
MIKADO Global Computing Project
IST-2001-32222

An Instance of the MIKADO Migration Model

MIKADO Deliverable D1.2.2

Editor : G. BOUDOL (INRIA)

Authors : F. MARTINS, L. SALVADOR, L. LOPES and V. VASCONCELOS

Classification : Public
Deliverable no. : D1.2.2
Reference : RR/WP1/6
Date : February 2005

c© INRIA, France Telecom R&D, U. of Florence, U. of Sussex, U. of Lisbon

MyThS
IST-2001-32617

Mo delsand TypesforSecurity in
MobileDistributedSystems

Deliverableno: D2.1

Type-baseddeflnitionofaccess
and security policies

Report Version: ¯rst

Report PreparationD ate: 2002.12.31

Classification: Public

Deliverableno: D2.1 Due D ate: Mon th 12 Delivery D ate: Mon th 12

ProjectStart D ate: 2002.01.01 ProjectDura tion: 36 mon ths

ProjectCoordinator: Univ ersit y of Sussex

ProjectPartners: ¶Ecole Normale Sup ¶erieure, P aris, Univ ersitµa `Ca F oscari', V enezia

Projectfundedby theEuropean Comm unity underthe
‘InformationSociety Technologies’Programme (1998{
2002)

Project funded by the European Community under the
“Information Society Technologies” Programme (1998–
2002)

MiKO, An Instance of the MIKADO Migration Model

Deliverable D1.2.2

Gérard Boudol

February 16, 2005

This deliverable consists of a contribution by F. Martins, L. Salvador, L. Lopes and V. Vasconcelos (from
the Lisbon site of MIKADO) that introduces a specific instance of the parametric model of migration and
mobility defined in the deliverable D1.2.1 (see also [3]). To introduce this contribution, let us first recall the
main features of the parametric model.

The motivation for the MIKADO migration model is to provide programming constructs for controlling
code mobility that are as independent as possible from the particular language used to program the mobile
code. The main idea is then to regard a domain (or site, or locality), that mobile code may enter and exit, as a
membrane enclosing running processes, offering the procedures that have to be called for entering or exiting
the domain. The membrane may also have a local state, on which decisions may depend regarding the
migrating code. The migration model therefore consists in a syntax for domains, namely a{S}[P], together
with a few constructs for controlling migration from the membrane. When we write a{S}[P], we mean that a
is the name of the domain, S is the membrane process (with a local state and public procedures for entering
and exiting), and P is the pool of processes that are running inside the domain a. In [2], we introduced
a minimal syntax for the membrane part S, offering constructs for moving processes from the membrane
to the inside of the domain, for sending messages to another domain in the network, and for creating new
domains. In [3], this was presented by means of a transition system, rather than a particular syntax.

In the previous deliverable (see also [3]), we sketched a particular instance of the generic MIKADO

migration model, based on the π-calculus, and we gave several examples to illustrate what the model is able
to express. In the present deliverable, the authors define a more substantial instance of the generic model,
that has been implemented on top of the TyCO programming language [5, 6]. (The implementation aspect
of this work should be reported upon as part of the WP3 activity.) Moreover, they define a type system
for the resulting programming model (this is also relevant to WP2). The TyCO language is based on a
refinement of the π-calculus, where the receiver end of a communication channel is actually a named object,
which may react to messages according to various methods. This is especially well suited for programming
membranes, which have to offer various means (or “services”) for “visiting” a domain, depending on the
purpose of the visit. Some examples are given in the text below, and the ones which were given in [2] can
easily be formulated in MiKO syntax.

The model presented here is a refinement of the one we introduced in [2], in several respects: first,
the membrane process is explicitly split into two parts, a method part defining the interface of the domain,
and a process part that implements the behaviour of the membrane (and its local state, following the π-
calculus style – or, for that matter, the CCS paradigm –, where stored data are represented as processes).
Another refinement is that the messages sent from the contents of a domain to the enclosing membrane
are now explicitly directed to the domain’s membrane, by specifying the domain’s name. A domain could
therefore be seen as a channel of a specific kind. A benefit of this formulation of the membrane model is
that there is a natural notion of type for a domain (similar to a channel type), namely the type associated
with its interface. Finally, although this is not presented here, the MiKO model has been implemented, and
a prototype implementation should soon be available. Therefore this contribution is a distinct progress over
the generic model introduced in [2].

