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Abstract This study tests alternative models for the growth of the Tatry Mountains (Central Western
Carpathians) by the application of low-temperature thermochronology. Zircon (U + Th)/He ages from the
north of the range are mostly between 48 and 37 Ma and indicate cooling prior to the onset of fore-arc
sedimentation in the region (42-39 Ma). In contrast, zircon (U + Th)/He ages in the south of the range are
around 22 Ma. Apatite fission track ages across the sampled sites range from 20 to 15 Ma. Apatite (U + Th)/He
ages range from 18 to 14 Ma with little variation with elevation or horizontal location. Based on thermal
modeling and tectonic reconstructions, these Miocene ages are interpreted as cooling in the hanging

wall of a northward dipping thrust ramp in the current location of the sub-Tatric fault with cooling rates of
~20°C/Myr at ~22-14 Ma. Modeled cooling histories require an abrupt deceleration in cooling after ~14 Ma to
<5°C/Myr. This is associated with termination of deformation in the Outer Carpathians and is synchronous
with the transition of the Pannonian Basin from a syn-rift to a postrift stage and with termination of N-S
compression in the northern part of the Central Western Carpathians. Overall, the timing of shortening

and exhumation is synchronous with the formation of the Outer Carpathian orogen and so the Miocene
exhumation of the Tatry records retrovergent thrusting at the northern margin of the Alcapa microplate.

1. Introduction

Alpine orogenesis across Europe has resulted in a wide range of tectonic interactions between regions of
crustal thickening at convergent boundaries and thinning associated with slab retreat and mantle instability.
Mountain ranges such as the Betic-Rif system and its association with extension in the Alboran Sea in western
Europe have generated much debate concerning their geodynamic origins [Platt and England, 1994;
Lonergan and White, 1997]. A similarly spectacular example of the proximal synchroneity of lithospheric
thickening and extension comes from the formation of the Carpathian arc and the Pannonian Basin of
eastern Europe in Miocene times [Slgczka et al., 2005; Tari and Horvdth, 2005]. The formation of the Outer
Carpathian thrust wedge at the same time as extension in the Pannonian Basin has been interpreted to have
resulted from the northward rollback of the subducting European lithosphere starting at ~20 Ma [Royden
et al., 1983; Horvdth, 1993] with arc volcanism and back-arc rifting in the Pannonian Basin lasting until around
11 Ma. An alternative tectonic model for the Carpathian thrust wedge/Pannonian Basin system is that it results
from gravitational instability of the mantle lithosphere following thickening [Houseman and Gemmer, 20071.

The pre-Miocene evolution of the Carpathians is dominated by Cretaceous orogenesis involving Variscan
basement massifs and the development of complex fold nappes of Mesozoic sediments of the Central
Western Carpathians (CWCQ) [Plasienka et al., 1997]. The Tatry Mountains of southern Poland and northern
Slovakia contain the highest peaks of the Carpathian mountain chain, and they are an important component
of this larger system (Figure 1). The CWC forms the boundary between the Miocene extensional regime of the
Pannonian Basin and the Outer Carpathian thrust wedge, so understanding the evolution of the Tatry is
critical to understanding the relationship between contraction and extension at this time (Figure 1).

The Tatry massif is surrounded by a deformed sedimentary succession of the Central Carpathian Paleogene
Basin (CCPB) that is thought to represent the former fore-arc basin of the Carpathian orogenic belt [Kdzmér
et al., 2003] (Figure 1). The massif belongs to the overriding southern plate and is located close to its
northern edge, ~20km south from the Pieniny Klippen Belt; a suture belt that probably represents a
remnant of a collision zone of the European plate and Alcapa terranes [Oszczypko et al., 2010]. The
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Figure 1. Geology of the Tatry area. (a) Map of the main geological structures of the central and southern Europe [after Oszczypko et al., 2006]. (b) Shaded relief image
of the Digital Elevation Model (3" x 3") of the Tatry mountains and surrounding areas. (c) Geological map of the Central Western Carpathians in the Tatry region
(after Lexa et al. [2000], simplified). The thermochronologic ages are after: Mala Fatra - Danisik et al. [2010] and Krdlikovd et al. [2014b]; Nizke Tatry - Danisik et al. [2011];
Branisko Mountains - Danisik et al. [2012]; Tatry - Burchart [1972], Krdl' [1977], Baumgart-Kotarba and Krdl [2002], Anczkiewicz et al. [2005], and Krdlikovd et al. [2014a].
(d) Schematic cross section through the Tatry and surrounding areas (after Schmid et al. [2008], modified).
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Pieniny Klippen Belt forms the boundary between the Central Western Carpathians and the Outer Carpathians
orogenic wedge (Figure 1).

In this paper we present a low-temperature thermochronology study of the high-elevation region of the Tatry
massif using all established techniques. Apatite fission track (AFT) and (U +Th)/He analysis in apatites and
zircons (AHe and ZHe) are now routinely used to identify periods of rapid cooling and relative displacements
across major structures in mountain ranges [e.g., Reiners and Brandon, 2006; Kirstein et al., 2006; Foeken et al.,
2007]. Here we use cooling histories determined from the three thermochronometers to test contrasting
tectonic models for the formation of the Tatry mountains, in particular, to address whether they are formed
by footwall uplift linked to normal faulting or thrusting due to Palaeogene or Neogene crustal thickening
[Sperner et al., 2002; Jurewicz, 2005]. The new thermal history for the region is discussed in the context of
the development of the Outer Carpathians and the Pannonian Basin and yields insight into the geodynamic
linkage between these two systems [Ratschbacher et al., 1991].

2. Geological Background

The Tatry massif forms an east-west trending range approximately 60 km long and 15 km wide, comprising
a “core and cover” structure similar to other Variscan massifs of the Central Western Carpathians [Plasienka
et al., 1997]. Carboniferous granites that intrude lower Paleozoic metasedimentary rocks dominate the
southern part of the range, forming the highest peaks [Jurewicz, 2005; Burda et al., 2013] (Figure 1). The
Paleozoic basement is overlain by autochthonous Permo-Triassic conglomerates and sandstones that form
the base of a stack of nappes of Triassic to Cretaceous sedimentary rocks [Plasienka et al, 1997,
Rubinkiewicz and Ludwiniak, 2005]. These nappes are best exposed on the northern slopes of the range.
The nappes were formed and thrust northward during the Alpine orogeny (late Cretaceous) when several
terranes (the Alcapa microplate) collided with the European plate [Csontos and Vérds, 2004]. At that time,
the CWC range was located in the eastern part of the Alpine collision zone and was later extruded toward
the northeast [Ratschbacher et al., 1991]. Between 1 and 3 km of sediments of the original Mesozoic nappe
stack are preserved on the northern slope of the mountains (Figure 1). K-Ar dating suggests that the Tatry
granite has not exceeded ~250°C (~10 km burial) since Permian times [Kovdc et al., 1994, and references
therein]. This is consistent with petrologic data that indicate that the pressure might have been close to
250 MPa (~10 km burial) [Petrik et al., 2003] and concurs with recent zircon fission track data [Krdlikovd
et al., 2014a].

North of the Tatry, the Alpine basement is unconformably overlain by Eocene to early Miocene Central
Carpathian Paleogene Basin sediments [e.g., Roniewicz, 1969]. The Tatry massif is separated from the CCPB
sediments to the south, west, and east by faults (Figure 1c). The CCPB was a fore-arc basin that developed
on the overriding plate close to the subduction zone responsible for forming the Outer Carpathian orogenic
wedge [e.g., Kdzmér et al., 2003]. Marine transgression in the Tatry area occurred at 42-39 Ma, and deep
marine sedimentation was established at ~35Ma [Bartholdy et al., 1999; Sotdk, 2010; Starek et al., 2012].
The absence of pebbles of basement granites in the conglomerates of the CCPB, and paleocurrent recon-
structions, suggest that the Tatry was not an important source of sediments during Eocene-Oligocene or that
only the Mesozoic nappes were exposed at this time [e.g., Sotdk et al., 2001]. Approximately 3.5 km of CCPB
sediments are preserved in the Podhale syncline north of the Tatry [Ludwiniak, 2010]. Sedimentation in the
CCPB (Figure 1d) lasted until at least ~23 Ma [Ged|, 2000; Sotdk et al., 2001; Garecka, 2005]. It is likely that
the youngest part of the CCPB succession was eroded in Neogene times [Srodor et al., 2006]; thus, the
complete sedimentation history of the CCPB is unclear.

