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ABSTRACT
Several new methods are proposed to reconfigure smart

structures with embedded computing, sensors and actuators.
These methods are based on heteroclinic connections between
equal-energy unstable equilibria in an idealised spring-mass
smart structure model. Transitions between equal-energy un-
stable (but actively controlled) equilibria are considered since
in an ideal model zero net energy input is required, compared
to transitions between stable equilibria across a potential bar-
rier. Dynamical system theory is used firstly to identify sets of
equal-energy unstable configurations in the model, and then to
connect them through heteroclinic connection in the phase space
numerically. However, it is difficult to obtain such heteroclinic
connections numerically in complex dynamical systems, so an
optimal control method is investigated to seek transitions be-
tween unstable equilibria, which approximate the ideal hetero-
clinic connection. The optimal control method is verified to be
effective through comparison with the results of the exact hetero-
clinic connection. In addition, we explore the use of polynomials
of varying order to approximate the heteroclinic connection, and
then develop an inverse method to control the dynamics of the
system to track the polynomial reference trajectory. It is found
that high order polynomials can provide a good approximation
to true heteroclinic connections and provide an efficient means
of generating such trajectories. The polynomial method is en-
visaged as being computationally efficient to form the basis for
real-time reconfiguration of real, complex smart structures with
embedded computing, sensors and actuators.

1 INTRODUCTION
Smart materials are currently attracting significant attention

from many researchers. These materials can change their prop-
erties under external stimuli, such as stress, temperature, electric
or magnetic fields [1] and can therefore be designed and manu-
factured with desirable mechanical properties which can then be
used to develop smart structures [2]. The application of flexible
smart structures in industry is of growing importance across the
Aerospace, Energy and Marine sectors. While these structures
have low damping and stiffness, and so are vulnerable to ex-
ternal disturbances, they offer new modes of operation through
the active reconfiguration of their shape. A self-folding origami
structure has been investigated which can fold itself into a de-
sired shape with embedded electronics, such as shape-memory
composites [3]. Multiple shapes can be realised through plan-
ning algorithms, and larger sheets can be actuated with sufficient
energy [4].

The concept of connecting different unstable equilibria for
the control of smart structures has been presented by Guenther,
Hogg and Huberman [5]. It is assumed that active control can
maintain the structure in an unstable state, where an agent-based
approach was used to suppress instability through controlling the
unstable modes of the smart structure [6]. They also investi-
gated the possibility of dynamically transitioning between two
configurations of the structure, one of which is stable and the
other unstable. Others have been inspired by natural systems
and origami design principles to develop a thin walled, low cost,
bistable geometry which is selected to modify elastic strain en-
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ergy through deployment and retraction. This morphing process
can reduce the amount of external work required to deploy the
structure [7]. An elastic continuous beam model with simply
supported boundary conditions has also been investigated using
nonlinear theory to investigate the transition between two stable
positions of a buckled beam and snap-through phenomenon [8]
with an experiment presented to verify the validity of the pro-
posed modelling based on the elastic approach, and compared
with numerical results [9].

In previous work, McInnes and Waters report a simple
model of a smart structure, which is constructed by a two mass
chain with three springs subject to clamping at both ends [10].
Then, the model is simplified to a cubic nonlinearity and dy-
namical system theory used to investigate the characteristics of
the simplified model. In spite of its apparent basic form, such a
model possesses the basic features of a suitable smart structure
due to its nonlinearity and instability. A set of both stable and
unstable equilibrium configurations are identified in the model
and methods considered to reconfigure the smart structure be-
tween the equal-energy unstable states. It is assumed that active
control can maintain the structure in an unstable state [5]. A re-
configurable smart structure is defined here as a mechanical sys-
tem which has the ability to change its kinematic configuration
between a finite set of stable or unstable equilibria. To achieve
such a reconfiguration the unstable equilibria, which lie on the
same energy surface, are connected through heteroclinic connec-
tions in the phase space of the problem. Therefore, trajectories
exist between these configurations which in principle do not re-
quire the addition of or dissipation of energy. This prior work
has illustrated that the use of such heteroclinic connections be-
tween unstable equilibria can in principle be energetically effi-
cient compared to reconfiguring a structure between stable con-
figurations, which require the addition of and then dissipation of
energy [10].

