
1 INTRODUCTION 

Transversely anisotropic fabric structure is common-
ly observed in both natural and manmade sand de-
posits and profoundly influences the mechanical be-
haviour of these soils including strength and 
dilatancy (Yoshimine et al. 1998, Gao et al. 2010). 
Proper consideration of the effect of fabric is im-
portant for safe design and maintenance of relevant 
key infrastructures (Uthayakumar & Vaid 1998).  
     There have been many attempts on theoretical 
characterization and modelling of fabric anisotropy 
in sand and its effect on macroscopic sand behav-
iour. Among many, those models based on the use of 
rotated yield and plastic potential surfaces have 
gained limited popularity in the literature (Sekiguchi 
& Ohta 1977, Pestana & Whittle 1999). However, 
yield surface rotation may not be able to account for 
the anisotropic nature of sand related to particle ori-
entation, contact normal and void space distribution 
properly, as the magnitude and direction of rotation 
is typically associated with the initial stress state 
(Kaliakin 2003). The employment of fabric tensors 
derived from the microstructural information of sand 
has proved to be efficient and physically more real-
istic in modelling sand behaviour (Oda & Nakayama 
1989, Pietruszczak 1999, Li & Dafalias 2002, 
Dafalias et al. 2004). Being successful to a certain 
extent, these studies have commonly ignored the 
change of the fabric anisotropy during the defor-
mation of the material, which is at odd with both ex-

perimental and numerical observations, as the sand 
fabric will adjust to sustain the external loading in an 
optimum manner when it is deformed (Li & Li 2009, 
Zhao & Guo 2013; Guo & Zhao, 2013). 
     This paper presents an anisotropic sand model 
accounting for fabric evolution based on the aniso-
tropic critical state theory (ACST) by Li & Dafalias 
(2012). The new model features an explicit yield 
function expressed in terms of the invariants and 
joint invariants of the stress ratio tensor rij and a de-
viatoric fabric tensor Fij. Over a typical monotonic 
loading course, the fabric tensor is assumed to 
evolve towards the direction of loading. Based on 
the proposed framework, a non-coaxial flow rule is 
readily derived.  

2 CONSTITUTIVE MODEL 

2.1 Yield function 

Based on this micromechanical deformation mecha-
nism that the shear resistance of sand is contributed 
by inter-particle friction and fabric anisotropy, we 
propose the following yield function, 
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with rij=(σij-pij)/3 being the 
stress ratio tensor, in which σij is the stress tensor, p 
=σij/3 is the mean normal stress, ij is the Kronecker 
delta; H is a hardening parameter whose evolution 
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cipal stress directions and meanwhile gives reasonable explanation for the micromechanical mechanism for 
static liquefaction and noncoaxiality between the stress and plastic strain increment axes. 



law depends on the stress as well as internal varia-
bles including soil density and fabric; A is a fabric 
anisotropy variable; kh is a non-negative model con-
stant with default value of 0.03; g(θ) is an interpola-
tion function based on the Lode angle θ of rij as fol-
lows (personal communication, Z.L. Wang 1992)  
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where c=Me/Mc is the ratio between the critical state 
stress ratio in triaxial extension Me and that in triaxi-
al compression Mc.  

An important inclusion in the yield function in 
Equation (1) is a fabric anisotropy variable A that is 
defined by the following joint invariant of Fij and nij 
(Li & Dafalias 2004, Gao et al. 2014) 
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where Fij is a symmetric traceless tensor whose nor
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 is referred to as the degree of fabric a

nisotropy. For convenience, Fij is normalized such th

at in critical state, F is unity. The deviatoric unit loa

ding direction tensor nij in Equation (3) is defined as 

follows (Li & Dafalias 2004) 
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Obviously, nii=0 and nijnij=1. Notice that the nij is the 
deviatoric unit normal to a yield surface resulting 
from Equation (1) with the assumption that A is a 
constant (in other words nij is not normal to the yield 
surface of Eq. (1)). 