Shortening of the western segment of the Outer Carpathians started in Eocene/Oligocene times, but the peak
of thrusting was at ~25-15 Ma [Gggata et al., 2012; Andreucci et al., 2013]. Thrusting was accompanied by the
formation of the Carpathian foredeep basin [Oszczypko, 2006]. In the sector of the Outer Carpathian belt
located to the north of the Tatry, the main thrusting phase ceased after ~13.6 Ma [Nemcok et al., 20063,
2006b] and the final stages of tectonic activity within the frontal orogenic wedge took place after ~12 Ma
[Krzywiec et al., 2014].

The shortening in the Outer Carpathians was accompanied by extension in the Pannonian region (~100 km
south of the Tatry) where a back-arc basin formed at ~20-17.5 Ma due to slab rollback and asthenospheric
upwelling [Royden et al., 1983; Horvdth, 1993] (Figure 1a). The syn-rift stage of the basin development
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Figure 2. Four hypothetical end-member models of the exhumation history of the Tatry. (a) Model 1. Inherited Cretaceous-Palaeogene Alpine deformation
with minor Neogene rejuvenation, similarly to the exhumation history of the Nizke Tatry massif to the south of the Tatry. (b) Model 2. Late Eocene-early
Oligocene faulting synchronous with the sedimentation in the CCPB that continued into the Miocene. (c) Model 3. Extensional footwall uplift during Miocene/
Pliocene. For the cross-section view see Figure 6a. (d) Model 4. Backthrusting during Carpathian orogenesis in early-middle Miocene. For the cross-section view
see Figures 6b and 7. Please note that simplified geological maps presented on this figure do not show paleoreconstructions. For more explanations and

references, see text.

lasted until 11.5-10.5 Ma [Houseman and Gemmer, 2007]. Subduction of the European plate margin along
with lateral extrusion of the Alcapa block and mantle diapiric upwelling produced calc-alkaline volcanism
from 20 Ma to 11 Ma. This was followed by intermittent alkalic basaltic volcanism until 0.5 Ma [Seghedi
et al., 2005].

The tectonic evolution of the Tatry is critical to understanding the Cenozoic development of the CWC.
However, there is little consensus on the underlying controls. The last large-scale tectonic modification
of the Tatry is recorded by the northward tilting (~40°) of the transgressive Eocene sediments that overlie
the northern margin of the Tatry [Mastella, 1975] (Figure 1d). The basal Triassic conglomerates that sit
on the granites also dip 40° to the north [Rubinkiewicz and Ludwiniak, 2005]. As the Mesozoic nappes form
the basement of the CCPB the tilt might be related to the formation of the Podhale syncline in Neogene
times [Plasienka et al., 2001; Szaniawski et al., 2012] (Figure 1d). The structure of the core of the Tatry is not
clear. The biggest unknown is the geometry and kinematics of the W-E trending sub-Tatric fault. The fault
forms the southern boundary of the massif and is likely to has been a key control on the exhumation of
the Tatry massif (Figure 1c). The fault is poorly exposed because of the cover of Quaternary glaciogenic
sediments. Of the many hypotheses that have been put forward regarding the fault geometry, two
are the most established. The sub-Tatric fault could be either a steep north dipping reverse fault [e.g.,
Sperner, 1996; Plasienka et al., 2001] or a south dipping normal fault [e.g., HruSecky et al., 2002; Jurewicz,
2005]. A hypothesis that fault kinematics changed substantially over time has also been proposed [Krdlikovd
et al., 2014al.

Previous thermochronology studies have not produced a consistent cooling history (Figure 1). These studies
are largely restricted to apatite fission track determinations and imply that major cooling and denudation of
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Figure 3. Spatial distribution of the thermochronological data. (a) Shaded relief image of the Digital Elevation Model (1" x 1") from the Tatry area. White circles:
location of sampling sites, black circle: location of subvertical sampling profile. Sample name and average thermochronological ages are given in rectangles: normal
font, AHe; underlined font, AFT; italics, ZHe. For the subvertical profile presented ages are averaged for the whole profile. White dashed line shows the line of the
topographic cross section (D). (b) Shaded relief image of the Digital Elevation Model (10 m x 10 m) from the Czarny Staw area. White circles - location of sampling sites.
White angle shows the view area of the picture presented in the part C. (c) Photograph of the Morskie Oko valley and lake. White circles - location of sampling sites.
Sample name and average thermochronological ages are given in rectangles: normal font, AHe; underlined font, AFT; italics, ZHe. (d) Topographic profile with localization
of sampling sites in the subvertical and subhorizontal sampling profiles through the Tatry (for location see A). Average thermochronological ages are given: normal font,

AHe; underlined font, AFT; italics, ZHe. CCPB - Central Carpathian Paleogene Basin. Dashed line shows unknown, possible position of the Mesozoic cover of the Tatry
crystalline core.

the Tatry appears to have occurred between ~37 and ~2 Ma. The earliest AFT analysis by Burchart [1972] and
by Krdl' [1977] yielded cooling ages of between ~20 and ~10 Ma although 30 to 37 Ma cooling ages were
measured in the northern part of the massif. The uncertainties on the age estimations are 15% to 40%
[Burchart, 1972]. More recent AFT analyses were performed by Baumgart-Kotarba and Krdl [2002] and
Anczkiewicz et al. [2005]. The first survey was based on four samples collected along the sub-Tatric fault that
recorded AFT ages from ~7 Ma to ~2 Ma [Baumgart-Kotarba and Krdl, 2002]. The second was based on 37
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Table 1. Apatite (U + Th)/He Results From Samples From Tatry Mountains®