However, in consideration of the difference between the cu-
bic and real spring model, a spring-mass model of a simple smart
structure is developed here to verify the possibility of using the
heteroclinic connections to reconfigure future real smart struc-
tures. In addition, due to the difficulty in obtaining heteroclinic
connections numerically in complex dynamical systems, such as
those with strong nonlinearity, other methods are considered in
this paper. Optimal control methods are firstly employed to find
the required control histories and state trajectories. A perfor-
mance function is defined by using a simple spring model under
quasi-static conditions, which provides a relationship between
the control action and the required spring deformation. Through
minimisation of the performance function, the control histories
can be obtained with satisfactory state trajectories, which ap-
proximate the true heteroclinic connection.

Nevertheless, the optimisation procedure can require sig-
nificant computational time and memory, so a simpler method
based on a reference trajectory and an inverse control scheme

is presented. The principal advantage of the inverse method for
this problem is the flexibility for path planning and path shaping
of the reconfiguration of the smart structure model. It is envis-
aged that being computationally efficient it can form the basis for
real-time reconfiguration of smart structures using heteroclinic
connections between equal-energy, unstable configurations. The
fundamental theory of the inverse control is discussed and ap-
plied to reconfigure the simple smart structure model. Then, the
performance function from the optimal method is employed as
an evaluation criterion in order to assess the relative energy cost
of using different order polynomial reference trajectories. Some
numerical results are then presented to elaborate on the feasibil-
ity of the reconfiguration manoeuvres. Finally, it is demonstrated
that the polynomial method can provide effective reconfiguration
between equal-energy unstable equilibria.

2 Smart structure model
In order to investigate how to use heteroclinic connections

to reconfigure unstable smart structures, a simple representative
model of a naturally unstable structure was defined [11]. A two
mass chain with three linear springs will be considered with the
springs clamped at both ends, as shown in Fig.1. The model as-
sumes that the masses are constrained to move only in the vertical
direction. The parameters of the model are the masses m of the
two lumped masses and the spring stiffness and natural lengths k
(k1, k2, k3) and L (L1, L2, L3), respectively. If the displacement
of the masses is defined by x (x1, x2), while the spring clamps
are separated by 3d, it can be shown that the spring lengths after
deformation are described by

x1 x2

k

k

k

m m

d d d

FIGURE 1. 2 degree-of-freedom bucking beam model.

l1 =
√

x2
1 +d2 (1)

l2 =
√
(x1− x2)2 +d2 (2)

l3 =
√

x2
2 +d2 (3)

Firstly, the model is considered to be a Hamiltonian system
with a simplification of m=1. From Fig. 1, the Hamiltonian for
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this two mass model can then be defined from the kinetic and
potential energy through Eqs. (4) and (5)

T (p) =
1
2
(p2

1)+
1
2
(p2

2) (4)

V (x,L) =
1
2

k1(l1−L1)
2 +

1
2

k2(l2−L2)
2 +

1
2

k3(l3−L3)
2 (5)

with momentum coordinates p1 and p2. We can now fully define
the problem by a dynamical system of the form

ẋ1 = p1 (6)

ṗ1 =
(L1−

√
(x2

1 +1))k1x1√
x2

1 +1
+
(L2−

√
((x1− x2)2 +1))k2(x1− x2)√

(x1− x2)2 +1

(7)

ẋ2 = p2 (8)

ṗ2 =
(L3−

√
(x2

2 +1))k3x2√
x2

2 +1
+
(L2−

√
((x1− x2)2 +1))k2(x1− x2)√

(x1− x2)2 +1

(9)
Then, dynamical system theory can be used to investigate

the characteristics of this smart structure model. It will be shown
that the system defined by Eqs. (6-9) has a number of equilib-
ria which are both stable and unstable and may be connected
in phase space. One type of path is the heteroclinic connec-
tion, which requires that the stable and unstable manifolds of two
equal-energy unstable equilibria are connected. Solving Eqs. (7)
and (9) for equilibrium conditions yields thirteen equilibria for
the parameter set, k1= k2=k3=1, d=1, L1=L2= L3=2. The location
of the equilibria are listed in the Table 1.