2

MiKO

Mikado Koncurrent Objects

Francisco Martins1 Liliana Salvador2 Luı́s Lopes2 Vasco T. Vasconcelos3

January 2005

1 A TyCO-calculus based model

In this section we introduce the syntax and operational semantics of MiKO. MiKO is a distributed higher
order instance of TyCO-calculus [5] based on the MIKADO’s membrane model [1, 2], distributing processes
over a flat network of domains. The migration of code from one domain to another passes always through the
domains’s membranes. The calculus contains special primitives to handle migration between such domains.

Syntax

Figure 1 describes the syntax of the calculus. Consider a set of names N that do not possess the constants
in, out, and mkdom and a set of labels L , disjoint from N , ranged over by l. To improve readability we use
r-t to range over names of domains, a-c to range over names of channels, and x-z to range over unknowns.

The calculus is organised in two layers: networks and processes. A network consists of a set of domains
and network messages running independently in parallel. A domain x{m|〉P1}[P2] is a named location x
composed by a membrane m|〉P1 and a contents P2. Membranes define the interaction between the domain
and the outside world, that is, more precisely, between the contents part of the domain and the rest of the
network. The set of public methods m defines the interface of the domain, and process P1 controls the
migration of code with the domain. The contents is the computation oracle of the domain. For the following
we consistently denote membranes by R–T , processes by P and Q, and networks by H , L, and N. A network
message x !M denotes a message M heading to domain x. The remaining networks constructs are standard
in process calculi.

The syntax of membranes and contents is mostly the standard syntax of TyCO [4, 6] enriched with
constructs in[P] that launches a process P in the contents part of the domain, out[x,M] that sends a message
M to the domain x, and mkdom[x,m|〉R,P] in Q that creates a new domain x with guardian m|〉R and contents
P. Messages are tuples of values sent on channels and interpreted as method invocations. The values that
can be communicated in messages are either names or process abstractions. In the examples, we shall use
the standard TyCO style, writing l(~x) = P instead of l = (~x)P. We also adopt TyCO’s convention that c?A
stands for c?{val = A} (and similarly for c?∗A), in which case a message c!val[~V] is simply written c![~V].

Operational Semantics

The operational semantics of the calculus is presented with the help of congruence relations on networks
and processes. The bindings of the calculus are scope restriction newxP, abstraction (~x)P, both binding free

1Universidade dos Açores, Departamento de Matem ática
2Universidade do Porto, Departamento de Ciência de Computadores
3Universidade de Lisboa, Departamento de Inform ática

3

N ::= inaction | x{m|〉P}[P] | x !M | N | N | new xN (networks)

P ::= inaction | x !M | x?m | x?∗m | P | P | newxP | (processes)

A~V | in[P] | out[x,M] | mkdom[x,m|〉P,P] in P

M ::= l[~V] (messages)

m ::= {li = Ai}i∈I (methods)

A ::= (~x)P (abstractions)

V ::= x | A (values)

Figure 1: Syntax of MiKO

newxN | L ≡ new x(N | L) x /∈ fn(L) (N-SRC)

s{m|〉S}[new cP] ≡ new cs{m|〉S}[P] c /∈ fn(m|〉S) (N-PSR)

s{m|〉new cS}[P] ≡ new cs{m|〉S}[P] c /∈ (fn(P)∪ fn(m)) (N-MSR)

Figure 2: Structural congruence on networks

occurrences of x and~x, in process P, and domain creation mkdom[x,m|〉R,P] in Q where the domain name x
is bound in R, P and Q. The set of free names for networks N, processes P, and methods m is denoted by
fn(N), fn(P) and fn(m), respectively.

Structural Congruence

The structural congruence relation on networks, ≡ , is the least congruence relation closed under the rules
in figure 2 adding α-conversion (that is, the renamming of bound names) and the commutative monoid rules
for parallel composition, with inaction as the neutral element. The structural congruence between processes
is similar; it is the standard one for the TyCO calculus [5], and is therefore omitted.