sample . 238U e e 4He +1c error LT Corrected
hame replicate (ng) error  232Th(ng) error i) %) Th/U Age Fr age (Ma) +1c (Ma)
(%) (%) (Ma)
G_01 1 0.019 15.7% 0,068 9,7% 10.2 2.0% 3.61 9.5 0.75 12.7 1.2
2 0.097 3.5% - - 63.1 1.0% - 1.4 072 15.8 0.6
4 0.223 2.3% 0,057 11,5% 108.9 0.6% 0.25 11.2 0.74 15.2 0.4
5 0.140 2.8% 0,035 18,4% 66.6 0.7% 0.25 13.7 077 17.8 0.5
6 0.060 5.2% 0,040 16,1% 35.2 1.2% 0.68 11.8 074 15.9 0.8
15.4+1.8 Ma
G_02 2 0.381 3.2% 0,104 6,4% 49.5 0.5% 0.27 119 083 14.3 0.5
4 0.313 2.8% 0,044 14,7% 101.2 0.5% 0.14 11.9 0.76 15.6 0.4
5 0.256 2.4% 0,089 7,5% 86.5 0.6% 0.35 10.2 0.76 13.4 0.3
14.4+1.1 Ma
G_03 2 0.025 11.6% 0,118 5,7% 11.7 1.2% 4.64 1.1 0.80 13.9 0.9
4 0.174 2.5% 0,030 21,4% 85.4 0.6% 0.17 11.4 0.75 15.2 0.4
6 0.249 2.2% 0,085 7,8% 88.8 0.5% 0.34 125 0.76 16.4 0.4
7 0.043 7.0% - - 20.2 1.3% - 131 076 17.2 1.2
8 0.074 4.3% - = 34.0 0.9% - 11.5 074 15.6 0.8
15.6 + 1.2 Ma
G_04 3 0.028 10.5% 0,044 14,9% 28.2 1.5% 1.55 124 071 17.4 15
4 0.090 3.7% 0,010 61,8% 24.1 0.9% 0.12 9.7 0.78 12.4 0.5
6 0.034 8.7% 0,018 35,0% 15.5 1.5% 0.54 11.7 077 15.2 1.4
14.9+2.5Ma
G_05 1 0.128 2.9% 0,113 6,0% 427 0.7% 0.88 9.2 0.77 12.0 0.3
2 0.354 2.3% 0,042 15,4% 161.4 0.5% 0.12 11.0 074 14.9 0.4
3 0.069 4.6% 0,142 4,8% 26.5 0.8% 2.07 100  0.77 13.0 0.5
4 0.281 2.2% 0,028 23,0% 144.0 0.6% 0.10 12.2 0.75 16.2 0.4
9 0.634 3.1% 0,170 4,1% 98.4 0.5% 0.27 119 083 14.3 0.4
14.0+1.6 Ma
G_06 1 0.444 2.8% 0,025 25,7% 73.5 0.5% 0.06 12.5 0.83 15.1 0.4
3 1.214 4.9% 0,231 3,1% 175.5 0.5% 0.19 11.4 0.82 13.9 0.7
14.5+0.8 Ma
G_07 1 0.164 2.8% 0,022 30,1% 68.5 0.6% 0.13 105 0.76 13.8 0.4
7 0.077 4.2% - = 21.4 0.8% - 132  0.80 16.5 0.8
9 0.300 2.3% 0,045 14,5% 88.7 0.5% 0.15 11.0 0.77 14.3 0.3
14.8+ 1.5 Ma
G_10 1 0.129 2.9% 0,036 18,2% 41.7 0.6% 0.27 135 0.79 17.1 0.5
7 0.391 2.9% 0,071 9,2% 134.3 0.5% 0.18 1.6 077 15.0 0.4
9 0.075 4.3% 0,199 3,6% 31.1 0.8% 2.66 9.0 0.78 11.5 0.4
14.4+2.8 Ma
G_11 1 0.009 23.5% 0,020 25,2% 32.6 1.5% 2.12 9.1 0.55 16.5 2.9
3 0.019 11.4% - - 34.6 1.0% - 11.6 062 18.7 2.1
4 0.050 2.3% 0,042 9,2% 74.9 0.6% 0.84 7.5 0.57 13.1 0.3
5 0.072 1.8% 0,044 8,7% 81.5 0.6% 0.62 9.7 0.64 15.2 0.3
15.8 + 2.4 Ma
G_12 1 0.069 3.4% - - 94.8 0.6% - 10.5 0.63 16.7 0.6
2 0.420 1.3% 0,047 10,8% 256.9 0.5% 0.11 9.7 0.68 14.2 0.2
3 0.288 1.4% 0,019 26,9% 226.5 0.5% 0.06 104 069 15.0 0.2
4 0.365 2.0% 0,076 5,2% 208.5 0.5% 0.21 102 072 14.2 0.3
5 0.121 1.5% 0,050 7,8% 86.8 0.5% 0.41 8.7 0.68 12.8 0.2
14.5+1.4 Ma
G_13 1 0.018 12.1% - - 15.8 2.1% - 120 0.70 17.1 2.1
2 0.017 12.9% - - 11.9 2.5% - 108 071 15.2 2.2
3 0.013 16.6% = - 24.8 3.2% = 10.7  0.60 17.9 3.0
4 0-004 515% - - 191 3-8% - 285 662 459 238
5 08-007 314% - - 223 5-4% - 119 652 229 73
16.7 +1.4 Ma
G_15 1 0.017 6,0% 0,020 18,9% 22.3 2.6% 1.21 11.8  0.66 17.9 1.2
4 0.093 2,7% - - 91.5 0.7% - 123 068 18.1 0.5
5 0013 174% - - 563 27% - 191 656 341 60
18.0+1.2 Ma
G_16 1 0.046 2,4% 0,012 32,1% 40.8 1.0% 0.26 10.5  0.67 15.6 0.5
2 0.042 2,6% - - 51.8 0.9% - 127 067 18.9 0.7
4 0.040 2,7% 0,005 79,7% 63.9 1.1% 0.12 9.9 0.60 16.5 0.6
16.9+1.7 Ma
3238}, mass of 238U; 23271 mass of 232Th; “He: “He volume per nano cm3 STP; Th/U: 23271 10 238y factor; F1: alpha recoil correction factor after Farley et al.

[1996]; corrected age (Ma): corrected He age; £1c: sigma standard deviation of corrected age. Bold, average age of sample and +1c standard deviation

based on geometric average. Strikethrough, values removed from the dataset. For more explanations see text.

SMIGIELSKI ET AL.

EXHUMATION HISTORY OF THE TATRY

192



@AG U Tectonics 10.1002/2015TC003855

Table 2. Apatite Fission Track Results From Samples From Tatry Mountains®

Sample N ps(10°%em?) N, p;(10%cm?) N pg(10°/cm?) Ny P( (%) Dpar(um) =xloc(um) Age(Ma) +1c (Ma)
G_01 20 1.58 175 27.83 3080 15.18 14313 99.9 1.82 0.21 16.5 1.3
G_02 21 1.34 1665 2344 1665 16.13 14313 257 1.55 0.12 16.9 1.8
G_03 11 2.88 11 49.16 1898 16.14 14313 1.9 1.9 0.10 173 1.7
G_04 20 1.16 136 20.62 2420 20.62 14313 99.9 1.89 0.17 16.6 1.5
G_05 20 2.21 225 43.92 4467 16.10 14313 389 1.78 0.19 14.8 1.1
G_06 19 2.52 131 50.00 2601 16.10 14313 99.9 1.95 0.24 149 1.4
G_07 20 143 184 28.64 3675 16.10 14313 5.8 1.69 0.27 14.9 1.2
G_10 19 1.82 111 31.16 1897 16.11 14313 99.1 1.63 0.22 17.3 1.7
G_11 20 2.02 219 28.85 3131 15.50 10014 99.9 1.96 0.1 19.9 1.5
G_12 20 1.15 103 17.82 1596 15.30 10014 99.9 1.81 0.10 18.1 1.9
G_13 20 1.02 29 15.69 1520 15.30 10014 99.9 1.84 0.05 18.3 1.9
G_15 20 0.93 141 17.54 1662 15.40 10014 99.5 1.91 0.10 15.0 1.3
G_16 20 143 209 26.81 3919 15.10 10014 99.9 1.86 0.20 14.8 1.1

@N: number of crystals; ps: spontaneous track density (per cm?); Ns: number of counted spontaneous tracks; p;: inducted track density (per cm

2); Nj: number of

counted inducted tracks; p4: dosimeter track density (per cm®); Ng: number of tracks counted on dosimeter; P (x“): probability for obtaining chi-square value for
single population test; Dpar: value of average etch pit diameter of fission tracks, Durango apatite standard Dpar: 1.81 + 0.1 [Carlson et al., 1999]; £1c (um): standard
deviation for Dpar. Age: central age; =16 (Ma): sigma error for age.

samples collected through the Tatry. In the eastern part of the massif the AFT ages are from 9 Ma to 21 Ma
with the peak between ~15Ma and ~10 Ma. In the western part of the massif the ages are from 12 Ma
to 31 Ma with a peak between ~18 and ~31 Ma [Anczkiewicz et al., 2005]. The most recently published
study covers the southeastern part of the Tatry where four samples yield AFT ages from 12 Ma to 9 Ma
and was supported by the Zircon Fission Track (ZFT) analysis that record ages of ~75-60 Ma [Krdlikovd
et al., 2014al.

The Tatry is the highest of several granitic massifs of the CWC (Figure 1c). The Mald Fatra massif to the west of
the Tatry experienced major cooling in mid-Miocene times [Danisik et al., 2010; Krdlikovd et al., 2014b]
(Figure 1c). The Nizke Tatry Mountains to the south are characterized by a rapid Paleogene cooling from
55-40 Ma with Miocene AHe ages between 20 and 15Ma and a reduction in cooling rates since then
[Danisik et al., 2011]. The Branisko Mountains to the east record a mid-Miocene thermal event but also contain
late Cretaceous-Eocene ZHe ages, which have been interpreted as cooling ages related to postorogenic
exhumation after the mid-Cretaceous Alpine collision [Danisik et al., 2012]. These data imply that the
Central Western Carpathian massifs have experienced a rather complicated thermal history comprising
Mesozoic tectonosedimentary burial [Kovdc et al., 1994; Plasienka et al., 1997], possible postorogenic exhuma-
tion in late Mesozoic to early Paleogene times, followed by another burial/exhumation event in Paleogene to
early-middle Neogene times [Danisik et al., 2004]. The thermal history of the region has also been influenced
by an elevated geothermal gradient related to the Miocene volcanism, referred to as the “mid-Miocene
thermal event” [Danisik et al., 2012; Anczkiewicz et al., 2013].

Based on the proposed tectonic models for the evolution of the Tatry, in addition to the published thermo-
chronometric data from the Tatry and surrounding massifs, we have derived four different end-member
solutions for the Tatry exhumation (Figure 2). These preliminary models will be tested and discussed later
in the paper.