Then, the Hessian matrix can be used to test the linear stabil-
ity properties of these equilibria in their neighbourhood. In the
second derivative test for determining extrema of the potential
function V (x,L), the discriminant D is given by

D =

 ∂2V
∂x2

1

∂2V
∂x1∂x2

∂2V
∂x2∂x1

∂2V
∂x2

2

 (10)

The second derivative test discriminant can be summarised
with the following statement:
•If D>0, ∂2V

∂x2
1
>0,the point is a local minimum.

•If D>0, ∂2V
∂x2

1
<0, the point is a local maximum.

•If D<0, the point is a saddle point.
•If D=0, higher order tests must be used.

According to the second derivative test discriminant, it
can be determined that the 2 degree-of-freedom smart structure
model possesses 1 unstable equilibrium E0, where the poten-
tial has a global maximum, 6 stable equilibria E1 to E6 where

TABLE 1. Stability properties of the 13 equilibria of 2 degree-of-
freedom bucking beam model.

Point x1 x2 V ∂2V
∂x2

1
D Type

E0 0 0 1.5 -2 3 Max

E1 1.100 -1.100 0.350 1.250 0.825 Min

E2 -1.100 -2.200 0.350 0.783 0.825 Min

E3 -2.200 -1.100 0.350 1.250 0.825 Min

E4 -1.100 1.100 0.350 1.250 0.825 Min

E5 1.100 2.200 0.350 0.783 0.825 Min

E6 2.200 1.100 0.350 1.250 0.825 Min

E7 0 1.732 0.5 -0.25 -0.938 Saddle

E8 1.732 1.732 0.5 -0.25 -0.938 Saddle

E9 1.732 0 0.5 1.5 -0.938 Saddle

E10 0 -1.732 0.5 -0.25 -0.938 Saddle

E11 -1.732 -1.732 0.5 -0.25 -0.938 Saddle

E12 -1.732 0 0.5 1.5 -0.938 Saddle

the potential has a global minimum and 6 unstable equilibria E7
to E12 where the potential has a saddle, as can be seen in Fig.
2.The corresponding shape of the smart structure model associ-
ated with each of these 13 equilibrium configurations is shown in
Fig. 3. It can be seen from Table 1 that E0 has the highest poten-
tial V , corresponding to the two masses being undeflected, with
both springs in compression. E7 to E12 then have equal potential
which is higher than E1 to E6. For the unstable equilibria E7 to
E12, only one spring is in compression and can in principle relax
to the lower energy equilibria at E1 to E6 where both springs are
extended.

3 Heteroclinic connections
Since the Hamiltonian of this system is constant, and formed

by V and T , the volume of phase space in R4, and its projection
to configuration space in R2, is constrained by the requirement
that T(p)>0. Since the unstable equilibria E7 to E12 lie on the
same energy surface, we can assume that in principle a hetero-
clinic connection between two arbitrary equilibria may exist so
that the structure can be reconfigured between these two equi-
libria without work being done, in the absence of dissipation, so
that the change in energy for reconfiguration δV ≈ 0. If the struc-
ture in Fig.2 is at some arbitrary stable equilibrium such as E9,
it has to cross the potential barrier at E1 to reach a neighbouring
stable equilibrium at E10. Therefore, the change in energy for
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FIGURE 2. Potential V (x,L) and equilibria (6 stable equilibria E1 to
E6, and 6 unstable equilibria E7 to E12).

reconfiguration between stable equilibria via E1 is δV ≈ -0.15,
assuming that the energy input to cross the potential barrier at E1
is dissipated to finally reach E10. From the view of energy gain
and energy loss, it is clear that heteroclinic connections between
unstable equilibria may be significantly more efficient.

Numerical solution
The stable and unstable manifolds of these equilibria will

now be investigated to explore possible connections between the
unstable equilibria [12]. Using dynamical systems theory, lin-
earisation of Hamilton’s equations in the neighbourhood of each
equilibrium point yields the eigenvalues and eigenvectors asso-
ciated with each equilibrium. The eigenvectors us and uu cor-
responding to the eigenvalues λ =-1 and λ =+1. These eigen-
vectors are tangent to the stable manifold Ws and the unstable
manifold Wu attached to the equilibria. Therefore, integrating
forwards or backwards from an unstable equilibrium point, the
eigenvectors can be mapped to approximate the stable and un-
stable manifolds. The initial conditions in the neighbourhood of
each equilibrium point for forwards and backwards integration
can be defined as

ts = te + εus (11)

tu = te + εuu (12)

for ε �1, t=(x,p)∈ R4.