The following example illustrates the operational semantics of the calculus. Consider a client-server
session manager: a client that establishes a session with a server and finishes the session at the end of the
conversation. The protocol we envisage is very simple: (1) the client issues a connect request to the server;
(2) the server replies with a session identifier; (3) the client issues a disconnect message to terminate the
session. First we comment on the server’s membrane. The server’s membrane must provide two public
methods to handle connection and disconnection: connect and disconnect. The connect method creates a
private channel sessionID, sends it to the client via an out operation and launches an object at the server’s
contents to handle the session using the in process. The object that handles the session just implements the
quit operation. (A more elaborate session handler is presented in the mathServer example later in section 2.)
The disconnect method triggers the end of the session by selecting the quit operation from the handler. A
possible implementation of the server’s membrane is given in figure 3. The client’s membrane needs to offer
a connect and disconnect methods, to interact with the server’s counterpart. Moreover, it must provide a
method (that we name enter) to receive the responses from the server. The methods connect and disconnect
just invoke the server operations. Both client and server do not need a state, so the body of the membrane
is the inaction process. In figure 4 we provide a possible implementation of the client’s membrane. An
interaction between the client and the server may be written as displayed in the figure 5.

4

servermemb = {
connect (client, replyTo) =

new sessionID
out [client, enter [()replyTo ! sessionID]] |
in [

sessionID ? {
quit() = inaction

}
]

disconnect (client, sessionID) =
in [sessionID ! quit[]]

}
|〉
{

inaction
}

Figure 3: Server’s membrane

clientmemb = {
connect (server, replyTo) =

out [server, connect [myDomain, replyTo]]
enter (x) =

in [x []]
disconnect (server, sessionID) =

out [server, disconnect [sessionID]]
}
|〉
{

inaction
}

Figure 4: Client’s membrane

Reduction Rules

The reduction rules for networks and processes are given in figures 6 and 7, where we use the notation m.M
to denote A j~V when m = {li = Ai}i∈I and M = l j[~V] with j ∈ I. The migration of messages between domains
proceeds as depicted below

The N-SEND rule delivers a message from the contents part of a domain to its membrane. The message
M initiates the execution of a method from the domain’s interface in its membrane. Rules N-OUT and N-COM

5

clientcont =
new connection
client ! connect [server, connection] |
connection ? (sessionID) = myDomain ! disconnect [sessionID]

Figure 5: Client-server interaction

s{m|〉P}[s !M | Q] → s{m|〉m.M | P}[Q] (N-SEND)

s{m|〉out[r, l[~V]] | S}[P] → r ! l[s,~V] | s{m|〉S}[P] (N-OUT)

s !M | s{m|〉S}[P] → s{m|〉S | m.M}[P] (N-COM)

s{m|〉in[P] | S}[Q] → s{m|〉S}[Q | P] (N-IN)

s{m|〉mkdom[r,m′|〉S,P] in R | T}[Q] →

new r (r{m′|〉S}[P] | s{m|〉R | T}[Q]) if r /∈ (fn(T)∪ fn(Q)) (N-MKD)

S → T
s{m|〉S}[P] → s{m|〉T}[P]

(N-MEMB)

P → Q
s{m|〉S}[P] → s{m|〉S}[Q]

N → L
N | H → L | H

(N-PROC, N-PAR)

N → L
new xN → new xL

N ≡ L N → H
L → H

(N-SRES, N-STR)

Figure 6: Reduction rules: networks

route the message through the network. Upon reception, the message interacts with the target membrane by
selecting a public method. Rule N-IN drives processes from membranes to the contents of the domain.

A domain can only be created from the membrane of an existing domain. To create a domain, rule
N-MKD, we provide a domain name (r), a guardian (m′|〉S), a contents (P) that is going to run in the domain,
and a part of the membrane (R) of the creator domain where the new domain is visible. Rules N-MEMB,
N-PROC, N-PAR, and N-RESC allow reductions inside the domain, the parallel composition of networks, and
channel restriction, respectively. Finally, N-STRC brings structural congruence on networks to the reduction
relation.

As for processes, figure 7, the reception of messages by objects (followed by the selection of the appro-
priate method and the instantiation of the method’s body) constitutes the basic communication mechanism
of the calculus, as captured by axiom P-COM. The remaining rules are straightforward. As an example of a
reduction in MiKO, consider

server{servermemb}[inaction] | client{clientmemb}[clientcont]

It reduces as follows:

1. The communication between clientcont and clientmemb is made by the rule N-SEND. The message client
! connect [server, connection] is sent to the membrane and interacts with the connect method.

