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BACKGROUND & AIMS: Efforts to develop an effective vaccine
against hepatitis C virus (HCV) have been hindered by the pro-
pensity of the virus to evade host immune responses. HCV parti-
cles in serumand in cell culture associatewith lipoproteins, which
contribute to viral entry. Lipoprotein association has also been
proposed to mediate viral evasion of the humoral immune
response, though themechanisms are poorly defined.METHODS:
Weused small interfering RNAs to reduce levels of apolipoprotein
E (apoE) in cell culture�derivedHCV�producingHuh7.5-derived
hepatoma cells and confirmed its depletion by immunoblot ana-
lyses of purified viral particles. Before infection of naïvehepatoma
cells, we exposed cell culture�derived HCV strains of different
genotypes, subtypes, and variants to serum and polyclonal and
monoclonal antibodies isolated from patients with chronic HCV
infection.We analyzed the interaction of apoEwith viral envelope
glycoprotein 2 and HCV virions by immunoprecipitation.
RESULTS: Through loss-of-function studies on patient-derived
HCV variants of several genotypes and subtypes, we found that
the HCV particle apoE allows the virus to avoid neutralization by
patient-derived antibodies. Functional studies with human
monoclonal antiviral antibodies showed that conformational
epitopes of envelope glycoprotein 2 domains B and C were
exposed after depletion of apoE. The level and conformation of
virion-associated apoE affected the ability of the virus to escape
neutralization by antibodies. CONCLUSIONS: In cell-infection
studies, we found that HCV-associated apoE helps the virus
avoid neutralization by antibodies against HCV isolated from
chronically infected patients. This method of immune evasion
poses a challenge for the development of HCV vaccines.
*Authors share co-first authorship.

Abbreviations used in this paper: apo, apolipoprotein; E2, envelope
glycoprotein 2; HCV, hepatitis C virus; HCVcc, cell cultureLderived HCV;
Jc1E2(FLAG), J6-JFH1 chimera with FLAG epitope in E2; JFH1, Japanese
fulminant hepatitis virus; LDL, low-density lipoprotein; Luc-Jc1, J6-JFH1
chimera with luciferase reporter; mAb, monoclonal antibody; mRNA,
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epatitis C virus (HCV) is a major health problem
messenger RNA; nAb, neutralizing antibody; PCR, polymerase chain re-
action; siRNA, silencing RNA; TRL, triglyceride-rich lipoprotein Q5.
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Hinfecting approximately 130 million individuals
worldwide. HCV infection typically results in a chronic
infection that can lead to liver cirrhosis and hepatocellular
carcinoma.1 Direct-acting antivirals have markedly
improved the treatment efficacy, but limitations due to
FLA 5.4.0 DTD � YGAST60035_proof �
access to screening and therapy persist, highlighting the
need for an effective vaccine for global control and eradi-
cation of HCV infection. A consistent hallmark of vaccines
against pathogens is their reliance on immunogens that
elicit neutralizing antibodies (nAbs).2 HCV vaccine devel-
opment has been impeded by the viral adaptations to host
immunity that enable chronic infection. Indeed, the host
immune system lags behind the continuous evolution of
HCV, allowing the virus to evade humoral immunity.3,4

However, the escape mechanisms from nAbs during
chronic HCV infection are only partially understood. Clearly,
the development of an effective vaccine requires a detailed
understanding of viral evasion from host immune
responses, including nAbs. Previous studies investigating
the molecular mechanisms of HCV liver graft infection,
identified a viral variant termed VL5,6 with efficient escape
from patient nAbs.5,6 Functional genetics had identified
phenylalanine at HCV polyprotein residue 447 as being
important for neutralization escape.6 This amino acid is
widely conserved among HCV isolates, as shown by its
prevalence of 98.4% in all genotypes (including Jc1, Japa-
nese fulminant hepatitis virus [JFH1], and H77) and 96.2%
in genotype 1b strains (including VL).6 In addition, previous
studies had shown that replacement of phenylalanine by
leucine (F447L) rendered HCV highly susceptible to
neutralization.6
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http://dx.doi.org/10.1053/j.gastro.2015.09.014


2 Fauvelle et al Gastroenterology Vol. -, No. -

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

BASIC
AND

TRANSLATIONAL
LIVER
An interesting characteristic of HCV particles is their
association with triglyceride-rich lipoproteins (TRL) and
low-density lipoproteins (LDL) forming hybrid lipoviral
particles, which results in a population of virions that are
heterogenous in buoyant density.7–9 Apolipoprotein (apo) B,
E, AI, and CI have been described as lipoviral particles
components.10 ApoE is important for both HCV infection of
hepatocytes and hepatic uptake of TRL remnants, while the
role of apoB, the structural protein of TRL and LDL, in the
HCV life cycle is less clear. ApoCI may be involved in viral
fusion,11 and apoAI can affect HCV replication and produc-
tion. Although association with TRL and LDL has been hy-
pothesized to contribute to viral evasion,7,12 the role of
specific apolipoproteins in HCV persistence is unknown.
Given that apoE is a host protein incorporated into the HCV
particle and is required for virion production, we sought to
FLA 5.4.0 DTD � YGAST60035_proof �
determine its functional role in viral evasion from host
nAbs. Our findings reveal a previously undiscovered mech-
anism of viral escape specific to apoE, independent of TRL
binding, and identify a residue in envelope glycoprotein 2
(E2) that contributes to this phenotype. These results define
a novel challenge for the development of vaccines and
immunopreventive approaches.
Materials and Methods
Patient Samples