Due to numerical error, and in a real smart structure param-
eter error, phase trajectories emerging from one unstable equilib-
rium will not reach the other unstable equilibrium precisely. To
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FIGURE 3. Equilibria for a two mass chain with stable equilbria E1−6
and unstable equilibria E7−12.The unstable equilibria have equal poten-
tial V .

compensate for such errors, active control is required which cap-
tures phase trajectories in a neighbourhood of the target unstable
equilibrium point. Here, the spring length is used as the con-
troller assuming for example the use of a suitable shape memory
alloy. Then, recalling Eq. (6), (7), (8) and (9), the dynamical
system can be expressed as a matrix of the form


ẋ1
ṗ1
ẋ2
ṗ2

=


p1

−(k1 + k2)x1 + x2
p2

−(k3 + k2)x2 + x1

+


0 0 0
k1x1√
x2

1+1
k2(x1−x2)√
(x1−x2)2+1

0

0 0 0
0 k2(x1−x2)√

(x1−x2)2+1
k3x2√
x2

2+1


L1

L2
L3


(13)

This is now in the form ẋ= f (x)+g(x)u , which is an affine
system with drift terms [13]. Feedback linearisation can then be
used to control the system by transformation to a simpler form.
In order to apply linear control techniques, the nonlinear system
dynamics of Eq. (15) is transformed to linear dynamics.
We can rewrite Eq. (13) in the form:
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[
ẍ
]
=

[
x2− (k1 + k2)x1
x1− (k3 + k2)x2

]
+ J(x)L

=

[
x2− (k1 + k2)x1
x1− (k3 + k2)x2

]

+

 k1x1√
x2

1+1
k2(x1−x2)√
(x1−x2)2+1

0

0 k2(x1−x2)√
(x1−x2)2+1

k3x2√
x2

2+1

L1
L2
L3


(14)

The invertibility matrix J(x) has rank is 2 when there are
two values not equal to zero among the three variables x1, x2 and
x1-x2. Therefore, the control parameters can be chosen to avoid
singularities. For example, a controller in the neighbourhood of
E10 should to choose L2 and L3 as control variables to avoid the
singularity at x1=0. The system is therefore controllable with two
state variables and two control variable. The controller can then
be defined as

−0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

x
1

x 2

R

S

FIGURE 4. Controlled transition from E9 at (1.732,0) to E10 at (0,-
1.732) with the controller active in the neighbourhood of E10. Contour
S represents the allowed region of motion with T (p)>0.

L = J−1(x)
(

ẍ −
[

x2− (k1 + k2)x1
x1− (k3 + k2)x2

])
(15)

The transition from E9 to E10 is now discussed as an exam-
ple to illustrate the method to obtain the heteroclinic connection,
which takes E9 to E10 as the initial and terminal unstable equilib-
ria, respectively. The control region is defined as a circular area
of E10 in the phase plane with the controller defined by Eq. (15)
used to guarantee the transition to the terminal equilibrium E10,
as shown in Fig. 4.
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FIGURE 5. Mass displacements during the transition from E9 at
(1.732,0) to E10 at (0,-1.732).
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FIGURE 6. Controls in region R in the neighbourhood of E10 actuated
through the coupling parameters L2 and L3.

The heteroclinic connection can also be seen in Fig.5, where
the controller ensures capture and stabilisation at E10. The cor-
responding controls L2 and L3 are shown in Fig.6. It can be seen
that the control is activated when the transition is within region
R of E10. A smooth control time history is obtained at the same
time. The results demonstrate that the control effort can com-
pensate for parameter errors to generate a heteroclinic connec-
tion between two unstable equilibria [10], which transit from an
unstable equilibrium E9 through a stable equilibrium E1 to the
neighbouring unstable equilibrium E10.

4 Optimal control
This smart structure reconfiguration problem can be revis-

ited as a computational optimal control problem to determine
the control histories which meet the boundary conditions of the
problem. In addition to satisfying the state boundary conditions,
these control histories also need to minimise a performance in-
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dex function. The optimal control problem is solved numerically
using a direct method based on pseudospectral transcription, im-
plemented in the tool PSOPT. PSOPT is coded in C++ by Be-
cerra and is free and open source [14]. PSOPT can deal with
several problems, such as endpoint constraints, path constraints,
and interior point constraints and makes use of automatic dif-
ferentiation by overloading in C++ (ADOL-C) library for the
automatic differentiation of objective, dynamics and constraint
functions. Moreover, an open source C++ implementation of an
interior point method for large-scale problems named IPOPT is
employed to solve the NLP problem.