2. Membrane servermemb sends messages to the network by the rule N-OUT. The connect method sends
the message server ! connect [myDomain, replyTo] to the network towards the server domain.

6

c?m | c !M → m.M (P-COM)

c?∗m | c !M → c?∗m | m.M (P-COMR)

((~x)P)~V → P/~V~x
P → Q

P | R → Q | R
(P-SUBS, P-PAR)

P → Q
new cP → new cQ

P ≡ Q P → R
Q → R

(P-SRESC, P-STRC)

Figure 7: Reduction rules: processes

α ::= {li : ~αi}i∈I | t | µt.α

Figure 8: Syntax of types

3. Network messages interact with clientmemb by the rule N-COM. The message sent to the server enters
in the membrane and interacts with the enter method.

4. servermemb interacts with its contents servercont by the rule N-IN. The connect method when triggered
launches the process replyTo ! sessionID to the server’s contents.

5. By rule P-COM, the process launched in the contents reduces with the object connection ? (sessionID) =
myDomain ! disconnect [sessionID] and the servercont sends, by rules N-SEND and N-OUT, a disconnect
message server!disconnect[sessionID] to the client.

6. The message enters in clientmemb, reduces with the disconnect method and the process sessionID !
quit[] is launched to the contents, by rules N-COM, P-COM and P-IN.

2 The Type System

In this section, we define the syntax of types and the type inference system for MiKO.

Syntax

We fix a countable set of type variables ranged over by t, and let α,β range over types. A sequence of
types α1 . . . αn is abbreviated as ~α. The syntax of types is given in figure 8. A type of the form {li :~αi}i∈I

describes locations of objects or domains containing n methods labelled l1 . . . ln(n > 0) with types ~α1 . . .~αn.
Types are interpreted as rational (regular infinite) trees. A type of the form µt.α (with α 6= t) denotes the
rational tree solution of the equation t = α. If α is a type, denote by α∗ its associated rational tree. An
interpretation of recursive types as infinite trees naturally induces an equivalence relation ↑ on types, by
putting α↑β if α∗ = β∗.

Typing rules

Type assignments to names are formulae x : α, for x a name and α a type. Typings, denoted by Γ, are finite
partial functions from names to types (that is, finite sets of formulae x : α with distinct subjects). We write
dom(Γ) for the domain of Γ. When x /∈ dom(Γ), we write Γ,x : α for the type environment Γ ′ such that
dom(Γ′) = dom(Γ)∪{x}, Γ′(x) = α, and Γ′(y) = Γ(y), for y 6= x. So, the expression Γ(x) denotes the type α

7

if x : α and Γ(~x) represents the sequence of types ~α. We denote by xdom, xc, and x•, respectively, identifiers
that are domains, channels, and that can be both.

The type system, described in figure 9 includes four kinds of judgements: (a) judgement Γ ` N asserts
that network N is well typed under typing assumptions Γ; (b) judgement Γ `s P means that process P is
running at domain s and is well typed under typing assumptions Γ; (c) judgement Γ `s ~V : ~α assigns types to
sequences of values; and finally (d) judgement Γ `s m : α states that the object (set of methods) m has type
α. In the rules {li :~αi}i∈I .l j denotes ~α j if j ∈ I.

Networks. To type a domain s{m|〉S}[P], rule TN-NET, one has to type the membrane m|〉S and the contents
P. Domain s possesses the type of its interface m. Rule TN-MSG expresses that s is a domain that has a
method with the same name as the message heading to it and with a compatible type.

Processes. When typing processes, we record (under the turnstile) the domain that hosts the process. The
information is relevant when typing the out operation, since we stamp messages with the name of the
sending domain. Rule TP-OBJ expresses the fact that c must be a channel and has type compatible with
method m. Rule TP-MSG is similar to TN-MSG, but here x can be a channel or a domain, since we use the
same constructor to send messages to membranes or interact with objects. To type the in constructor in
domain s, we type P in s using rule TN-IN. Rule TP-OUT types the out constructor in the origin domain s
and the sequence of values s~V in the destination domain r, since abstractions run in the destination domain.
(Names are network-wide, so may be typed in any domain.) Notice that one adds the origin domain s to the
list of parameters. To type creation of domains, rule TM-MKD, the created domain r{m|〉S}[P] must be itself
well-typed as well as membrane R.