Serum samples from patients with chronic HCV infection
were obtained with informed consent and approval from the
Strasbourg University Hospital’s Institutional Review Board
(CPP 10-17). Sera termed 1, 2, and 4 came from patients
Figure 1. Depletionof apoE
in HCV producer cells effi-
ciently sensitizes HCV vi-
rions to antibody-mediated
neutralization. Huh7.5.1
cells were either electro-
porated with VL:JFH1 (A),
H77R2a (B) or Luc-Jc1RNA
(C) alone, or co-
electroporated with either
scrambled siRNA (siCtrl) or
siRNA targeting apoE
mRNA (siApoE). Neutrali-
zation experiments using
viruses produced from
these cells were performed
using sera from 4 different
HCV-infected patients (1, 2,
3, or 4) at the indicated di-
lutions. Infection was
determined by end-point
dilution assay (A) or lucif-
erase activity (B,C).Mean±
SEM from7experiments (A)
or 3 experiments performed
in duplicate (B, C) are
shown. Results are
expressed as fold increase
of neutralization relative to
control serum. ApoE
depletion in producer cells
was confirmed 72 hours
post electroporation by
immunoblotting of cell ly-
sates; actin was detected
as loading control. *P< .05. Q19
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Q6

Figure 2. (A) Trans-complementation of apoE expression in producer cells restores viral evasion from nAbs. Huh7.5.1 cells were
electroporatedwith Luc-Jc1RNAalone, or co-electroporatedwith either scrambled siRNA (siCtrl) or siRNA targeting apoEmRNA
(siApoE). ApoE expression was then rescued using adenoviral apoE expression vectors transducing apoE knockdown cells.
Neutralization experiments of viruses were performed using HCV-infected patient serum 1 at dilution 1/200. Infection was
determined by quantification of luciferase activity. Results are expressed as fold increase of neutralization relative to control
serum. ApoE knockdown was confirmed 72 hours post electroporation by immunoblotting (lower panel); actin was detected as
loading control.Mean±SEM from3experiments are shown. *P< .01. (B,C) ApoE-depletion results in enhanced neutralization by
purified IgG frompatient sera and humanmonoclonal antibodies. Huh7.5.1 cells were electroporatedwith Luc-Jc1RNA alone, or
co-electroporated with either scrambled siRNA (siCtrl) or siRNA targeting apoE mRNA (siApoE). Viruses produced from these
cells were incubated with (B) purified IgG (25 mg/mL) from HCV-infected patient serum 2 and 3 or (C) human monoclonal anti-E2
antibodies CBH-23 andHC-1 (10 mg/mL). Infection was determined as described in (A). Results are expressed as fold increase of
neutralization relative to control IgG. Mean ± SEM from 3 experiments are shown. *P < .01.
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infected by HCV genotype 1 and serum 3 from a genotype 2
patient.
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Cells and Reagents
Huh7.5.1 and Huh7.5 green fluorescent protein cells were

cultured as described previously.13 Silencing RNAs (siRNAs)
targeting apoE 30 untranslated region (siApoE)
(50CUGCAGCGGGAGACCCUGU 30) or apoB and control siRNAs
were from Dharmacon (Lafayette, CO). Mouse anti-apoE
(ab8226) monoclonal antibody (mAb) and anti�b-actin
(ab1906) for immunoblot were obtained from Abcam (Cam-
bridge, MA). Mouse anti-apoE (1D7, 3H1, 6C5), rat anti-CD81
(QV-6A8-F2-C4), mouse anti-E2 (AP33),14–16 and human
FLA 5.4.0 DTD � YGAST60035_proof �
anti-E2 (CBH-23 and HC-1)17 mAbs have been described. Sheep
anti-NS5A serum was a kind gift from M. Harris.18 Human
anti-E2 antibody AR3B was a kind gift from M. Law.19 Anti-
bodies and peptides for FLAG purification and detection were
obtained from Sigma-Aldrich (St Louis, MO). Purification of IgG
from patient serum was performed using MAbTrap kit from
Amersham (Little Chalfont, UK).
Cell Culture�Derived Hepatitis C Virus
Production, Infection, and Neutralization

Plasmids for cell culture�derived HCV (HCVcc) production
of Jc1, J6-JFH1 chimera with luciferase reporter (Luc-Jc1),
Jc1E2FLAG (all genotype 2a/2a), H77R2a (genotype 1a/2a),
14 November 2015 � 1:29 am � ce
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Figure 3. Silencing of
apoE expression in HCV
producer cells alters apoE
content in immunopurified
virions. Huh7.5.1 cells
were electroporated with
Jc1E2(FLAG) or
VL:JFH1E2(FLAG) RNA
alone, or co-
electroporated with either
scrambled siRNA (siCtrl) or
siRNA targeting apoE
mRNA (siApoE) and FLAG-
tagged viruses were
immunopurified using an
anti-FLAG antibody. (A, C)
Purified FLAG-tagged vi-
rions were subjected to
immunoblot using FLAG-
and apoE-specific anti-
bodies (upper panels).
ApoE knockdown in HCV
producer cells was
confirmed 72 hours post-
electroporation by immu-
noblotting; actin was
detected as loading con-
trol (lower panels). (B, D)
relative quantities of apoE,
E2(FLAG)-tagged virion
and actin were determined
as described in Materials
and Methods. Results are
expressed as percentage
of apoE:E2 ratio relative to
control virus. Mean ± SEM
from 3 experiments are
shown.
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VL:JFH1, and VL:JFH1FLAG (genotype 1b/2a) have been
described previously.6,9,20–22 HCVcc were produced in
Huh7.5.1 as described previously.20 Infectivity was quantified
by luciferase activity or tissue culture infectious dose 50%
using anti-NS5A antibody.23 HCVcc neutralization using pa-
tient serum, IgG, and mAbs was analyzed as described
previously.6
FLA 5.4.0 DTD � YGAST60035_proof �
Silencing of Apolipoproteins in Hepatitis
C Virus Producer Cells