2.2 Evolution law for H and Fij 

Within the hypothesis that sand’s stress-strain re-
sponse is incrementally linear, the evolution of the 
two internal variables is assumed to be 
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where ch, n and kf are three model parameters, e is the 
current void ratio, 〈 〉 are the Macauley brackets such 
that ⟨L⟩=L  for L>0 and ⟨L⟩=0 for L≤0, ζ is the dila-
tancy state parameter defined as below (Li & Dafali-
as 2012) 
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where eA is a model parameter, ψ=e-ec is the state 
parameter defined by Been & Jefferies (1985) with 
ec being the critical state void ratio corresponding to 
the current p. In the present work, the critical state 
line in the e-p plane is given by (Li & Wang 1998) 
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where er and λc are two material constants and pa 
(=101 kPa) is the atmospheric pressure. The above 
evolution law of Fij with plastic deformation ex-
pressed by Equation (7) leads towards coaxiality 
with the loading direction nij. 

2.3 Dilatancy relation and flow rule 

A proper dilatancy relation D defined as below is es-
sential for modelling the sand behaviour 
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where 
p

ijd  is the plastic strain increment and 
p

ijde  is 
the plastic shear strain increment. Based on Li & 
Dafalias (2012), the following dilatancy relation 
which accounts for the effect of density, confining 
pressure and anisotropy is proposed 
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where d1 and m are two model constants.  
By assuming an associated flow rule in the devia-

toric stress space based on the yield function in 
Equation (1), the increment of the plastic shear strain 

p

ijde  is expressed as 
p

ij ijde L m                                                          (12) 

where
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Notice that mij is normal to the yield surface ex-
pressed by Equation (1). Since əf/ərij consists of two 
parts with one being coaxial with rij (or equivalently 
σij itself) and the other involving Fij which is at-
tributed to fabric anisotropy and is in general non-
coaxial with rij (Gao et al. 2014), the flow rule ex-
pressed by Equations (12) and (13) naturally address 
the non-coaxiality issue in soil modelling. 

2.4 Elastic moduli 

As plastic strain dominates sand deformation, the in-
fluence of elastic anisotropy, if any, is considered 
negligible. The following elastic moduli (Richart et 
al. 1970, Li & Dafalias 2012, Gao et al. 2014) are 
employed: 
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where G and K denote the elastic shear and bulk 
modulus, respectively, G0 is a material constant and  
𝜈 is the Poisson’s ratio assumed to be a constant. 

3 MODEL SIMULATION FOR ANISOTROPIC 
SAND BEHAVIOUR 

3.1 Model parameters 

To verify the model capability in simulating the ani-
sotropic sand behaviour, we employ the test data for 
the dry-deposited Toyoura sand reported by Yo-
shimine et al. (1998). The model parameters are 
listed in Table 1 and the initial degree of anisotropy 
F0 is set to be 0.45. The procedure for parameter de-
termination is discussed in Gao et al. (2014).  

 
Table 1 Model parameters for Toyoura sand 

Parameter value 

G0 

𝜈 

Mc 

c 

er 

λc 

ch 

n 

d1 

m 

eA 

kf 

125 

0.1 

1.25 

0.75 

0.934 

0.02 

0.90 

3.0 

0.2 

5.3 

0.10 

5.7 

3.2 Model simulation 

Figure 1 shows the model simulations for the 

anisotropic sand behaviour under undrained 

torsional loading with constant intermediate 

principal stress vatiable b=0.25. In this figure, α is 

the major principal stress direction with respect to 

the deposition direction and Drc is the relative 

density after consolidation. Clearly, the model well 

captures the trend that larger value of α generally 

leads to softer (lower shear stress σ1-σ3 at the same 

deviatoric strain ε1-ε3) and relatively more contrac-

tive sand response. Good agreement between the test 

data and model simulations can be observed.  
An important feature of the present model is the 

non-coaxial flow rule in Equations (12) and (13), re-
sulting naturally by the introduction of an evolving 
fabric tensor into the yield function and the associa-
tive flow rule assumption in the deviatoric stress 
space.  