Methods. When typing a method, by rule TM-METH, we type each abstraction with the type of the argu-
ments of the method li.

Some properties of the type system

We now present some properties of the type system for MiKO. The following lemmas are proved by straight-
forward induction on the depth of the derivation of the judgements in the hypothesis.

Lemma 2.1 (Strengthening Lemma)

i. If Γ,x : α ` N and x /∈ fn(N), then Γ ` N

ii. If Γ,x : α `s P and x /∈ fn(P), then Γ `s P

Lemma 2.2 (Weakening Lemma)

i. If Γ ` N, then Γ,x : α ` N

ii. If Γ `s P, then Γ,x : α `s P

Lemma 2.3 (Substitution Lemma)

If Γ,~x : ~α `s P and Γ `s ~V : ~β with ~α↑~β, then Γ `s P/~V~x.

Subject-reduction (theorem 2.1) expresses a consistency property between the operational semantics
and the typing rules. We prove the theorem by induction on the depth of the derivations N → L and P → Q,
respectively.

Theorem 2.1 (Subject-Reduction)

i. If Γ ` N and N → L, then Γ ` L.

ii. If Γ `s P and P → Q, then Γ `s Q.

8

Networks: Γ ` N

(TN-NET)

Γ `s m : α Γ `s P Γ `s Q Γ(sdom)↑α
Γ ` s{m|〉P}[Q]

(TN-MSG)

Γ `s ~V : ~α Γ(sdom).l ↑~α
Γ ` s ! l[~V]

(TN-INAC)

Γ ` inaction

(TN-PAR)

Γ ` N Γ ` L
Γ ` N | L

(TN-RESC)

Γ,x• : α ` N
Γ ` newxN

Processes: Γ `s P

(TP-INAC)

Γ `s inaction

(TP-PAR)

Γ `s P Γ `s Q
Γ `s P | Q

(TP-OBJ)

Γ `s m : α Γ(cc)↑α
Γ `s c?m

(TP-OBJR)

Γ `s c?m
Γ `s c?∗m

(TP-RESC)

Γ,cc : α `s P
Γ `s newcP

(TP-MSG)

Γ `s ~V : ~α Γ(x•).l ↑~α
Γ `s x ! l[~V]

(TP-APP)

Γ `s A : ~α Γ `s ~V : ~β (~α↑~β)

Γ `s A~V

(TP-IN)

Γ `s P
Γ `s in[P]

(TP-OUT)

Γ `r s~V : ~α Γ(rdom).l ↑~α
Γ `s out[r, l[~V]]

(TP-MKD)

Γ,rdom : α ` r{m|〉S}[P] Γ,rdom : α `s R
Γ `s mkdom[r,m|〉S,P] in R

Values: Γ `s ~V : ~α

(TV-VAR)

Γ,x• : α `s x• : α

(TV-ABS)

Γ,~x• : ~α `s P
Γ `s (~x)P : ~α

(TV-SEQ)

Γ `s V1 : α1 . . . Γ `s Vn : αn

Γ `s ~V : ~α

Methods: Γ `s m : α

(TM-METH)

∀i ∈ I, Γ `s Ai : ~αi

Γ `s {li = Ai}i∈I : {li :~αi}i∈I

Figure 9: Typing rules

9

mathServermemb = {
connect (client, replyTo) =

controller ! connect [client, replyTo]
eval (client, x) =

in [x []]
replyResult (client, x) =

out [client, enter [x]]
disconnect (client, sessionID) =

controller ! disconnect [sessionID]
}
|〉
new localStatus
localStatus ?* (availSessions) =

controller ? {
connect (client, replyTo) =

if availSessions > 0 then
sessionIDManager |
localStatus ! [availSessions - 1]

else
localStatus ! [availSessions]

disconnect (sessionId) =
in [sessionID ! disconnect []] |
localStatus ! [availSessions + 1]

} |
localStatus ! [5]