Silencing of apoE and apoB expression and immunoblotting
in Huh7.5.1 cells were performed as described previously.24

Huh7.5.1 cells were either electroporated with HCV RNA co-
electroporated with 200 pmol of either scrambled siRNA
14 November 2015 � 1:29 am � ce
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Figure 4. Depletion of apoB in HCV producer cells has no effect on HCV neutralization. Huh7.5.1 cells were either electroporated
with VL:JFH1 or Luc-Jc1 RNA alone, or co-electroporated with either scrambled siRNA (siCtrl) or siRNA targeting apoB mRNA
(siApoB). Neutralization experiments on viruses produced from these cells were performed using patient serum 1 at the indicated
dilutions. Infection was determined by (A) end-point dilution assay, and (B) quantification of luciferase activity. Results are
expressed as fold increase of neutralization relative to control serum. ApoB knockdown was confirmed 72 hours post electropo-
ration by immunoblotting (lower panel); actin was detected as loading control. Means ± SEM from 3 experiments are shown.
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(siCtrl) or siRNA targeting apoE messenger RNA (mRNA)
(siApoE) or apoB mRNA (siApoB) according to the manufac-
turer’s instructions. Supernatants and cells were harvested 72
hours post electroporation. Protein expression was analyzed by
immunoblotting as described previously.24

Recombinant Adenoviruses and Rescue
of Gene Silencing

The recombinant adenoviral genomes were generated as
described previously.25 Recombinant adenoviruses Ad-apoE
were generated by transfection of these plasmids into the
293T packaging cell line after PacI digestion.25 Huh7.5.1 cells
were electroporated with HCV RNA and siApoE or a scramble
siRNA (siCtrl). Twenty-four hours post electroporation, cells
were transduced with adenoviruses expressing apoE. After 72
hours, viruses were harvested and tested in neutralization ex-
periments and both silencing and rescue of protein expression
was confirmed by immunoblotting.

Generation and Purification of E2-FLAG
Tagged Viruses

The VL:JFH1 derivatives encoding a E2(FLAG) fusion
protein were generated using overlap polymerase chain
reaction (PCR) with 2 sets of primers: S_E1_AgeI_Con1
(50ATAGTGGTCTGCGGAACCGGT30) and A_E1_FLAG (50CCCTT
GTCATCGTCGTCCTTGTAGTCCCCGTCAACGCCGGCAAAA30); S_E1
_FLAG (50GGACGACGATGACAAGGGATCAGGAGCATCCACCTACA
FLA 5.4.0 DTD � YGAST60035_proof �
CGACGGGGGG30); and A_E2_AleI (50TGTATGGATAGTCAACCAT30).
Amplicons were amplified by PCR from VL:JFH1 derivates
(VL:JFH1 or F447L or F447A), then combined by overlap PCR
using S_E1_AgeI_Con1 and A_E2_AleI before insertion of the
resulting fragments into the VL:JFH1 construct. E2(FLAG)
encoding HCV viruses were purified using anti-FLAG M2
affinity gel, as described previously.9 Virion-associated apoE
was detected by immunoblotting using mouse anti-apoE mAb
(ab8226; Abcam), while virion E2(FLAG) was detected by
anti-FLAG M2 mAb (Sigma-Aldrich). Quantification of apoE,
E2(FLAG), and actin protein expression was analyzed
using ImageJ software (National Institutes of Health, Bethesda,
MD).
Quantification of Hepatitis C Virus Particle
Buoyant Density Distribution

VL:JFH1 HCVcc virus was concentrated 10-fold using a
Vivaspin column (GE Healthcare, Little Chalfont, UK). Density
distributions of infectious HCVcc were determined by over-
laying 0.5 mL culture media on a 5-mL, 4%�40% iodixanol
step gradient, and ultracentrifuging samples for 16 hours at
40,000 rpm on a SW-55 rotor (Beckman Coulter, Brea, CA). Six
hundred and twenty-five microliter fractions were carefully
harvested from the top of each tube, and density was deter-
mined by weighing 0.5 mL of each fraction. Infectivity of each
fraction was quantified by luciferase activity or by tissue cul-
ture infectious dose 50%.
14 November 2015 � 1:29 am � ce
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Figure 5. ApoE depletion in HCV producer cells does not modulate the buoyant density profile of virions. Huh7.5.1 cells were
either electroporated with VL:JFH1 RNA or Luc-Jc1 alone (black squares and black circles, respectively), or co-electroporated
with either scrambled siRNA (siCtrl) (dark gray squares and dark gray circles) or siRNA targeting apoE mRNA (siApoE) (light gray
squares and light gray circles). HCVcc produced from these cells were fractionated using 4%�40% iodixanol density gradient
ultracentrifugation. Each fraction was assayed for infectivity by (A) end-point dilution assay (log10 tissue culture infectious dose
50%/mL) for VL:JFH1 or (B) quantification of luciferase activity (log10 RLU) for Luc-Jc1. Mean ± SEM from 3 experiments are
shown. The light gray circles on the density plot show the mean density for each fraction and the error bars indicate the SD of
the density of the respective fraction from 6 independent experiments. ApoE knockdown was confirmed 72 hours post-
electroporation by immunoblotting (lower panels); actin was detected as loading control.
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Hepatitis C Virus Cell-to-Cell Transmission
HCV cell-to-cell transmission was assessed as described

