Contrasting carbon export dynamics of human impacted and pristine tropical catchments in response to a short-lived discharge event

Bass, A. M. , Munksgaard, N.C., Leblanc, M., Tweed, S. and Bird, M.I. (2014) Contrasting carbon export dynamics of human impacted and pristine tropical catchments in response to a short-lived discharge event. Hydrological Processes, 28(4), pp. 1835-1843. (doi: 10.1002/hyp.9716) (PMID:16773565) (PMCID:PMC1474138)

Full text not currently available from Enlighten.

Abstract

Utilising newly available instrumentation, the carbon balance in two small tropical catchments was measured during two discharge events at high temporal resolution. Catchments share similar climatic conditions, but differ in land use with one draining a pristine rainforest catchment, the other a fully cleared and cultivated catchment. The necessity of high resolution sampling in small catchments was illustrated in each catchment, where significant chemical changes occurred in the space of a few hours or less. Dissolved and particulate carbon transport dominated carbon export from the rainforest catchment during high flow, but was surpassed by degassing of CO2 less than 4 h after the discharge peak. In contrast, particulate organic carbon dominated export from the cleared catchment, in all flow conditions with CO2 evasion accounting for 5–23% of total carbon flux. Stable isotopes of dissolved inorganic carbon (DIC) in the ephemeral rainforest catchment decreased quickly from ~1.5 ‰ to ~ −16 ‰ in 5 h from the flood beginning. A two-point mixing model revealed that in the initial pulse, over 90% of the DIC was of rainwater origin, decreasing to below 30% in low flow. In the cultivated catchment, δ13CDIC values varied significantly less (−11.0 to −12.2 ‰) but revealed a complex interaction between surface runoff and groundwater sources, with groundwater DIC becoming proportionally more important in high flow, due to activation of macropores downstream. This work adds to an increasing body of work that recognises the importance of rapid, short-lived hydrological events in low-order catchments to global carbon dynamics.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Bass, Dr Adrian
Authors: Bass, A. M., Munksgaard, N.C., Leblanc, M., Tweed, S., and Bird, M.I.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Hydrological Processes
Publisher:John Wiley & Sons, Inc.
ISSN:0885-6087
ISSN (Online):1099-1085

University Staff: Request a correction | Enlighten Editors: Update this record