To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish

McKenzie, D. J., Belao, T. C., Killen, S. S. and Rantin, F. T. (2015) To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish. Journal of Experimental Biology, 218(23), pp. 3762-3770. (doi: 10.1242/jeb.122903) (PMID:26632454)

[img]
Preview
Text
113939.pdf - Published Version
Available under License Creative Commons Attribution.

613kB

Abstract

The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, ‘bold’ phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than ‘shy’ phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Killen, Professor Shaun
Authors: McKenzie, D. J., Belao, T. C., Killen, S. S., and Rantin, F. T.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Journal of Experimental Biology
Publisher:Company of Biologists
ISSN:0022-0949
ISSN (Online):1477-9145
Copyright Holders:Copyright © 2015 The Authors
First Published:First published in Journal of Experimental Biology 218(23):3762-3770
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
594261The Influence of Individual Physiology on Group Behaviour in Fish SchoolsShaun KillenNatural Environment Research Council (NERC)NE/J019100/1RI BIODIVERSITY ANIMAL HEALTH & COMPMED