previously.13 Producer Huh7.5.1 cells were electroporated with
Jc1 RNA or VL:JFH1 RNA. Medium was exchanged 4 hours and
again 24 hours post electroporation, and naïve target Huh7.5
green fluorescent protein cells were added concomitantly with
mouse nAb AP33 (10 mg/mL) to block cell-free transmission.
For analysis of the role of virus and host cell factors, cells were
incubated with 10 mg/mL of either control IgG, anti-CD81 (QV-
6A8-F2-C4),14 or anti-apoE (1D7)16 antibodies. Seventy-two
hours post electroporation, cells were fixed with para-
formaldehyde, stained with a human anti-E2 (AR3B)19 antibody
and analyzed via flow cytometry.

Immunoprecipitation, RNA Extraction, and
Reverse Transcription Quantitative Polymerase
Chain Reaction

VL:JFH1 HCVcc virus was concentrated 10-fold from cell
supernatants using a Vivaspin column (GE Healthcare) and
immunoprecipitations were performed using Protein A/G
PLUS-agarose beads according to the manufacturer instructions
(Santa Cruz Biotechnology, Santa Cruz, CA). HCV RNA from
immunoprecipitated viruses was isolated using RNeasy
FLA 5.4.0 DTD � YGAST60035_proof �
extraction (Qiagen, Valencia, CA) and quantified using reverse
transcription quantitative PCR as described previously.13,24

E2-apoE co-immunoprecipitation using lysates of Huh7/
LunetCD81H cells stably expressing ApoEWT or ApoEHA and
transfected with VL:JFH1 or the 447 mutant were performed as
described elsewhere.26 Immunoprecipitation of apoE from
Huh7.5.1 cells was performed as described previously.26

Statistics
Datasets were analyzed using the Mann�Whitney test.
Results
Because apoE has been shown to be part of the HCV in-

fectious virion mediating viral attachment, we investigated
whether particle-associated apoE influences viral evasion
from host nAbs. To experimentally probe this question, we
used3differentHCV strains comprising genotypes 1a, 1b, and
2a. We first studied HCV strain JFH1 carrying the structural
genes of a patient-derived viral variant termed VL. We had
previously shown that this genotype 1b variant is selected
during liver graft infection due to envelope-mediated
enhanced viral entry and broad escape from patient-derived
14 November 2015 � 1:29 am � ce
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Figure 6. ApoE and cell-to-cell transmission of HCV. (A) Interference of cell-to-cell transmission of Jc1 and VL:JFH1 by anti-
apoE antibody 1D7, nonspecific IgG as a negative control (Ctrl), or anti-CD81 antibody as a positive control was tested. For
cell-to-cell transmission, green fluorescent protein�expressing naïve target cells were co-cultured with cells containing HCV
with neutralizing mouse anti-E2 antibody AP33. Representative results of fluorescence-activated cell sorting analysis are
shown. The quantity of positively stained cells for HCV E2 (y-axis), and green fluorescent protein�labeled target cells (x-axis)
are represented. (B) Histograms of cell-to-cell transmission for Jc1 and VL:JFH1 summarized from 3 independent experiments
performed in duplicate are shown. Values represent percentage of cell-to-cell transmission relative to control. (C) The capacity
of antibodies to inhibit infection was tested by inoculation of naïve Huh7.5.1 cells with HCV in the presence of antibodies
specified below the plot. Values were normalized to those obtained with nonspecific IgG (Ctrl). Mean ± SD from 3 experiments
are shown. *P < .05.
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autologous and heterologous nAbs.5,6 Thus, it represents a
prototype variant that may be largely refractory to immu-
nopreventive approaches or vaccines. We first generated
VL:JFH1 HCVcc by cotransfecting HCV RNA alone, with a
scrambled nucleotide control (siCtrl), or with siRNA that
targets apoE expression (siApoE). Similar to the range re-
ported previously,24,27,28 silencing of apoE expression in
Huh7.5.1 producer cells resulted in a marked (50%�70%)
FLA 5.4.0 DTD � YGAST60035_proof �
and significant decrease (P < .001) in infectivity of viruses
relative to viruses with unchanged apoE expression. Expo-
sure of VL:JFH1 HCVcc produced from apoE-depleted cells to
multiple patient sera with chronic HCV infection modified
these HCVcc to be highly sensitive to nAbs (Figure 1A).
Depending on the patient serumand thedilutionused, viruses
produced from apoE-depleted cells were 4–17 times more
sensitive to neutralization by patient sera than viruses from
14 November 2015 � 1:29 am � ce
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control cells with unchanged apoE expression (Figure 1A). To
corroborate these findings, we studied the phenotype of 2
additional variants, H77R2a21 expressing the structural
genes of the HCV strain H77 (genotype 1a) and J6:JFH1
FLA 5.4.0 DTD � YGAST60035_proof �
prototype Luc-Jc129 expressing the structural genes of the
genotype 2 HCV strain J6. Similar to findings obtained for
VL:JFH1 viruses, apoE depletion resulted in enhanced sensi-
tivity to neutralization by patient sera (Figure 1B and C).
14 November 2015 � 1:29 am � ce
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H77R2a and Luc-Jc1 viruses produced from apoE-depleted
cells were 2 to 10 times and 1.5 to 2 times more sensitive to
neutralization than control viruses, respectively (Figure 1B
and C). Luc-Jc1 derived from apoE-deficient cells were more
sensitive to nAbs regardless of their viral infectivity titers
(Supplementary Figure 1). In addition, similar neutralization
results were obtained upon adjustment of input virus titers
between viruses produced from control and apoE-depleted
cells (Supplementary Figure 2), ruling out that altered
sensitivity was due to a difference in molar ratios between
nAbs and HCVcc.

