, 
essentially, the reason that the phase graph is not well-shaped. An analogous argument applies 
to the phase of acoustic transmissions shown in Fig. 10. It is inferred from Fig. 10 that the phase 
change is insensitive to the inlet Mach number of the supercritical nozzle (or the outlet Mach 
number of the combustor). Cooling, however, can modify the phase difference quite 
significantly. 
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(a) 

 
(b) 

Fig. 8. Frequency response of the reflected wave per incident acoustic wave for subcritical nozzle and 
(a) 𝑜𝑜𝑒𝑜𝑎𝑙𝑙𝜃 = 0.7, (b) 𝑜𝑜𝑒𝑜𝑎𝑙𝑙𝜃 = 0.85. 

 
(a) 

 
(b) 

Fig. 9. Frequency response of the reflected wave per incident acoustic wave for supercritical nozzle and 
(a) 𝑜𝑜𝑒𝑜𝑎𝑙𝑙𝜃 = 0.7, (b) 𝑜𝑜𝑒𝑜𝑎𝑙𝑙𝜃 = 0.85. 
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(c) 

 
(d) 

Fig. 10. Phase of the system reflection for supercritical nozzle and different thermal conditions and 
Mach numbers; (a) case9, (b) case10, (c) case11, (d) case12. 

 
 
6.2.2. System transmission response 
The frequency responses of the transmission coefficient (Figs. 11 and 12) show a trend, which is 
almost the reverse of that observed in the reflection coefficient (Figs. 8 and 9). These figures 
show that nearly the full transmission of the incident acoustic wave is seen at the intermediate 
and high frequencies. Some peaks and troughs are observed at the low frequencies and then the 
transmission coefficient approaches a constant value. The variation range of the response 
against frequency variation falls in a narrow band limited to low frequencies. Similar to the 
compact results, the transmission goes higher by decreasing the Mach number even at the 
intermediate and high frequencies. This is more highlighted when cooling is intensified. For 
instance, for subcritical nozzle condition, by decreasing the Mach number from 0.1 to 0.05, the 
transmission is respectively raised about 13 and 1 percent for the overall θ=0.7 and 0.85. These 
values for supercritical condition are 16 and 25 percent. Thus, the value of transmission 
response is lower for supercritical nozzle condition compared to that of the subcritical nozzle 
condition. Yet, they feature more variation by decreasing the Mach number. Further, cooling can 
increase the transmission response, especially when a subcritical nozzle is attached at the 
combustor exit. This increases the transmission about 75 and 36 percent by reducing the 
overall θ from 0.85 to 0.7 at the Mach number of 0.05 for subcritical and supercritical nozzle, 
respectively. The transmission response at low frequency again approaches those of the 
compact combustor and nozzle showed earlier in Fig. 6. 
The phase difference between the total transmitted and incident wave is shown in Fig. 13. This 
is obtained by sum of the phase change between the terms in the series (59), which includes the 
phase change of the transmitted and incident waves. As can be seen in Fig. 13, cooling and the 
inlet Mach number of the nozzle (or the outlet Mach number of the combustor) can alter the 
phase difference. Phase variation falls in the range of 0 to 2π radians for the all investigated 
cases.     
The investigations presented so far indicate that an important parameter influencing the 
dynamics of sound reflection and transmission is the mean temperature gradient. This quantity 
may practically vary by either changing the length of the heated/cooled region or altering the 
temperature difference between the entrance and exit points. The other parameter which 
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modifies the system response is the Mach number, which can be modified by the changes in the 
configuration of the combustor and nozzle.  
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Frequency response of the transmitted wave per incident acoustic wave for the subcritical 
nozzle and (a) case5, (b) case 6, (c) case 7, (d) case 8. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Frequency response of the transmitted wave per incident acoustic wave for the supercritical 
nozzle and (a) case 9, (b) case 10, (c) case 11, (d) case 12. 
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(a) (b) 

 
(c) 

 
(d) 

Fig. 13. Phase of the system transmission for the supercritical nozzle and different thermal conditions 
and Mach numbers; (a) case9, (b) case10, (c) case11, (d) case12. 

 
7. Conclusion 
Acoustics of a simplified, non-adiabatic combustor chamber, including a duct followed by a 
downstream exit nozzle, were considered under an exponential mean temperature distribution. 
The effect of heat transfer on the dynamics of the acoustic reflection and transmission in the 
duct and nozzle were investigated analytically. It was demonstrated that the variation in the 
mean temperature along the system can significantly affect the dynamics of sound refection and 
transmission. 

The main findings of this work can be summarized as follows. 

- By increasing cooling, the reflection is subsided, while the transmission is raised. 
- The variation of transmission by cooling is much larger than the reflection. 
- The response value is more altered by cooling when a subcritical nozzle is attached at 

the system outlet. 
- The transmission amplitude is higher in comparison to the system reflection in all 

studied cases. 
- The phase graph of the system feature a complex and irregular behaviour.  
- Phase change is affected by the thermal condition of the system. 
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Appendix A 
For an exponential temperature distribution, the coefficients a1 and a2, in Eqs. (55) and (56) are 
given by 

a1 = E
EH−FG

, a2 = F
EH−FG

  (A-1) 

in which E, F, G and H are 
E = J1βl − fαlJ1(βl)− fλlJ0(βl) + fλlJ2(βl)  (A-2) 

F = Y1βl − fαlY1(βl) − fλlY0(βl) + fλlY2(βl)  (A-3) 
G = α0J1(β0) + λ0J0(β0) − λ0J2(β0)  (A-4) 

H = α0Y1(β0) + λ0Y0(β0) − λ0Y2(β0)  (A-5) 
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In the above relations α0,αl,β0,βl, λ0, λl and f depend on the mean temperature and the forcing 
frequency; see Eq. (46) for definition of δ. 

α0 = mW−1/2i
2ωρl

,β0 = ωδ
√W

, λ0 = δci
4δWρl

  , (A-6) 

αl = mTl
−1/2i

2ωρl
,βl = ωδ

�Tl
, λl = δci

4δTlρl
,  (A-7) 

 
 