Minimum actuator effort
In this section, actuator effort will be minimised through the

optimal control problem. In order to control the reconfiguration
of the model smart structure we have assumed that the natural
length of the springs can be modulated through the parameter set
L1, L2 and L3. A simplified description of the spring actuator
is given to estimate the energy requirements for such modula-
tion [15], which is presented in Fig.7. Two performance parame-
ters should be considered in the model, one is the basic property
of the smart material, the induced-strain effect, signed ds in Fig.7
and the other is the internal stiffness, ks, again shown in Fig.7.
Due to spring compressibility, an elastic displacement F /ks will
be produced by a load F . The spring can then actuate the in-
duced strain displacement, ds, to increase or decrease the output
displacement de, as shown in Fig.7a, where de is given by

de = ds−
F
ks

(16)

Now the external load F is considered as a product of an
external spring with same stiffness ks, as shown in Fig.7b, thus

F = ksde (17)

Combining Eq. (16) and Eq.(17), the relationship between
de and ds can be found as

ds = 2de (18)

Under quasi-static conditions, the energy required to deform
the external spring is half the product between the force and the
output displacement, i.e.

E =
1
2

ksd2
e (19)

Substituting Eq. (18) to Eq. (19) we then obtain the expres-
sion of the energy in terms of induced strain, as

E =
1
2

ks(
1
4

d2
s ) (20)

Next we consider the relationship between the energy input
and control action more specifically. Through the above analysis,
and from Section 2, we can consider ∆L as the induced length of
the springs in the smart structure model so that Eq. (20) may be
written as

F

ks

ks

ds de

deds

b

a

FIGURE 7. Control effort evaluation criteria using a simple spring
model. Shaded block represents smart material element with internal
stiffness. (a) Element under external load F. (b) Element attached to
external spring (adapted from [15]).

E =
1
2

ks(
1
4

d2
s ) =

1
2

ks(
1
4
(∆L)2) ∝ ∆L2 (21)

where ks is constant.
Therefore, the cost function is simply the form of Eq. (21),

which is considered in quasi-static conditions of this system.
Equation (21) implies that the energy needed to actuate the tran-
sition between equilibria is in direct proportion to the square of
the deformation of the springs so the performance index is de-
fined as

J =
∫ t f

0
(∆L1)

2 +(∆L2)
2 +(∆L3)

2dt (22)

The remaining specification of the optimal control problem
is that the initial conditions and final conditions should be de-
fined. Therefore, according to the discussion in Section 3, an
ideal heteroclinic connection can be considered as a free-end
time and fixed-end sate optimal trajectory. For example we can
therefore define conditions for a transition from unstable equilib-
rium E9 to E10 as

[
x∗(0) x∗(T ) ẋ∗(0) ẋ∗(T )

]
=


1.732 0

0 −1.732
0 0
0 0


T

(23)

Numerical solution
Figure 8a represents the optimal trajectory, obtained with

PSOPT, for each of the state variables, Fig. 8b plots the control
variables and Fig. 8c shows the total energy input to the process
determined from the cost function Eq. (22). Furthermore, for the
optimal solution it can be seen that the controls are symmetric
about the t=T /2 as expected, and it can be seen that L1 and L3 are
chosen to control in the corresponding singularity as discussed
in Section 3.
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FIGURE 8. Minimum energy transition with free end time. (a) Mass
displacements during the transition from E9 to E10. (b) Controls actu-
ated through the parameters L1, L2 and L3. (c) Total energy input.

The results from Section 2 and the optimal control results are
compared in Fig.9. Moreover, the optimal transition is similar to
a controlled trajectory using a reference trajectory based on the
exact solution from Section 2.

This free end time optimal control problem can be changed
to a fixed end time problem, so that the reconfiguration duration
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FIGURE 9. Exact transition and optimal transition from E9 to E10.

can be set to complete the transition process. Although this pro-
cedure may require additional energy, it is a more practical strat-
egy to reconfigure the smart structure model. Figure 10 shows
the energy requirement as a function of the reconfiguration du-
ration, where it can be seen that the energy required quickly di-
minishes as the reconfiguration duration grows.
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FIGURE 10. Energy required for reconfiguration as a function of re-
configuration duration.