To further explore the role of apoE in viral evasion, we
next performed trans-complementation assays using
adenoviral apoE expression vectors transducing apoE
knockdown cells. Ectopic apoE expression restored the HCV
nAb escape to the same level as HCV produced in control
cells (Figure 2A), excluding off-target effects caused by the
siRNA. In addition, to determine that this observation was
antibody mediated, we confirmed our results using IgG
purified from sera of patients with chronic HCV infection
(Figure 2B). Similar to the experiments with patient sera, we
observed that Luc-Jc1 viruses produced from apoE-depleted
cells were 2 times more sensitive to neutralization by pu-
rified IgG than control viruses. These findings specifically
point to serum IgG and exclude other serum factors in
determining the sensitivity of HCV from apoE-silenced cells
(Figure 2B). In addition, we used 2 human mAbs targeting
HCV E2 domain B (HC-1) or domain C (CBH-23) and tested
their efficacy to neutralize viruses produced from control
and apoE-silenced cells (Figure 2C). Consistent with the
results obtained with patient sera and anti-HCV polyclonal
IgG, we found that apoE silencing markedly (3- to 4-fold)
and significantly (P < .01) increased sensitivity to neutral-
ization compared with controls. These results clearly indi-
cate that apoE plays a key role in mediating viral escape
from nAbs and suggest that conformational epitopes of E2
domain B and domain C are exposed to nAbs after apoE
depletion (Figure 2C).

To confirm the hypothesis that apoE modulation affected
virion composition, we utilized J6-JFH1 chimera with FLAG
=
Figure 7. Envelope glycoprotein E2 residue 447 and apoE-HCV
infection by anti-apoE antibodies. VL:JFH1 and 447 variant HCV
to infection of Huh7.5.1 cells. Infectivity was assessed by tis
percentage infectivity relative to Ctrl. Mean ± SEM from 4 ex
immunoprecipitation of virions by anti-apoE antibodies. VL:JFH
nonspecific mouse IgG (Ctrl), or 3 different anti-apoE antibodies
and quantified by reverse transcription quantitative polymerase
crease of HCV RNA immunoprecipitated relative to control IgG.
was quantified by immunoblot evaluating the amount of core pr
HCV producer cells impairs immunoprecipitation of virions by an
producer cells using control IgG or anti-apoE antibody (1D7), HC
normalized HCV RNA. Mean ± SEM from three experiments are
Huh7-derived cells stably expressing ApoEWT or ApoEHA were
mutant and lysed 72 hours later. Immunoprecipitation was per
complexes were analyzed by immunoblotting using anti-E2 an
lysates used for immunoprecipiation were analyzed in parallel (in
E2 associations in purified virions of wild-type and mutant viru
producer cells using an anti-FLAG antibody. Virion-associated p
specific antibodies. Results of 2 independent purifications and

FLA 5.4.0 DTD � YGAST60035_proof �
epitope in E2 (Jc1E2[FLAG])9 and VL:JFH1E2(FLAG) HCVcc
purified from nonassociated serum component contami-
nants. Immune-purification of Jc1E2(FLAG) and
VL:JFH1E2(FLAG) using an antibody targeting the FLAG-tag
of the virion E2 revealed that silencing of cellular apoE
resulted in an approximate 50% and 80% decrease of
virion-E2 associated apoE for Jc1E2(FLAG) and
VL:JFH1E2(FLAG) compared with controls, respectively
(Figure 3). Intracellular levels of apoE were decreased by
75% and 85%, respectively (Figure 3). Furthermore, virions
produced from apoE-depleted cells appeared to have a
decreased inhibition of infection by anti-apoE antibodies
(Supplementary Figure 3). These findings highlight virion-
associated apoE’s critical role in mediating escape from
nAbs.

To test if apoB, another component of HCV, plays a role
similar to apoE’s in mediating escape, we silenced apoB
expression in HCV-producing cells. Silencing of either
apolipoprotein had no detectable effect on the level of the
other apoliprotein (Supplementary Figure 4) ensuring
absence of the interfering effects of apoE/B silencing.
Interestingly, while apoB knockdown was effective
(Figure 4A and B), it did not alter the production of VL:JFH1
and Luc-Jc1. Furthermore, neither VL:JFH1 nor Luc-Jc1
viruses produced from apoB-silenced cells were altered in
sensitivity to nAbs (Figure 4A and B). These results point
directly to apoE as a key apolipoprotein mediating nAb
escape and do not support a major functional role of apoB in
nAb evasion.