}

Figure 10: Math server’s membrane

Example. Our second example illustrates a mathematical server, math server for short. A math server
accepts computation requests from clients, compute the data, and reply back the answers. To build the math
server, we elaborate upon the first server example we showed. Therefore, the client establishes a session with
the server and issues repeatedly computation requests. Upon completion it closes the session with the server.
The server’s membrane now offers two additional methods: eval and replyResult. The eval method accepts
computation requests and routes them to the respective session handler that sits in the computational area
of the math server. The replyResult method delivers the computation results to the client. Our math server
accounts for the number of concurrent sessions it handles, illustrating a membrane with a state associated.
Therefore, the connect operation consumes one session, restored when a disconnect operation occurs. The
state is recorded via a private replicated object localStatus, updated via an object that offers two methods
called connect and disconnect to easily identify them with the domain’s public methods. The math server
membrane may be programmed as shown in figure 10.

Notice that the connect and disconnect methods redirect their requests to update the number of sessions
handled concurrently by the server. The number of simultaneous sessions starts with five. Then, whenever a
connection request arrives, the server verifies if there are still resources available. If there are, a new session
is created and the number of available sessions decreased, otherwise the request is simply discarded. When
disconnecting from the math server, the number of available resources is restored.

The sessionIDManager is responsible for generating a new session identifier and for setting a session
handler at the contents part of the math server. Since the client may issue repeated requests, the session
handler needs to be a persistent object. The object instantiates itself until a disconnect message is received.

10

Every time a new session is created, the sessionHandler is launched in the math server’s contents where it
is responsible for computing the mathematical operations selected by the client and for sending the results
back to it. The client sends a message to the server that, after being filtered by the membrane, selects the
operation method in the corresponding object. The sessionIDManager is shown in figure 11

sessionIDManager =
new sessionID
out [client, enter [() replyTo ! [sessionID]]] |
in [

new sessionHandler
sessionHandler ?* (self, client) =

self ? {
add (n, m, replyTo) =

mathServer ! replyResult [client, () replyTo ! [n + m]] |
sessionHandler ! [self, client]

neg (n, replyTo) =
mathServer ! replyResult [client, () replyTo ! [0 - n]] |
sessionHandler ! [self, client]

disconnect () =
inaction

} |
sessionHandler ! [sessionID, client]

]

Figure 11: Session manager

The client’s membrane provides the same connect, enter, and disconnect methods as in the first example.
Additionally, there is a new method eval that sends a computation to be executed by the math server. As
before, there is no status associated with the client’s membrane. The client’s membrane is given in figure
12.

To interact with the math server, we provide a process that establishes a session and then requests the
addition of two values and the negation of the result of the previous operation. Finally, after receiving from
the server the result of the negation, it closes the session with the math server. The process is shown in figure
13.

mathClientmemb = {
connect (server, replyTo) =

out [server, connect [replyTo]]
enter (server, x) =

in [x []]
eval (server, x) =

out [server, eval [x]]
disconnect (server, sessionID) =

out [server, disconnect [sessionID]]
}
|〉
inaction

}

Figure 12: Math client’s membrane

11

mathClientcont =
new replyTo
client ! connect [mathServer, replyTo] |
replyTo ? (sessionID) =

new result
client ! eval [mathServer, () sessionID ! add [3, 4, result]] |
result ? (x) =

client ! eval [mathServer, () sessionID ! neg [x, result]] |
result ? (x) =

io ! printi [x] |
client ! disconnect [mathServer, sessionID]

Figure 13: Math client

References

[1] G. Boudol. Core programming model, release 0. Mikado Deliverable D1.2.0, 2002.

[2] G. Boudol. A parametric model of migration and mobility, release 1. Mikado Deliverable D1.2.1, 2003.

[3] G. Boudol. A generic membrane model. In Second Global Computing Workshop, 2004. To appear in
Lecture Notes in Computer Science, Vol. 3267.

[4] Vasco T. Vasconcelos. Core-tyco appendix to the language definition, version 0.2. Technical report,
Faculty of Sciences of the University of Lisbon, 2001.

[5] Vasco T. Vasconcelos. Tyco gently. Technical report, Faculty of Sciences of the University of Lisbon,
2001.

[6] Vasco T. Vasconcelos and Rui Bastos. Core-tyco the language definition, version 0.1. Technical report,
Faculty of Sciences of the University of Lisbon, 1998.