3. Samples and Methodology

Thirteen samples of granite-granodiorite from the pre-Alpine basement of the Tatry were collected along
three transects: (1) N-S transect ~10km long through the massif from Wodogrzmoty Mickiewicza falls to
Strbské Pleso lake (eleven samples), (2) subvertical transect ~1 km high from Morskie Oko lake to the peak
of Mieguszowiecki (seven samples), (3) E-W transect ~14 km along the sub-Tatric fault at the southern margin
of the mountains (three samples). Sample locations are shown in Figure 3.

Here we present AFT and AHe data from all the 13 samples and ZHe ages from six strategically selected samples.
For the AHe and ZHe methods, single, euhedral, inclusion-free crystals were handpicked, measured, and packed
in Pt foil tubes. Helium was extracted by heating the Pt foils with a 808 nm diode laser at 600-700°C for 60s
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Table 3. Zircon (U + Th)/He Results From Samples From Tatry Mountains®

238y tlcError  232Th +106 Error “He +10 Error Raw Age Corrected Age +lo
Sample Name  Replicate (ng) (%) (ng) (%) (ncc/mg) (%) Th/U (Ma) Fr (Ma) (Ma)
G_01 1 0.521 1.2% 0.126 8.3% 746.7 0.5% 0.24 24.8 0.61 40.7 0.6
2 20.695 1.1% 0.395 2.8% 1929.0 0.5% 0.15 338 0.72 46.9 0.6
43.6+3.1Ma 43.7 +4.4Ma
G_06 1 1.532 1.6% 0.394 1.6% 8914 0.5% 0.26 243 0.64 379 0.6
4 0.620 1.3% 0.235 2.3% 755.8 0.5% 0.38 229 0.52 440 0.6
2 0.778 1.3% 0.284 2.0% 662.1 0.5% 0.37 24.2 0.58 41.7 0.6
41.2+1.8Ma 41.1 +3.1 Ma
G_10 1 0.331 1.4% 0.062 16.5% 3455 0.5% 0.19 133 0.57 234 0.4
2 0.919 1.2% 0.102 10.0% 1275.8 0.5% 0.11 233 0.61 382 0.5
3 0.480 1.2% 0.044 23.2% 1095.2 0.5% 0.09 29.5 0.55 537 0.8
4 2.823 1.2% 0.668 2.5% 656.4 0.5% 0.24 29.8 0.80 37.3 0.5
5 1.634 1.2% 0.496 2.6% 904.7 0.5% 0.30 309 0.74 41.8 0.5
6 3.628 1.1% 0.314 3.4% 1295.6 0.4% 0.09 25.1 0.75 335 0.4
7 0.921 1.1% 0.293 3.5% 965.4 0.5% 0.32 51.1 0.74 69.0 0.8
8 2.798 1.2% 0.734 2.4% 20204 0.5% 0.26 249 0.67 371 0.4
9 1.865 1.2% 0.326 3.3% 1370.3 0.5% 0.17 344 0.72 47.8 0.6
40.9 + 4.2 Ma 40.7 £13.1 Ma
G_11 4 3.300 1.2% 1.115 2.2% 1386.1 0.5% 0.34 34.0 0.76 44.7 0.6
5 2.400 1.2% 0.528 2.6% 11343 0.5% 0.22 23.2 0.73 31.8 0.4
6 2173 1.1% 0.386 2.9% 923.0 0.5% 0.18 24.6 0.74 333 0.4
7 2.087 1.2% 0.399 2.8% 1369.7 0.5% 0.19 30.7 0.72 426 0.5
37.7+3.3Ma 37.7£6.5 Ma
G_12 2 0.604 1.2% 0.125 8.2% 414.6 0.5% 0.21 15.9 0.66 24.1 03
3 0.817 1.2% 0.180 5.8% 437.5 0.5% 0.22 16.3 0.68 239 0.3
4 0.668 1.2% 0.218 4.2% 199.8 0.5% 0.33 15.0 0.73 20.6 03
5 1416 1.1% 0.161 5.1% 318.5 0.5% 0.11 124 0.74 16.7 0.2
21.1+ 1.8 Ma 21.1+3.5Ma
G_13 5 5.586 1.3% 0.191 4.4% 1216.8 0.5% 0.03 149 0.75 19.8 0.3
7 8.858 2.2% 0.933 2.4% 1345.7 0.5% 0.11 24.6 0.81 304 0.7
2 0.775 1.2% 0.191 5.5% 350.3 0.5% 0.25 10.9 0.65 16.8 0.2
3 2.041 1.2% 0.271 3.9% 336.4 0.5% 0.13 15.6 0.79 19.8 0.2
4 7.490 1.1% 0.467 2.6% 923.9 0.5% 0.06 24.2 0.83 29.2 0.4
22.7 + 2.6 Ma 22.6+6.1 Ma
3238(). mass of 238U; 232Th: mass of 23’2Th; “He: *“He volume per nano cm?’ STP; Th/U: 2321h 10 238y factor; Fy, alpha recoil correction factor after Farley et al.

[1996]; Corrected age (Ma): corrected He age; +1c: sigma standard deviation of corrected age. Italics, average age of sample and +1c standard deviation based
on central age algorithm [Vermeesch, 2010]. Bold, average age of sample and +1c standard deviation based on geometric average.

(apatite) and at ~1200°C for 20 min (zircon) [Foeken et al., 2006]. Helium content was measured using a Hiden
HAL3F quadrupole mass spectrometer. Apatite-bearing packets were then removed from the He extraction line,
spiked with 2>°U and 2*°Th in 5% nitric acid and left at 80°C for 48 h in sealed Teflon beakers. Zircon crystals were
carefully removed from the foils before being dissolved in 49% HF at 250°C for 48 h in a Parr bomb [Dobson et al.,
2008]. 228U, 2*U, and 2>2Th contents were determined via isotope dilution using a Plasmaquad PQ2.5 ICPMS
[Balestrieri et al., 2005]. Durango apatite and Fish Canyon Tuff zircon were used as mineral standards. The AHe
and ZHe ages were calculated according to established procedures [Meesters and Dunai, 2005; Vermeesch,
2010], and the ages were corrected for alpha recoil [Farley et al., 1996; Ketcham, 2009].

For the AFT analysis, polished apatite crystals were etched at 20°Cin a 5.5 M HNOs solution for 20 s [Donelick et al.,
1999; Ketcham, 2005]. 238U concentrations were determined using the external detector method [Gleadow and
Lovering, 1977]; samples were irradiated at the Garching nuclear reactor, including a CN5 glass dosimeter. The
apatite fission track ages were calculated using a zeta value of 368 + 8 [Hurford and Green, 1983]. Fission tracks
were counted and measured under a Carl Zeiss Axioplan microscope at X1250 magnification. Average etch pit
diameter of fission tracks (Dpar) measurements were calibrated against the Durango apatite standard (300
measurements from an interlaboratory Durango thin section; average Dpar: 1.81+0.1) [Carlson et al., 1999].
Horizontal, confined track lengths could be measured only for two samples; the lengths are ¢ axis corrected
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Figure 4. Plots of the thermochronological data, 1 sigma error bars for central ages are shown; age distribution for single-grain ages of the AHe and two populations

of the ZHe. (a) Thermo

chronological age versus vertical position above sea level. (b) Distance from the sub-Tatric fault versus thermochronological age of samples.

(c-e) Histograms of the single-grain ages distribution for the: AHe; ZHe in the southern part of the sampled area; ZHe in the northern part of the sampled area.

N, number of ages.

[Carlson et al., 1999]. Fission track ages were calculated using Trackkey 4.2 software [Dunkl, 2002]. Thermal his-
tories were derived from the HeFTy software, using the annealing algorithm developed by Ketcham et al. [2007].
The He data were modeled using the model parameters of Flowers et al. [2009] (Activation Energy 29.23 kcal/
mol and D, 0.6071 cm?/s), as used in the HeFTy software [Ketcham, 2009]. The corrected ages are obtained
using the alpha correction of Ketcham [2009].