ApoE expression is an important regulator of HCV pro-
duction, and a key component of TRLs. TRL association,
measured by buoyant density distribution, could shield HCV
glycoproteins from nAbs.12 Two distinct models have been
proposed regarding HCV�apoE interaction and lipoviral
particles formation: a 1-particle model presenting the virion
inextricably fused to the lipoprotein with apoE on its sur-
face, and a 2-particle model where HCV glycoproteins
interact with apoE directly, which may mediate lipoprotein
attachment.30 In addition, the envelope glycoprotein, and
the transmembrane domain of E2 specifically is critical for
interactions. (A) Residue 447 is relevant for inhibition of HCV
cc were incubated with control IgG (Ctrl) or 1D7 antibody prior
sue culture infectious dose 50%. Results are expressed as
periments are shown. *P < .05. (B) Residue 447 modulates
1 and 447 mutants HCVcc were immunoprecipitated using
(1D7, 3H1, 6C5). HCV RNA was extracted from precipitates
chain reaction (RT-qPCR). Results are expressed as fold in-
Means ± SEMs from 2 experiments are shown. The viral input
otein in the culture media (lower panel). (C) ApoE depletion in
ti-apoE antibody. After immunoprecipitation of virions in HCV
V RNA was quantified by RT-qPCR. Results are expressed as
shown. *P < .01. (D) Intracellular interaction of apoE and E2.
electroporated with RNA genomes of VL:JFH1 or the F447L
formed with a hemagglutinin Q20-specific antibody and captured
tibodies. To determine capture efficiency, 0.5% of total cell
put). One representative immunoblot is shown. (E) ApoE and
ses. Virions were immunopurified from supernatants of HCV
roteins were analyzed by immunoblots using FLAG and apoE-
immunoblots are shown.
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apoE association.26,31 If apoE protects HCV glycoproteins
from nAbs directly, then our observations regarding the
nAb-sensitivity of HCV generated from apoE knockdown
cells will not be mediated by a marked difference in buoyant
density distribution. To test this hypothesis, we analyzed the
buoyant density distribution of infectious particles using
isopycnic density gradient ultracentrifugation. Interestingly,
the density distribution of VL:JFH1 and Luc-Jc1 was unal-
tered after apoE knockdown, though infectivity was dimin-
ished approximately equally in each density fraction in both
VL:JFH1 and Luc-Jc1 viruses (Figure 5A and B). These data
suggest that apoE knockdown does not modulate HCV-TRL
association, and apoE directly associated with the virion
accounts for nAb evasion.

Cell-to-cell transmission is another mechanism to avoid
nAbs.32 To investigate whether apoE association is relevant
in cell-to-cell transmission, we used an anti-apoE antibody
(1D7) that binds the low-density lipoprotein recep-
tor�binding domain of apoE16 and inhibits HCV infection
(Figure 7A). Jc1 demonstrated an approximately 3-fold
higher capacity to spread by direct cell-to-cell trans-
mission than VL:JFH1 in this assay (Figure 6A). While 1D7
did not affect cell-to-cell spread, despite its capacity to
strongly inhibit extracellular transmission, antibodies
recognizing HCV entry factor CD8114 inhibited 70%�80%
of cell-to-cell transmission of both Jc1 and VL:JFH1
(Figure 6A, B, and C). These data indicate that cell-cell
transmission is not mediated by apoE domains targeted by
anti-apoE antibody 1D7.

Recently, 2 studies demonstrated that apoE interacts
with HCV E2.26,31 To define E2 domains relevant for asso-
ciation with apoE and neutralization escape, we took
advantage of a mutation identified in variant A (VA), a pre-
transplant variant that was selected against in the same
transplant recipient that contained the predominant VL
variant.6 Indeed, replacing phenylalanine with the leucine
encoded in VA rendered the virus both sensitive to
neutralization and less dependent on CD81 for cell entry.6

To determine whether this residue is involved in the dif-
ferential utilization of apoE, we used the previously
described mutant restoring neutralization escape (F447L),
as well as an additional mutant where phenylalanine is
replaced by alanine (F447A), a smaller amino acid residue
than leucine. Interestingly, the wild-type VL:JFH1 escape
variant was efficiently neutralized by anti-apoE 1D7, while
the 447L and 447A mutants were at least 3-fold less sen-
sitive to neutralization by this antibody, indicating that the
wild-type virus is more dependent on apoE for infection
(Figure 7A). In contrast, 2 other apoE-specific antibodies
(3H1 and 6C5) that bind the N- and C-terminal regions of
apoE, respectively,16 did not inhibit HCV infection to the
same degree (data not shown) despite their capacity to
immunoprecipitate apoE from cell lysates (Supplementary
Figure 5). To determine if this modulation might be due to
altered apoE association with virus particles, we immuno-
precipitated VL:JFH1 with either nonspecific mouse IgG or
with each of the three apoE-specific antibodies 1D7, 3H1, or
6C5.16 Interestingly, all 3 anti-apoE antibodies were at least
2.5-fold more efficient at precipitating the VL:JFH1 than the
FLA 5.4.0 DTD � YGAST60035_proof �
447 mutants (Figure 7B), suggesting a more robust associ-
ation of the escape variant with apoE or a different E2-apoE
conformation with different exposure of these epitopes on
this variant. The functional relevance of apoE for immuno-
precipitation of virions was confirmed by less efficient
immunoprecipitation of HCV RNA by anti-apoE using
VL:JFH1 and Jc1 viruses produced in apoE-depleted cells
(Figure 7C and data not shown).