5 Approximating the heteroclinic connection
In general it is difficult to find exact heteroclinic connections

numerically in complex nonlinear dynamical systems. Moreover,
although optimal control methods can provide satisfactory state
trajectories with control time histories, they can be computation-
ally intensive to determine and so are unsuitable for real-time ap-
plications. A simpler method will now be investigated to recon-
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figure the smart structure model. Consider that the optimal con-
trol results show the optimal transition between unstable states
closely matches that of the exact transition. Therefore, a polyno-
mial series will now be defined to approximate the heteroclinic
connection, which will then be used as a reference trajectory and
then a control strategy employed to track the reference trajectory.

Constructing the reference polynomial
The heteroclinic connection will be firstly defined as a 4th

order polynomial, viz

x∗(t) = a0 +a1t +a2t2 +a3t3 +a4t4 (24)

The unknown vector of constants ai (i=1-4) in the reference
polynomial can then be related to the boundary conditions of the
system.

The ideal heteroclinic connection in Fig.4 departs from equi-
librium E9, goes through the global minimum at equilibrium E1
and ends in equilibrium E10. We can therefore define conditions
on the polynomials which approximate the heteroclinic connec-
tion

[
x∗(0) x∗(T/2) x∗(T ) ẋ∗(0) ẋ∗(T )

]
=


1.732 0
1.100 −1.100

0 −1.732
0 0
0 0


T

(25)
Then, the only remaining free parameter to define the refer-

ence polynomial is the total reconfiguration duration T . There-
fore, we can obtain an approximate heteroclinic connection de-
fined using Eqs. (24) where the constant vectors of Eqs. (24) are
found to be

[
a0 a1 a2 a3 a4

]
=


1.732 0

0 0
−1.447T 2 −8.944T 2

−4.032T 3 10.960T 3

3.748T 4 −3.748T 4


T

(26)

This function provides a smooth reference trajectory while
ensuring that the required boundary conditions are satisfied. Af-
ter repeated differentiation these polynomials provide the corre-
sponding velocities and accelerations to be tracked to follow the
reference trajectory. Then an inverse control method is defined
to track the reference trajectory.

Inverse methods
Inverse control is an effective method to control non-linear

systems, used extensively in a diverse range of nonlinear con-
trol problems [16]. A nonlinear system is assumed to have the
generic form below

ẋ(t) = f {x(t),u(t); t} ,x ∈ Rm,u ∈ Rn, t ∈ [0,T ] (27)

where x(t) is the system state, u(t) is a vector of inputs and f
is a smooth function describing the dynamics of the process. The
generic boundary conditions and constrains are defined as

x(0) = x0, x(T ) = x f (28)

The inverse method represents the control problem of how
to find a control vector u(t) which can track desired outputs of
the system while meeting the requirements of the boundary con-
ditions, viz

e{x(t),x∗(t); t}= {x(t)−x∗(t)}= 0 (29)

where e is a continuous constraint function and x∗(t) rep-
resents the desired output. For our dynamical system we need
to extend this method to provide nonlinear control to track the
reference trajectory in the presence of uncertainties. We may
differentiate the constraint vector e until the control appears ex-
plicitly, then we may add feedback terms instead of defining the
constraint vector to be null, viz

ë{x(t),x∗(t); t}=−λλλ 1ė−λλλ 2e (30)

where λλλ 1 and λλλ 2 are constant gain matrices defined by

λλλ 1=Diag{λ11,λ12}
λλλ 2=Diag{λ21,λ22}

The 4th order polynomial can then be used as a reference
trajectory with the inverse control method to provide an example
of a controlled heteroclinic connection through E1 between E9
and E10, with L1=2, L2=2 and L3=2 as parameters, and the re-
configuration duration set as T =25. Therefore, Eq.(30) can then
be combined with Eq. (13) to determine the control variables as

L = J−1(x)
[

ẍ∗1−λ11(ẋ1− ẋ∗1)−λ12(x1− x∗1)+ x2− (k1 + k2)x1
ẍ∗2−λ21(ẋ2− ẋ∗2)−λ22(x2− x∗2)+ x1− (k3 + k2)x2

]
(31)

Numerical solutions
This method is now applied to illustrate a reconfiguration

manoeuvre and the use of the inverse method to achieve effec-
tive control. The controls L1, L2 and L3 are shown in Fig.11a,
where the controller tracks the approximate trajectory defined
by the 4th order polynomial, with the constant gains defined as
λ11=λ21=0.25 and λ12=λ22=0.75. It can be seen that the controls
are symmetric about t=T /2 as expected. The corresponding mass
displacement and the reference path is then shown in Fig.11b.