4, Results

The data are shown in Tables 1-3 and Figures 3 and 4. We measured three to five single crystal apatite
(U +Th)/He ages (AHe) per sample. A total of 53 single crystals were dated (Table 1). Analytical uncertainties
on individual age determinations are typically ~5%. Six single ages were rejected because they were signifi-
cantly older than the AFT age. One datum was rejected because the age was significantly younger than all
other ages for the data set (Table 1). More than 85% of age determinations were used in the thermal model.
In eight cases the standard deviation for each sample is within 10% of the geometric mean sample age and
less than 20% in the other five cases. Average AHe ages vary from ~18 Ma (G15) to ~14 Ma (G05), with 10 of
the 13 samples yielding average ages from 15.8+2.4 Ma to 14.0 £ 1.6 Ma. There is no resolvable AHe age
change with altitude from the ~1 km subvertical profile from the Morskie Oko lake area and no age-elevation
relationship for the whole data set (Figures 3¢, 3d, and 4a). There is no clear relation between age and
position along the N-S profile through the Tatry, except the ages along sub-Tatric fault being slightly older
(Figure 4b). If treated as a single population, all 46 crystals yield ages of 15.2 + 1.8 Ma with a unimodal and
symmetric age distribution (Figure 4c).
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Figure 5. Thermal modeling results of ZHe, AFT, and AHe data for the selected samples displayed as a time-temperature chart. Modeled in HeFTy program [Ketcham,
2005]. The best fit is shown as a black line, light gray and dark gray areas show acceptable and good fit, respectively. The models where limited to the temperature
of ~120°C for the samples where ZHe data were not available. No geological constraints were used as the different possible tectonic scenarios are being tested
by the models. Data sets used for the modeling of samples are given; TL, track length (microns) distribution.

The apatite fission track (AFT) single crystal ages pass the chi-square testin 12 of 13 samples, and therefore,
they can be considered as belonging to the same population. Ages vary from ~20 Ma (G11) to ~15 Ma (G05)
but 10 out of 13 samples yield average ages between 17.3 1.7 to 14.8 + 1.1 Ma (Table 2). There is no clear
correlation between AFT age and sample location within the massif, but ages tend to be older in the south-
ern part of the N-S horizontal profile (Figures 3 and 4). The four topmost samples of the Morskie Oko profile
have ages between 17.3 £1.7 and 16.5 + 1.3 Ma. The three lowermost samples yield ages from 14.9+ 1.4 to
14.8 + 1.1 Ma. Dpar values vary from 1.55 to 1.96 um, with an average for the whole sample set of 1.81 um
+0.21 um (n=243). The Dpar values indicate an F-rich, Durango-like chemical composition of the analyzed
apatites, suggesting that complete annealing might have occurred at 110-100°C [e.g., Carlson et al., 1999].
The young AFT ages and the low 238U concentrations allowed for a statistically significant number of
confined, horizontal tracks to be measured in only two samples (GO1 and GO7, the top and bottom of
the Morskie Oko profile). The track length distribution in both samples is unimodal with mean track lengths
of 13.9 um and 13.3 um (Figure 5).
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In all samples, the AFT ages are older or identical to the AHe ages at 2c level. The age difference is up to
4.1 Myr (G11) with an average of 1.2+3.1 Myr. The absence of a clear age-elevation relationship in the
Morskie Oko profile is consistent with rapid cooling through the FT partial annealing zone (110-60°C)
[Reiners and Brandon, 2006] (Figures 3 and 4; Tables 1 and 2).

Six samples from the N-S profile were chosen for zircon (U + Th)/He (ZHe) analysis. A total of 27 single grains
were dated, from two to nine per sample (Table 3). Analytical uncertainties on individual age determinations
are typically less than 2%. Age reproducibility of replicates vary from sample to sample (Table 3). The mean
age was calculated by using both the geometric average and central age algorithm [Vermeesch, 2010]. Two
groups of ages can be distinguished: older ages in the north and central part of the analyzed portion of
the Tatry massif and younger in the southern part (Figures 3 and 4). Both groups of single grain ZHe ages
show unimodal age distributions (Figures 4d and 4e). Four samples from the northern and central part of
the profile yield central ages from 43.6+3.1 Ma (G01) to 37.7 +3.3 Ma (G11). Ages from nine single-grain
aliquots from the northernmost granite sample (G10) vary from 69.0+ 0.8 Ma to 23.4+0.4 Ma, with six in
range 33-48 Ma. In the southern part of the massif close to the sub-Tatric fault, ZHe ages are around
22 Ma. Two samples that generated nine single-grain aliquots yield central ages of 21.1 £ 1.8 Ma (G12) and
22.7 +2.6 Ma (G13) (Table 3).

5. Discussion
5.1. Miocene Cooling History of the Tatry

The AHe and AFT data indicate that the analyzed portion of the Tatry massif cooled during Miocene times
(Figures 3 and 4). Thermal history modeling was performed on the samples for which more than one data set
was available (AFT age and track length distribution and/or AHe and/or ZHe ages) (Figure 5). Almost all thermal
histories show a rapid cooling event between 20 and 14 Ma from at least 100°C to 40°C or less, at a minimum
cooling rate of 10°C/Myr (Figure 5). This corresponds to minimum denudation rates of 0.4-0.6 km/Myr for a
geothermal gradient of 20-25°C/km. This gradient is considered here as representative of the fore-arc area during
subduction and collision [Dumitru, 1991], although an elevated geothermal gradient in the Tatry area has also
been proposed [Danisik et al.,, 2012; Anczkiewicz et al., 2013]. The maximum cooling rate during large portions
of this period might have exceeded 20°C/Myr representing denudation rates >1km/Myr (Figure 5). Since
14 Ma, the rate of cooling appears to have slowed to less than 5°C/Myr. For the two samples at the bottom of
the vertical profile (G05, GO7) a modeled change in the cooling rate appears at ~10 Ma.

The spatial distribution of the AHe and AFT ages suggests that there is no clear difference in the cooling
history from ~100°C between samples. The southern margin of the Tatry might have experienced cooling
slightly earlier than the rest of the massif. The lowermost part of the Morskie Oko subvertical profile might
have cooled below the relevant closure temperatures later than the higher samples. However, both these
interpretations are indistinguishable at the 26 uncertainty level (Figures 3 and 4).

The ZHe ages from the southern margin of the massif record the exhumation rocks that cooled through
~180°C at ~22Ma (Figures 3 and 4). By including the ZHe data in the thermal history modeling, the
Miocene average cooling rates are estimated at ~20°C/Myr from 22 to 14 Ma (Figure 5). For a geothermal
gradient of 20-25°C/km this corresponds to erosion of 5.5 to 7 km during the Miocene and 9 to 7 km since
~22 Ma. This is a greater amount than for the other massifs in the CWC where the total exhumation for the
same period of time did not exceed 4-5 km [Danisik et al., 2012]. An elevated geothermal gradient during
the proposed “mid-Miocene thermal event” (18-11Ma) [Danisik et al., 2012] means that the amount of
eroded Tatry calculated above should be considered a maximum. The results imply that the pulse of
Miocene rapid cooling (exhumation) started earlier than 22 Ma and is approximately synchronous with the
cessation of sedimentation in the CCPB [Gedl, 2000; Sotdk et al., 2001; Garecka, 2005]

The Paleogene ZHe ages imply that the northern part of the Tatry experienced significantly less Miocene
cooling and denudation than the southern edge of the massif (Figures 1 and 3). Depending on the geothermal
gradient, the minimum difference in Miocene denudation between the northernmost and southernmost
sampled interval is estimated to be 3 to 4 km (Figure 6).