To investigate whether the difference in sensitivity and
pull-down of VL:JFH1 447 mutants by anti-apoE antibodies
was due to an altered association of apoE and virion E2 or
mediated by a different conformation of the apoE-E2 com-
plex, we performed co-immunoprecipitation analyses in cell
lysates of HCV producer cells. We observed similar intra-
cellular apoE-E2 binding in wild-type and mutant viruses
(Figure 7D). Next, we determined the amount of apoE
incorporated into virions by using immunopurified E2FLAG-
tagged viruses. We found that FLAG-tagged wild-type and
F447L mutant viruses contained similar levels of apoE
(Figure 7E). These data indicate that residue 447 alters the
conformation of the virion E2-apoE complex without
changing apoE content of the particles. Collectively, our data
indicate that both the level (Figures 1–3), as well as the
conformation (Figure 7) of virion apoE are relevant for the
evasion from nAbs.
Discussion
Here we present experimental evidence indicating that

apoE levels in HCV-producing cells determine HCV’s ca-
pacity to avoid the effect of nAbs through modifying incor-
poration of apoE into the viral particle. These results were
obtained using structural genes from 3 different viral strains
from genotypes 1a, 1b, and 2a, sera from multiple patients
as well as patient-derived purified IgG and mAbs, indicating
that utilization of the host factor apoE as a mechanism to
escape from nAbs is pan-genotypic. While the utilization of
apoE is consistently employed, it was most prominently
observed in both genotype 1 variants H77 and VL, a clini-
cally derived variant previously characterized as effective at
nAb escape, highlighting that apoE “shielding” may be
employed by the most difficult to neutralize variants. These
differences of neutralization profiles between H77 or
VL:JFH1 and Jc1 may be partially explained by a more effi-
cient depletion of apoE in VL:JFH1 compared to Jc1 as
shown in Figure 3. Alternatively, these results may point to
genotype- or isolate-dependent differences in utilization of
apoE and neutralization escape. Finally, the differences may
be due to different cross-reactivity of the patient sera used.

We further confirmed the role of apoE through
observing altered apoE:E2 ratios on purified virions after
silencing (Figure 3) and trans-complementing apoE
expression after knockdown, which rescued HCV’s capacity
to avoid inhibition of HCV entry by nAbs present in serum of
chronically infected patients (Figure 2A). However, down-
regulation of apoE expression did not affect HCV-TRL as-
sociation (Figure 5), indicating that the apoE-mediated
mechanism of nAb escape is distinct from the previously
described role of TRL in escape.12
14 November 2015 � 1:29 am � ce
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Using an anti-apoE antibody that blocks extracellular
transmission, we did not detect a role of apoE in cell-to-cell
transmission of Jc1, VL:JFH1, as well as the 2 VL:JFH1 var-
iants (Supplementary Figure 6). This is consistent with the
report from Barretto et al.33 Engineering nonhepatic cells to
produce HCV through ectopic apoE expression can confer
cell-to-cell transmission capacity, albeit to a limited degree
relative to the levels observed in the current study.34 We
thus cannot exclude that epitopes not recognized by the
utilized anti-apoE antibody play a role in cell-to-cell trans-
mission or that this antibody may have limited access to the
virus during this process.

In variants that were selected during liver trans-
plantation, replacement of phenylalanine at E2 residue 447
appeared to alter the immunoprecipitation of virions by
anti-apoE antibodies (Figure 7B). Given the comparable
level of intracellular E2-apoE association (Figure 7D) and
apoE incorporation into virions (Figure 7E) of the wild-type
and the mutant, mutations of E2 residue 447 appear to
induce conformational changes in the E2-apoE complex
affecting the sensitivity to neutralization by both apoE- and
E2-specific nAbs (Figures 1, 2, and 7). Collectively our data
indicate that virion apoE levels (Figures 1–3) and confor-
mation (Figure 7) are relevant for the evasion from nAbs.

ApoE plays a key role in viral attachment to heparan
sulfate proteoglycans,25,35 whereas subsequent steps of
viral entry require E2-SR-BI and E2-CD81 interactions
(reviewed in Zeisel et al.36). Thus, dissociation of apoE and/
or alteration of the apoE-E2 complex might be required for
envelope-SR-BI and CD81 interactions occurring post
binding. Supporting this model, our results demonstrate
that conformational human mAbs CBH-23 and HC-1, which
impair HCV entry by interfering with E2�CD81 interactions
and act at a post-binding step,6 more effectively neutralize
apoE-depleted HCV.