In order to evaluate the polynomial method further, a set of
higher order polynomials can be used which reduce the effective
energy required for reconfiguration by providing a more accurate
reference trajectory. We can now add additional conditions to
construct a higher order reference polynomial. Considering the
transition from E9 at (1.732,0) to E10 at (0,-1.732) as an example
we can define [

ẍ∗(0) ẍ∗(T )
]
=

[
0 0
0 0

]T

(32)
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FIGURE 11. 4th order polynomial as reference trajectory E9 at
(1.732,0) to E10 at (0,-1.732). (a) Controls actuated through the param-
eters L1, L2and L3. (b) Mass displacements during the transition from
E9 to E10 with the reference trajectory and actual trajectory.

so we can therefore obtain an approximate heteroclinic con-
nection defined using

x∗(t) = a0 +a1t +a2t2 +a3t3 +a4t4 +a5t5 +a6t6 (33)

Using the inverse control method we can generate another ap-
proximate heteroclinic connection, where the controller ensures
capture and tracks the approximate trajectory defined by the 6th

order polynomial. The corresponding controls L1, L2 and L3 are
shown in Fig.12a. The corresponding mass displacement and the
reference path is then shown in Fig.12b.

Then, Eq. (22) is used as an energy evaluation criteria in or-
der to compare the energy consumption of different order poly-
nomial reference trajectories, where the total energy input to the
process can be seen in Fig. 13. The numerical results demon-
strate that with the higher order polynomial less energy is re-
quired for the reconfiguration process.

Then, the influence of the total reconfiguration duration T
can be considered. Figure 14 shows three distinct curves which
define four types of reference trajectory with different manoeu-
vre durations. There is an evident sharp decrease of the three
curves and then a slow increase as the manoeuvre duration grows.

0 5 10 15 20 25
1.7

1.8

1.9

2

2.1

2.2

2.3

Time

L
1, 2, 3

 

 

L
1

L
2

L
3

a

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time
x 1 /x

2

 

 
x

1

x
2

x
1
*

x
2
*

b

FIGURE 12. 6th order polynomial as reference trajectory E9 at
(1.732,0) to E10 at (0,-1.732). (a) Controls actuated through the param-
eters L1, L2and L3. (b) Mass displacements during the transition from
E9 to E10 with the reference trajectory and actual trajectory.

For this example we can therefore identify the optimum manoeu-
vre duration T . Moreover, the figure shows that the higher order
polynomial can offer a significantly improve the reference trajec-
tory for reconfiguring the smart structure model.

6 Conclusion
Using a simple, representative model of an unstable smart

structure it had been demonstrated that the unstable configura-
tions of the structure can be connected through heteroclinic con-
nections in the phase space of the problem. In principle, such
reconfigurations do not require the input of energy, other than to
overcome dissipation in the system.

Then, considering that real smart structures are complex dy-
namical systems with strong nonlinearities, an optimal control
method is employed to reconfigure smart structure. It was found
that the transition between unstable equilibria can be achieved
through manipulating the natural length of the springs in the
model, which is assumed to be achieved with a suitable active
material. A more computationally efficient method for the re-
configuration of the smart structure model using polynomial se-
ries to approximate heteroclinic connections has also been pre-
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mate trajectories.
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FIGURE 14. Comparison of energy input to track different approxi-
mate trajectories as a function of manoeuvre duration.

sented. In addition, inverse control methods have been inves-
tigated to track the reference trajectory during reconfiguration
from one equilibrium state to another. To illustrate the advan-
tage of the polynomial method, different order polynomials were
compared in terms of the external energy needed to achieve the
transition. Numerical simulation then demonstrates the ability
of the method to generate efficient approximate heteroclinic con-
nections in the simple smart structure model. While the model
used is simple, it provides insights into the problem which can
be exploited to develop the concept towards the reconfiguration
of real smart structures.
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