In a torsional shear test, the radial stress σr is al-
ways the intermediate principal stress and the radial 
strain εr the intermediate principal strain. In this set-
ting, it is convenient to use the model to explain the 
non-coaxiality in the z-θ plane (Gao et al. 2014). To 

elaborate on this point and motivated by the ap-
proach in Dafalias et al. (2004), we plot in Figure 2 
the variation with deviatoric strain of the difference 
of the angle α(σ) between the direction of the major 
principal stress σ1 and the vertical direction, from 
the angle α(ε) that the major principal strain ε1 forms 
with the vertical direction. Such difference is a 
measure of non-coaxiality. The simulations match 
the experimental observation on non-coaxiality qual-
itatively well. When α=0

º 
or 90

º
, there is only change 

of the principal values of fabric tensor during the 
development of plastic strain, but no fabric rotation 
is involved. As such, the two sources of plastic strain 
increment due to stress and fabric increments will 
influence its value only, with its direction aligning 
with the stress direction during the entire loading 
course. Thus, the predicted sand response is general-
ly coaxial, which is consistent with the experimental 
observation (Yoshimine et al. 1998). In all the other 
cases when α is between 0

º
 and 90

º
, coaxiality is as-

sumed for purely elastic stage (below 0.5% devia-
toric strain) due to the employment of isotropic elas-
tic relation. Beyond this elastic stage to a relative 
low strain level (such as 2%), however, a distinct 
difference between α(ε)  and α(σ) of the order of 4 to 
5 degrees on the average is found (Fig. 2), which in-
dicates clearly non-coaxiality. Upon further loading, 
the fabric tends to rotate towards the direction of 
stress, and the difference between α(ε) and α(σ) pre-
dicted by the model decreases after the peak, and the 
non-coaxiality will totally disappear at large strain 
levels. 

Figure 3 shows the model simulation for the sand 

fabric evolution in undrained triaxial extension 

where static liquefaction occurs. As the fabric tensor 

is initially triaxial-compression like due to the sam-

ple’s method of preparation and coaxial with the 

loading direction, thus, it undergoes only a change 

of its norm, without any change of its principal di-

rections. In particular the value of its major principal 

component decreases while the value of its minor 

principal component increases, which makes the 

norm F  undergo a decrease first until at 7% devia-

toric strain. At this point, all components of the fab-

ric tensor are 0 so that a transient isotropic state is 

observed (F=A=0). As the deformation continues, 

the original minor component becomes the major 

one, whilst the original major one turns to be the mi-

nor one. The overall degree of anisotropy F shows a 

slight rebound from zero (Fig. 3(c)). The anisotropic 

variable A increases monotonically from a negative 

value through zero to a positive one (Fig. 3(c)). 

Nevertheless, both A and F reach a very small posi-

tive value at static liquefaction where p=0, which is 

far smaller than their respective critical state value 

had liquefaction not occurred, which is also ob-

served in the DEM simulations by Li and Li (2009). 
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Figure 1. Model simulation for the anisotropic sand behaviour 
in undrained torsional shear tests (data from Yoshimine et al. 
1998). 
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Figure 2. Comparison between the observed and model pre-
dicted non-coaxial sand behaviour in undrained torsional shear 
tests (data from Yoshimine et al. 1998). 

4 CONCLUSIONS 

A three-dimensional elasto-plastic constitutive mod-
el has been proposed to describe the anisotropic be-
haviour of sand under monotonic loading with fixed 
principal stress directions. The model constructed 
within the framework of ACST recently presented 
by Li and Dafalias (2012), which emphasizes the 
role of fabric on the characterization of sand re-
sponse at critical state. The model employs a void-
based fabric tensor and a physically-based fabric 
evolution law to account for the influence of void 
size and orientation and their change during shear on 
the sand behaviour including plastic hardening and 
dilatancy. At the critical state, the fabric tensor has a 
constant magnitude and is co-directional with the 
loading direction. A non-coaxial but associative flow 
rule in the deviatoric stress space is used and it can 
naturally account for the non-coaxial behaviour of 
initially anisotropic sand samples under monotonic 
loading.  

The model has been used to simulate the un-
drained test results for the dry-deposited Toyoura 
sand (Yoshimine et al., 1998) under undrained tor-
sional shear tests with fixed principal stress direction 
and constant intermediate principal stress variable. 
The model simulations compare well with the test 
results.  
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Figure 3. Model simulation for the sand behaviour in undrained 
triaxial extension and the fabric evolution (static liquefaction 
occurs). 