The results presented here enable better constraints on the timing of rapid denudation and cooling, and
identify the early and mid-Miocene (22-14 Ma) as a key period in the history of the sampled portion of the
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Figure 6. Reconstruction of the early Miocene thermal histories of the samples based on the two main tectonics model of
the Tatry (see text for more explanations). (a) Schematic N-S cross section through the Tatry in the sampled area based
on the normal fault/tilt block model (3). (b) Schematic N-S cross section through the Tatry in the sampled area based on
the reverse fault-/fault-related-fold model (4). (c) Thermochronological age of samples versus the hypothetical vertical
position in the profile inferred for the tilt model (3), assuming block rotation of the Tatry crystalline core, 3 km of the CCPB
overburden, and normal displacement of the south dipping sub-Tatric fault. See Figure 2d. (d) Thermochronological age of
samples versus the hypothetical vertical position in the profile inferred for the fault-related-fold model (4), assuming
internal bending of the Tatry crystalline core toward the sub-Tatric fault (“Tatry anticline”), 3 km of the CCPB overburden
and reverse displacement of the north dipping sub-Tatric fault. See Figure 2c. (e) Early Miocene palaeothermal gradient
versus thickness of Central Carpathian Paleogene Basin sediments cover of the Tatry for the normal fault/tilt block model.
Light gray and dark gray areas show the gradient/overburden pairs that meet temperature requirements for G10 and
G11 samples, respectively. Dotted lines show uncertainty of the burial estimation. AlImost no possible pairs of the gradient
and the cover values meet the temperature constraints of the G10 and G11 samples at the same time. Black rectangle
shows the range of the most probable gradient and cover values. (f) Early Miocene paleothermal gradient versus thickness
of Central Carpathian Paleogene basin sediments cover of the Tatry for the reverse fault-/fault-related-fold model. Light
gray and dark gray areas show the gradient/overburden pairs that meet temperature requirements for G10 and G11
samples, respectively. Dotted lines show uncertainty of the burial estimation. Most of the possible pairs of the gradient and
the cover values meet the temperature constraints of both samples at the same time. Black rectangle shows the range
of the most probable gradient and cover values.
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massif. The most recent AFT data from the eastern portion of the Tatry [Krdlikovd et al., 2014a] show that the
rapid cooling episode might extend to ~10 Ma. These findings suggest that there might be a W-E difference
in the mid-Miocene cooling history of the Tatry. The sections of the massif close to the eastern bounding
strike-slip fault was still rapidly exhumed while the exhumation in the central part had already slowed
[Krdl', 1977; Krdlikovd et al., 2014a].

5.2. Paleogene Thermal History of the Tatry

The first transgression of the Central Carpathian Paleogene Basin sediments onto the pre-Cenozoic basement
in the Tatry area occurred at ~42-39 Ma and is clearly recorded by the occurrence of Paleogene conglomer-
ates and shallow marine limestones [Bartholdy et al., 1999]. The 12 from 18 single-grain ZHe ages from the
northern and central parts of the Tatry that are in range of 37 to 48 Ma might suggest Paleogene cooling after
Alpine collision and immediately prior to the subsidence of the CCPB (Figures 3 and 4). This hypothesis is
supported by the geological evidences; the recoded ages cannot prove the cooling event by themselves.
This hypothetical Eocene cooling may have been related to extension that was responsible for the formation
of the fore-arc basin. The hypothesis is consistent with the early tectonic history of the CCPB proposed by
Kdzmér et al. [2003]. Also, it is consistent with structural observations of synsedimentary faults in the CCPB
close to the Tatry [Tomaszczyk et al., 2009; Dgbrowska and Jurewicz, 2013].

Eocene ZHe ages in the northern part of the granitic massif (sample G10) indicate that the stack of Mesozoic
nappes formed during Alpine thickening had an original thickness of ~6 km or more, when a thermal gradient
~30°C/km or lower is assumed. The spread of single-grain ZHe ages for the G10 sample indicates that the
Mesozoic burial only partially resets some of the zircon grains at that time (Table 3). Alternative, more complex,
thermal histories are possible from these data, but they are difficult to reconcile with the regional geology.

The pre-Miocene thermal history is recorded in most of the ZHe ages, despite heating by burial under the
CCPB sediments, but no AFT data record Paleogene cooling (Figure 3). These data place limits on the thick-
ness of CCPB sedimentary cover of the Tatry. Clearly it was thin enough to allow preservation of the
pre-Miocene ZHe ages but thick enough to reset the AFT system in all samples (Figure 4b). The most reliable
estimate of the thickness of the CCPB sedimentary cover can be made for the northernmost part of the
sampled granite represented by sample G10 (Figure 3). As the distance of sample G10 from the Mesozoic
nappes is relatively small, the uncertainty of the burial estimation caused by the unknown internal structure
of the Tatry granitic core is negligible (Figures 6a and 6b). Regardless of the tectonic model of the Tatry
exhumation, at the moment of the CCPB transgression, sample G10 was buried beneath ~1km of granite
and ~2 km of Mesozoic nappes [Nemcok et al,, 1994]. This corresponds to temperatures ~60-75°C, taking into
account typical geothermal gradient of 20-25°C/km. In order to fully reset the AFT thermochronometer without
resetting ZHe, additional heating of 50°C to 100°C is needed. This equates to 2 to 4 km of the Central Carpathian
Paleogene Basin cover (Figure 6). The total current thickness of the CCPB in the Podhale syncline north of the
Tatry is ~3.5 km [Ludwiniak, 2010]. Therefore, the new low-temperature thermochronological results favor the
Tatry being fully covered by the CCPB sediments in the late Paleogene [Krdlikovd et al., 2014al.

5.3. Implications for Structural Models for the Formation of the Tatry

Four interpretations for the structural emplacement of the Tatry Mountains are tested here and are illustrated
in Figure 2. These models predict contrasting cooling histories for the Tatry:

1. Inherited Cretaceous-Palaeogene Alpine deformation with minor Neogene rejuvenation (Figure 2a).
Although there is an apparent pattern of burial and exhumation through the Central Western Carpathians
from south to north [Kovdc et al., 1994; Plasienka et al,, 2007; Danisik et al., 2010] and most of the AFT studies
in the Tatry points to 20-10 Ma as a key period of exhumation, this model cannot be simply ruled out. It is
supported by the AFT ages of >30Ma from the western and northern part of the Tatry [Burchart, 1972;
Anczkiewicz et al.,, 2005] and ~75 Ma ZFT ages from SE part of the massif [Krdlikovd et al,, 2014al. In this case
the Tatry exhumation would be more similar to the Nizke Tatry massif [Danisik et al., 2011] than the Mala
Fatra (west of the Tatry) and the Branisko mountains (east of the Tatry) where Neogene cooling ages of
14 to 10 Ma and 20 Ma to 11 Ma, respectively, were identified (Figure 1c) [Danisik et al., 2010, 2012].

2. Late Eocene-early Oligocene strike-slip faulting that caused the transpressional uplift and exhumation
in the Tatry synchronous with the transtensional development of the CCPB that continued into
the Miocene (Figure 2b). This model is based on the Paleogene fault activity dated in the Tatry by

SMIGIELSKI ET AL.

EXHUMATION HISTORY OF THE TATRY 199



@AG U Tectonics 10.1002/2015TC003855

Kohut and Sherlock [2003] supported by the interpretation of the AFT ages. In this model the wide range of
the AFT ages in the Tatry is interpreted as a result of continuous process of cooling and exhumation from
the Eocene (~40 Ma) to Miocene and even Pliocene times [Baumgart-Kotarba and Krdl, 2002].

3. Extensional footwall uplift during Miocene/Pliocene (Figure 2c). This model is based on the hypothesis
that the sub-Tatric fault is a south dipping normal fault [e.g., Hrusecky et al., 2002; Jurewicz, 2005]. It is
supported by the youngest (<12 Ma) AFT ages noted in the Tatry [e.g., Burchart, 1972; Anczkiewicz et al.,
2005], especially along the sub-Tatric fault [Baumgart-Kotarba and Krdl, 2002]. In this interpretation
the major exhumation in the Tatry coincided with the postorogenic extension episode in the region
[Nemcok et al., 2006a; Tokarski et al., 2012].

4. Backthrusting during Carpathian orogenesis in early-middle Miocene (Figure 2d). This model is based on
the hypothesis that the sub-Tatric fault is a north dipping reverse fault [e.g., Sperner, 1996; Sperner et al.,
2002]. It is supported by the basic geometric restoration of the sub-Tatric fault [Plasienka et al., 2001]
and by the AFT ages of ~20 to ~15 Ma in the Tatry. In this model the major episode of the cooling and
exhumation of the Tatry occurred during the contraction stage related to the Carpathian orogenesis.

Model 1 predicts that the main stage of the Tatry exhumation is similar to the exhumation of the Nizke Tatry
(Figure 2a). Eocene cooling ages that are recorded in the ZHe thermochronometer in the northern part of
the Tatry are partially similar to Eocene ZHe ages of the Nizke Tatry [Danisik et al., 2010]. On the other hand,
in the Tatry we have not recorded any Paleogene AFT ages, not even in the northernmost sample G10 close
to the Mesozoic cover. All AFT data along with AHe and even part of the ZHe ages from the south of the study
area point to a distinct Miocene exhumation period. These results indicate that the hypothesis of Cretaceous-
Paleogene final emplacement of the Tatry massif can be ruled out. Taking into account ~7 km of Miocene
exhumation, it must be noted that the tectonic evolution of the Tatry has been somewhat different not only
from one of the Nizke Tatry but also from the Mala Fatra (west of the Tatry) and the Branisko mountains (east
of the Tatry) [Danisik et al., 2010, 2012].