HCV association with very-low-density lipoprotein dur-
ing viral production was hypothesized to block nAbs-
envelope glycoprotein binding and confer viral resistance
to nAbs. Our findings point to apoE shielding of E2 from
neutralization, independently from association with lipo-
proteins as measured by density distribution. This new role
of apoE is consistent with our previous observations
showing that nonhepatic cell lines lacking very-low-density
lipoprotein�producing components and engineered to ex-
press apoE can sustain the entire HCV life cycle and produce
viruses with buoyant density profiles similar to virus pro-
duced in hepatoma cells.37

Collectively, we demonstrate that apart from lipoprotein
association, apoE mediates escape from nAbs. This finding
reveals a novel strategy contributing to HCV’s remarkable
capacity to establish chronic infection. According to the core
crystal structure of E2,38,39 residue 447 that appears to alter
the conformation of the E2-apoE complex resides on the
periphery of a nonstructured E2 region and, thus, would be
an ideal candidate for association with exposed apoE re-
gions. This finding might be relevant for vaccine design and
we assume that immunogens that mimic epitopes at the E2/
apoE interface might help to achieve a broadly neutralizing
humoral immune response.
FLA 5.4.0 DTD � YGAST60035_proof �
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at http://dx.doi.org/10.1053/
j.gastro.2015.09.014.
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Supplementary Figure 1. Increased nAb sensitivity of apoE-
depleted HCV is not due to decreased virus quantity or the
ratio of infectious virions and nAbs. Huh7.5.1 cells were
electroporated with Luc-Jc1 RNA alone, or co-electroporated
with either scrambled siRNA (siCtrl) or siRNA targeting apoE
mRNA (siApoE). Two experiments using different HCV viral
titers (high viral titer vs low viral titer) were performed to study
the impact of virus quantity on the sensitivity to patient
serum. Results of neutralization assay of HCV produced from
these cells using serum from a patient without HCV infection
(Ctrl) or indicated dilution of serum from a patient with ge-
notype 1 HCV infection was determined by quantification of
luciferase activity (log10 RLU). Mean ± SEM of both experi-
ments performed in triplicate are shown.
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Supplementary Figure 2. Adjustment of input virus titers of viruses produced from control and apoE-depleted cells confirms
association of virion apoE content and sensitivity to antibody-mediated neutralization. Huh7.5.1 cells were electroporated with
H77R2a (A–C) or Luc-Jc1 (D–F) RNA alone, or co-electroporated with either scrambled siRNA (siCtrl) or siRNA targeting apoE
mRNA (siApoE). (A, D). ApoE depletion in producer cells was confirmed 72 hours post electroporation by immunoblotting of
cell lysates; actin was detected as loading control (right panels). (B, E) Titers of viruses produced in supernatants of transfected
Huh7.5.1 cells (72 hours post electroporation) were determined by tissue culture infectious dose 50% (TCID50) using infection
of naïve Huh7.5.1 for 72 hours as described in the Materials and Methods. After quantification of viral titers, titers were
adjusted by dilution in cell culture medium. Titers of viruses from apoE-depleted cells served as the reference. Viral titers
before and after dilution are shown as TCID50 of a representative titration analysis. (C, F) Neutralization experiments using
viruses with adjusted titers shown in (B, E) were performed using sera from 4 different HCV-infected patients (1, 2, 3 or 4) as
described in Figure 1. Means ± SDs from one representative experiment performed in duplicate are shown. Results are
expressed as fold increase of neutralization relative to control serum.
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Supplementary Figure 3. Inhibition of viruses produced from
apoE silenced producer cells by anti-apoE or anti-CD81 an-
tibodies. Huh7.5.1 cells were electroporated with VL:JFH1
alone, or co-electroporated with either scrambled siRNA
(siCtrl) or siRNA targeting apoE mRNA (siApoE). To assess
the role of CD81, cells were pretreated with 10 mg/mL anti-
CD81 antibody for 30 minutes before HCVcc infection of
Huh7.5.1 cells. To assess the role of apoE, HCVcc were
preincubated with 10 mg/mL anti-apoE antibody (1D7) for 1
hour before infection of Huh7.5.1 cells. Infection was deter-
mined by end-point dilution assay and expressed as per-
centage of infection relative to control antibodies. Mean ±
SEM from 4 independent experiments are shown. P < .05.

Supplementary Figure 4. Silencing of apoE expression in
HCV producer cells has no effect on apoB expression and
vice versa. Huh7.5.1 cells were electroporated with Luc-Jc1
RNA alone, or co-electroporated with either scrambled
siRNA (siCtrl) or siRNA targeting either apoE mRNA (siApoE)
or apoB mRNA (siApoB). After 72 hours, apoB and apoE
expression was quantified using immunoblots of cell lysates
and anti-apoE and apoB specific antibodies; actin expression
was analyzed as control. A representative immunoblot is
shown.
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Supplementary Figure 6. Absent effect of anti-apoE anti-
body 1D7 on the cell-to-cell transmission of VL:JFH1 F447L
and F447A mutants. Interference of cell-to-cell transmission
of VL:JFH1 F447L and F447A by anti-apoE antibody 1D7,
nonspecific IgG as a negative control (Ctrl), or anti-CD81 as a
positive control was tested. For cell-to-cell transmission,
green fluorescent protein�expressing naïve target cells were
co-cultured with cells containing HCV with neutralizing anti-
body AP33. Histograms of cell-to-cell transmission summa-
rized from 2 independent experiments performed in duplicate
are shown. Values represent percentage of cell-to-cell
transmission relative to control. P < .05.

Supplementary Figure 5. Immunoprecipitation of apoE using
anti-apoE antibodies 1D7, 3H1 and 6C5 in Huh7.5.1 cell ly-
sates. ApoE was immunoprecipitated from cell lysates as
described in Materials and Methods and apoE on immuno-
precipitated beads was subjected to immunoblot using anti-
apoE antibody (Abcam). Isotype IgG served as negative
control for immunoprecipitation. Two independent experi-
ments have been performed. A representative immunoblot is
shown.
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