ACKNOWLEDGEMENT 

Y.F. Dafalias would like to acknowledge support 
from the European Research Council under the Eu-
ropean Union's Seventh Framework Program FP7-
ERC-IDEAS Advanced Grant Agreement n° 290963 
(SOMEF), and partial support by NSF project 
CMMI-1162096.  

REFERENCES 

Been, K. & Jefferies, M.G. 1985. A state parameter for sands. 
Géotechnique 35(2): 99-112. 

Dafalias, Y.F., Papadimitriou, A.G. & Li, X.S. 2004. Sand 
plasticity model accounting for inherent fabric anisotropy. 
Journal of Engineering Mechanics 130(11): 1319-1333.  

Gao, Z.W., Zhao, J.D. & Yao, Y.P. 2010. A generalized aniso-
tropic failure criterion for geomaterials. International Jour-
nal of Solids and Structures 47(22-23): 3166-3185.  

Gao, Z.W., Zhao, J.D., Li, X.S. & Dafalias, Y.F. 2014. A criti-
cal state sand plasticity model accounting for fabric evolu-
tion. International Journal for Numerical and Analytical 
Methods in Geomechanics 38(4): 370-390. 

Guo, N. & Zhao, J.D. 2013. The signature of shear-induced an-
isotropy in granular media. Computers and Geotechnics 47: 
1-15.  

Kaliakin, V.N. 2003. An assessment of the macroscopic quanti-
fication of anisotropy in cohesive soils. Prco. 1st Japan-
U.S. Workshop on Testing, Modeling, and Simulation, Bos-
ton, Massachusetts, USA, 370-393. 

Li, X.S. & Dafalias, Y.F. 2002. Constitutive modelling of in-
herently anisotropic sand behaviour. Journal of Geotech-
nical and Geoenvironmental Engineering 128(10): 868-
880. 

Li, X.S. & Dafalias, Y.F. 2004. A constitutive framework for 
anisotropic sand including non-proportional loading. 
Géotechnique 54(1): 41-55. 

Li, X.S. & Dafalias, Y.F. 2012. Anisotropic critical state theo-
ry: the role of fabric.  Journal of Engineering Mechanics 
138(3): 263-275. 

Li, X.S. & Li, X. 2009. Micro-Macro quantification of the in-
ternal structure of granular materials. Journal of Engineer-
ing Mechanics 135(7): 641-656. 

Li, X.S. & Wang, Y. 1998. Linear representation of steady-
state line for sand. Journal of Geotechnical and Geoenvi-
ronmental Engineering 124(12): 1215-1217. 

Oda, M. & Nakayama, H. 1989. Yield function for soil with 
anisotropic fabric. Journal of Engineering Mechanics 
115(1): 89-104. 

Pestana, J.M. & Whittle, A.J. 1999. Formulation of a unified 
constitutive model for clays and sands. International Jour-
nal for Numerical and Analytical Methods in Geomechan-
ics 23(12): 1215-1243. 

Pietruszczak, S. 1999. On inelastic behaviour of anisotropic 
frictional materials. Mechanics of Cohesive-Frictional Ma-
terials 4(3): 281-293. 

Richart, F.E. Jr., Hall, J.R. & Woods, R.D. 1970. Vibrations of 
soils and foundations. Englewood Cliffs, NJ: Prentice-Hall. 

Sekiguchi, H. & Ohta, K. 1977. Induced anisotropy and time 
dependency in clays. Constitutive Equations of Soils, Pro-
ceedings of the 9th International Conference on Soil Mech. 
Found. Eng., Special Session 9, Tokyo, 229-238. 

Uthayakumar, M. & Vaid, Y.P. 1998. Static liquefaction of 
sands under multiaxial loading. Canadian Geotechnical 
Journal 35(2): 273-283 

Yoshimine, M., Ishihara, K. & Vargas, W. 1998. Effects of 
principal stress direction and intermediate principal stress 
on undrained shear behaviour of sand. Soils Foundations 
38(3): 179-188.  

Zhao, J.D. & Guo, N. 2013. Unique critical state characteristics 
in granular media considering fabric anisotropy. Géotech-
nique 63(8): 695-704. 

 