Model 2 implies that the exhumation of the Tatry was synchronous with sedimentation in the CCPB from 40 to
23 Ma (Figure 2b). This is also inconsistent with the thermal histories derived here. In order to completely reset
the AFT ages in the northern part of the granite and ZHe ages in the southern part, CCPB sediments need to
have covered the massif, unless gradients were above 40°C/km (Figure 6). The ZHe ages indicate exhumation
prior to sedimentation in the CCPB or after sedimentation. What is even more important is that none of the
AFT and AHe data presented here record exhumation during Paleogene sedimentation (Figure 3). The
~30Ma AFT results are characteristic of the western and northwestern area of the Tatry as suggested by
Burchart [1972] and Anczkiewicz et al. [2005]. These AFT data, however, could also be interpreted as an effect
of partial resetting under insufficient Paleogene cover, rather then cooling and exhumation [Srodor et al.,
2006]. Our thermochronometric data indicate that the CCPB caused the burial and heating of the Tatry area
and that exhumation was not continuous from the early Paleogene to the Miocene/Pliocene times, as predicted
by model 2. If this is the case, the Paleogene fault activity in the Tatry area recorded by Kohtt and Sherlock [2003]
might be linked to the development of the CCPB rather than continuous exhumation of the Tatry.

Both the remaining tectonic models (Models 3 and 4, Figures 2a, 2b; 6a, and 6b) imply that exhumation took
place in the Neogene and are in general agreement with the results presented here. Exhumation of the Tatry
block has been explained either by rotation and uplift due to normal faulting (model 3) [Jurewicz, 2005] or a
fault-related-fold mechanism along a back thrust (model 4) [Plasienka et al., 2001]. Model 3 links middle
and late Miocene exhumation of the Tatry with the postcollisonal phase of the Outer Carpathians and
postrifting phase of the Pannonian basin in late Miocene (16-5.3 Ma) or even Pliocene times (5.3-1.8 Ma)
[Baumgart-Kotarba and Krdl, 2002; Tokarski et al., 2012]. Model 4 suggests exhumation synchronous with
shortening in the Outer Carpathians and syn-rift phase in the Pannonian basin [Sperner et al., 2002] in the
early and middle Miocene (~23-12 Ma). The timing of the main exhumation event presented in this study
(~22-14 Ma) strongly favors model 4. However, the cooling ages cannot by themselves completely rule out
the alternative mechanism. Discriminating between these models is only possible by combining the spatial
distribution of cooling ages with structural, tectonic, and stratigraphic information.

5.4. Extensional Footwall Exhumation Model (Model 3)

The main phase of exhumation of the Tatry range recorded by data presented in this study is similar to the
time of exhumation of the Alcapa block and the onset of the rifting processes associated with the formation
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of the Pannonian basin ~100 km to the south of the Tatry [Royden et al., 1983; Horvdth, 1993]. However, the
spatial distributions of cooling ages cannot be easily explained using an extensional footwall exhumation
(model 3). The age distribution pattern in the footwall of a normal fault should be characterized by younging
of the thermochronological ages toward the fault. For example, the Wassuk Range and Grey Hills in western
Nevada represent a Miocene tilted fault block that displays ~60° of footwall rotation and exposure of
preextensional paleodepths of up to ~8.5 km [Stockli, 2005]. The distribution of thermochronometric ages
through the tilted footwall block show ages becoming younger toward the main fault zone where the dee-
pest part of the profile is exposed. This pattern is especially clear for the AHe and AFT thermochronometers
[Stockli, 2005] but is not recorded by the spatial distribution of thermochronology ages in the Tatry massif
presented here (Figures 3, 4b, and 6b).

In order to test the tilted footwall block model, we have reconstructed the Miocene maximum burial of the
samples taking into account a 35-45° northward tilt of the Tatry block and ~3 km of CCPB cover (Figure 6a).
The same reconstruction was made for the fault-related-fold model (Figure 6b). Results are plotted against
thermochronological age [Stockli, 2005] (Figures 6¢ and 6d). These reconstructions show that samples G10
and G11 are crucial for placing constraints on the early Miocene thermal history of the Tatry. Both samples
record the same Miocene AFT ages and similar Paleogene ZHe ages despite being placed ~6.5 km from each
other (Figure 3). For G10, two grains of nine show older ZHe ages that might suggest only partial resetting
under the Mesozoic cover of nappes and for G11 two grains are younger showing tendency to being reset
by the early Miocene burial (Table 3). The thermochronological results might be transferred to the early
Miocene temperatures of 120-180°C for the G10 and 150-180°C for sample G11. For the tilted footwall block
model the difference in predicted burial between these two samples is 3 to 5 km; this conclusion suggests
that they would not end up with similar thermal histories and hence challenges the tilted footwall block inter-
pretation. Temperature constraints for these samples cannot be met for almost all combinations of the
palaeothermal gradient and the CCPB overburden except unrealistically low gradient and high overburden
(Figure 6e). In the case of the reverse fault model the reconstructed vertical difference between samples
G10 and G11 is 1-1.8km, and the temperature constraints can be met over a wide range of gradients and
CCPB cover thicknesses (Figure 6f).

An additional challenge for the normal fault model is that a displacement of 13-15 km is required to balance
the cross section [Plasienka et al., 2001]. For a fault of ~50 km length (Figure 1) this is uncommon even in the
Basin and Range province where extreme extension has occurred [Byrd et al., 1994]. Numerous tectonic
studies and paleostress reconstructions show that in the northern part of the CWC range compression and
contraction dominated until the end of middle Miocene, with the change to extension occurring after
~10 Ma [Nemcok et al., 2006a, and references therein]. All these arguments, combined with the observation
that the exhumation of the Tatry was synchronous with the regional shortening in the area, suggest that
the interpretation of exhumation in the Tatry in terms of only rotation and uplift of a normal fault block is
difficult to reconcile with the data.

5.5. Reverse Fault Exhumation Model (Model 4)

At the same time as rifting in the Pannonian region south of the CWC, contraction and thrusting were at their
peak in the Outer Carpathian thrust wedge, ~20-100 km north of the Tatry massif [Andreucci et al., 2013].
Nappe formation processes ceased in this sector of the Outer Carpathians at ~13.6 Ma [Nemcok et al.,
200643, 2006b] at the same time as exhumation in the Tatry decelerated (Figures 3 and 5). The Podhale
syncline is located between the Outer Carpathians and the Tatry and represents a relic of the Central
Carpathian Paleogene Basin (Figure 1). This structure was deformed after cessation of sedimentation in the
CCPB ~23 Ma [Gedl, 2000; Garecka, 2005], but before the development of the unconformably overlying
Orava-Nowy Targ basin at ~14 to 12 Ma [Tokarski et al., 2012; tozinski et al., 2014], synchronously with the
main stage of the Tatry exhumation. The structural data indicate N-S horizontal compression in forming
the syncline and its related tectonic mesostructures [Mastella, 1975; Ludwiniak, 2010].

The tectonic model of the Tatry exhumation proposed by Sperner [1996] and Sperner et al. [2002] suggests that
the Tatry block was exhumed in the hanging wall of a thrust fault localized between two major strike-slip
fault zones that cut the Mesozoic basement of the CCPB (Figures 1d and 2c). In this interpretation the
sub-Tatric fault might be considered as a result of the deformation in the transpressive overlap between
two sinistral faults [Kim et al., 2004; Oglesby, 2005]. The interpretation was modified by Plasienka et al. [2001]
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Figure 7. Schematic cross section through the Tatry with the proposed scenario of the general thermal history of the
samples. White stars, current position of sampled sites. Grey arrows show the net direction of the samples movement
versus paleo-isotherms being the result of erosion and tectonic transport along the thrust during the main stage of the
exhumation. Light gray area, current position of the part of the hanging wall basement heated in late Oligocene to the
temperatures >180°C.

who proposed a fault-related-fold structure for the development of the “Tatry anticline” that grew simulta-
neously with the Podhale syncline (Figure 6c). This model reduces the total fault slip needed to balance the
cross section from the rather extreme values of ~18km to a more reasonable ~8 km [Plasienka et al., 2001;
Sperner et al., 2002]. This value agrees with the 9 to 7 km of exhumation during the last ~22 Ma close to the
sub-Tatric fault presented in this paper (Figures 6d and 6f).

A further test of the fault-related-fold model comes from the spatial distribution of ZHe, AFT, and AHe ages
throughout the Tatry massif. The transport over a back thrust, as hypothesized in the model, would cause the
growth of the “Tatry anticline” and block rotation of the hanging wall at the base of the ramp [cf. Narr and
Suppe, 1994]. That would produce a zone of similar thermochronological ages across the massif, in the so
called “ramp reset zone” as a “bottom” part of a U-shaped age distribution [Lock and Willett, 2008]. Such a
distribution is typically built up from the “old” ages in the footwall near the thrust, “young” and uniform reset
ages across the massif and “old” ages away from the thrust in the back limb of the fold. As shown by a series
of theoretical thermal models by Lock and Willett [2008], the “ramp reset zone” is narrower for high closure
temperature thermochronometers. This means that while the AHe and AFT ages are still uniform in the “ramp
reset zone,” the ZHe age distribution might show older, preserved cooling ages. The transition between
zones of young and old cooling ages is sharp for single-fault models that might be comparable to the
sub-Tatric fault. Also, for a large range of model parameters such as fault dip, depth to the base of the ramp,
or fault slip rate, the difference between AHe and AFT ages is very small, typically less then 2 Ma. All of these
features are reflected in the ZHe, AFT, and AHe ages distribution in the part of the Tatry analyzed here
(Figures 3, 4b, 6b, and 6d). The data presented here do not allow us to speculate whether the sub-Tatric fault
and related “Tatry anticline” formed as a fault-bend-fold or fault-propagation-fold.

Having considered the alternatives between extension and thrusting, we propose that the simplest explana-
tion for the pattern of cooling ages is that of major exhumation of the Tatry due to displacement and
exhumation in the hanging wall of a back thrust (Figure 7). The timing, combined with the N-S age distribution
and the paleotemperature constraints on single samples need to be met to fit the model. When these are com-
bined with geological evidence such as restrictions on the balancing of the fault displacement or evolution of
the CCPB, they all support the back-thrust hypothesis. The Miocene cooling started most probably with the
forming of the “Tatry anticline” as a fault-related-fold and progressed with the further development of the back
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Figure 8. Thermal history of the Tatry granite presented for the northernmost (G10) and southernmost (G13) samples. Solid
line, thermal history inferred directly from the cooling ages presented in this study. Dotted line, history based on the
Plasienka et al. [1997] and ZFT ages of Krdlikovd et al. [2014a). Dashed line, the youngest part of the thermal history. P,
Pliocene; Q, Quaternary; A, tectonosedimentary burial and heating under the Mesozoic sediments and alpine nappes;

B, cooling and exhumation accelerated in the first stages of the fore-arc basin formation; C, burial and heating under
CCPB sediments; D, exhumation of the hanging wall ramp of the sub-Tatric fault and related cooling; E, rapid deceleration
of exhumation and cooling associated with end of deformation in the Outer Carpathians.

thrust. This back thrust might have formed in the compressional overlap between two major strike-slip faults at
the time when horizontal compression was transferred via collision zone from the orogenic wedge of the Outer
Carpathians to the edge of the overriding plate (Figure 1c and 2c). However, it cannot be excluded that the
sub-Tatric fault and other faults that bound the Tatry massif from west and east were reactivated and achieved
important dip-slip normal component of displacement in the late Miocene and Pliocene times [Sperner et al,,
2002; Krdlikovd et al., 2014al].

5.6. Exhumation of the Tatry and Topographic Growth of the Mountains

The low-temperature thermochronology presented here demonstrates that the Tatry massif was rapidly
exhumed between 22 and at least 14 Ma, probably along a northward dipping thrust fault (Figure 7). The
likely presence of sedimentary rocks from the CCPB covering the Tatry may have favored efficient erosion
during the initial stages of exhumation. Factors that may have influenced the decrease in cooling rates
(from ~20°C to <5°C/Myr) at ~14 Ma include the follwing: the end of the mid-Miocene climate optimum at
14-13.5Ma and possible related change in weathering rates [B6hme, 2003]; the exhumation of the more
resistant rocks of the Mesozoic nappes and later Variscan basement; and the transition to a less tectonically
active postorogenic phase. How much of the present topography is inherited from the Miocene exhumation
event is unknown. A glacial landscape and the widespread presence of conglomeratic alluvial fans and
glaciogenic deposits containing granitic clasts from the Tatry massif indicate that Quaternary erosion was
important [Birkenmajer, 2009]. Such Quaternary exhumation was not big enough to affect the AHe ages, even
at the bottom of the sampled valleys. Although the present topographic elevation and relief of the Tatry
Mountains (Figure 1b) could be as young as Quaternary [Krdlikovd et al., 2014a], the thermochronological
ages presented here strongly indicate that the majority of the exhumation occurred in the early and mid-
Miocene and that, since then, less than 2-3 km of rocks have been eroded.

5.7. The Tatry as the Boundary Between the Outer Carpathian and Pannonian Systems

Applying three different low-temperature techniques allows us to reconstruct the dynamic thermal history
of the Tatry (Figure 8). The history includes tectonosedimentary burial in the Mesozoic followed by the
exhumation that was the precursor to the initiation of fore-arc basin formation in the Paleogene [Plasienka
et al., 1997]. The termination of sedimentation in the fore arc marked the beginning of the Tatry exhumation
in the Miocene. This was associated with northward propagation of the Outer Carpathian thrust wedge
and development of the sub-Tatric fault as a major retrovergent thrust. The remnant fore-arc basin (the
CCPB) was intensively deformed at its northern margin with the Pieniny Klippen Belt [Sotdk et al., 2001;
Ludwiniak, 2010].
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The northward propagation of the Outer Carpathians accompanied by the southward overthrusting of the
Tatry records the overall expansion of a doubly vergent west Carpathian thrust wedge. The synchronous
expansion of the Outer Carpathian/Tatry thrust wedge with the extension in the Pannonian Basin marks a
significant change in the evolution of the system [Royden et al.,, 1983; Houseman and Gemmer, 2007]. The
possibility that the sub-Tatric thrust was later reactivated by extensional faulting would fit with models of slab
rollback and expansion of back-arc extension; this possibility requires further testing. The shortening on the
sub-Tatric fault was laterally accommodated along major strike-slip faults. That enabled the northward
extrusion of the Carpathian arc and block rotation in the Outer Carpathians region during Miocene times
[e.g., Konon, 2001].

6. Conclusions

The combination of new low-temperature thermochronology and geological evidence allows us to recon-
struct the tectonic evolution of the Tatry block.

1. The 43.6+3.1 to 40.9+4.2 Ma ZHe central ages might be interpreted to record a phase of Paleogene
exhumation in the Tatry that occurred prior to the onset of sedimentation of the CCBP (at 42-39 Ma).
Additionally, they suggest that the original cover of the Mesozoic nappes was thick enough to heat almost
all the granite in the Tatry area in excess of 180°C.

2. From 40 Ma until ~23 Ma the Tatry were reheated by burial underneath at least ~3 km of sediments in
the CCPB.

3. The pre ~21 Ma cooling of the southernmost samples through the zircon He closure temperature is
interpreted to have been linked to rotation during transport over a back-thrust ramp developed in the
overlap between two major sinistral strike-slip faults. This is associated with termination of sediment
accumulation in the CCPB and the onset of deformation of the Podhale syncline.

4. Cooling at ~20°C/Myr resulted in AHe and AFT ages ranging from ~18 to ~14 Ma interpreted as ongoing
exhumation of the hanging wall ramp of the sub-Tatric fault.

5. Modeled cooling histories require an abrupt deceleration in cooling after ~14 Ma to rates of <5°C/Myr.
This is associated with the end of deformation in the Outer Carpathians and in the Podhale syncline; it
is synchronous with the transition of the Pannonian Basin from a syn-rift to a post-rift phase and with
termination of N-S compression in the northern part of the Central Western Carpathians.

6. The combination of new thermochronological data with constraints from the regional geology supports
an interpretation for the emplacement of the Tatry by upward displacement in the hanging wall of
a major back thrust that now forms the sub-Tatric fault. This thrusting pierced through the former
fore-arc succession of the CCPB. The timing of shortening is synchronous with formation of the Outer
Carpathian orogenic wedge and hence can be seen as the retrovergent thrust bounding the southern
margin of the thrust wedge.
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