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Abstract

Background

Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), includ-

ing myocardial infarction, sudden death, and stroke. In the US, over 65 million people have

high blood pressure and a large proportion of these individuals are prescribed antihyperten-

sive medications. Although large long-term clinical trials conducted in the last several

decades have identified a number of effective antihypertensive treatments that reduce the

risk of future clinical complications, responses to therapy and protection from cardiovascu-

lar events vary among individuals.

Methods

Using a genome-wide association study among 21,267 participants with pharmaceutically

treated hypertension, we explored the hypothesis that genetic variants might influence or mod-

ify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular

outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors,

beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart

and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed

array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and

used additive genetic models in proportional hazards or logistic regressionmodels to evaluate

drug-gene interactions for each of four therapeutic drug classes.We used meta-analysis to

combine study-specific interaction estimates for approximately 2 million single nucleotide poly-

morphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants

(3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry

GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases).

Results

Although drug-SNP interactions were biologically plausible, exposures and outcomes were

well measured, and power was sufficient to detect modest interactions, we did not identify
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any statistically significant interactions from the four antihypertensive therapy meta-analy-

ses (Pinteraction > 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66

SNPs with significant main effects on coronary artery disease or blood pressure from large

published genome-wide association studies (Pinteraction � 0.01). Our results suggest that

there are no major pharmacogenetic influences of common SNPs on the relationship

between blood pressure medications and the risk of incident CVD.

Introduction
Typically asymptomatic, hypertension is a major risk factor for several serious common clinical
cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In
the US, over 65 million people have high blood pressure [1]. Large long-term clinical trials con-
ducted in the last several decades have identified a number of effective treatments that reduce
the risk of future clinical complications [2,3]. However, responses to therapy and protection
from cardiovascular events vary among individuals. We hypothesized that underlying genetic
variation might explain observed inter-individual differences in cardiovascular protection from
major classes of antihypertensive medications. Identifying potential drug-gene interactions
that affect the efficacy or safety of antihypertensive medications, particularly in relation to risk
of CVD, is a first step in a translational research effort aimed to decrease the burden of a major
public health problem.

Recent genome-wide association studies (GWAS) have identified a large number of com-
mon single nucleotide polymorphisms (SNPs) associated with blood pressure [2] and coronary
artery disease [3]. To date, however, GWAS examining pharmacogenomics effects for antihy-
pertensive therapies have tended to focus on the outcome of blood pressure [4, 5] or the
adverse metabolic responses to antihypertensive drug treatments [6, 7] rather than on clinical
events. Although the sample sizes have tended to be small, often less than 1000 participants,
clever design features for validation [4] and high-fidelity phenotyping [8] have improved the
yield from GWAS studies of drug-gene interactions on levels of blood pressure. For example, a
study using a two stage GWAS design of angiotensin converting enzyme (ACE) activity identi-
fied a candidate gene subset for follow-up analyses of blood pressure. The results suggested an
interaction on blood pressure response to ACE inhibitor monotherapy for carriers of ACE and
ABO polymorphisms [9].

For the outcome of cardiovascular events, most published pharmacogenomics studies of
drug-gene interactions have typically employed a candidate gene approach [10–12] or have
evaluated modest-sized panels of SNPs [13]. Among evaluations of larger numbers of SNPs, a
recent case-cohort study tested [12] common non-synonymous SNPs from the Illumina
HumanCVD Beadchip within the INVEST trial, in which participants with coronary artery
disease and hypertension were randomized to a beta-blocker or a calcium channel blocker, for
SNP-by-treatment interaction on risk of all-cause death, nonfatal MI or nonfatal stroke. As fol-
low-up, a gene score calculated from the top two variants from the discovery analysis–SNPs in
SIGLEC12 and A1BG–was associated with differences in risk among participants in the Nordic
Diltiazem study who used calcium channel blockers [13].

We aimed to build upon prior research by more fully characterizing common variation
across the entire genome and by focusing on population-based samples of treated hypertensive
participants with long prospective follow-up for incident cardiovascular events. Thus, using
genome-wide data on over 2 million measured and imputed SNPs from ongoing studies, this
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project represents a multi-center collaborative effort to identify major antihypertensive ther-
apy-associated pharmacogenomics interactions associated with sudden death, myocardial
infarction (MI) or stroke in patients with treated hypertension.

Materials & Methods

Design
The original design was a two-stage study of drug-gene interactions on the outcome of cardio-
vascular disease with discovery in a case-control study and replication among two cohort stud-
ies. The first stage was expected to have 1,500 cases and 2,600 controls, and the second stage
was expected to have 1,250 CVD cases and 5,250 non-cases over the course of follow-up. All
participants were treated for hypertension and cardiovascular disease (CVD) cases included
myocardial infarction, coronary death, sudden death, and stroke. The proposed study had
good power to detect modest-sized interactions with common genetic variants, for instance,
80% power to detect a multiplicative interaction of 2.3 for a variant with an allele frequency of
0.2 and a drug prevalence of 25%.

During the conduct of the study, collaborations with other cohort studies and clinical trials
provided an opportunity to expand the European ancestry sample size to include 3,527 CVD
cases and 11,848 controls in the discovery stage and 1,751 CVD cases in the case-only replica-
tion stage. To limit genotyping costs, the design remained two-stage. Across the two stages, our
study had good power to detect modest-sized interactions with common genetic variants, for
instance, 97% power to detect a multiplicative interaction effect of 1.6 for a variant with an
allele frequency of 0.2 and a drug prevalence of 25%.

Study population
We performed a discovery meta-analysis (“Stage I”) of nine studies with GWA data that
included participants of European ancestry (EA) with treated hypertension in the setting of the
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium
[14]: the Age, Gene/Environment Susceptibility–Reykjavik Study (AGES), the Atherosclerosis
Risk in Communities study (ARIC), the Cardiovascular Health Study (CHS), the Framingham
Heart Study (FHS), the Health, Aging, and Body Composition (Health ABC) study, the Heart
and Vascular Health Study (HVH), the Multi-Ethnic Study of Atherosclerosis (MESA), the
Prospective Study of Pravastatin in the Elderly at Risk (PROSPER), and the Rotterdam Study
(RS). Details of the individual studies are available in the Supplementary Material (Section A
in S1 File). Among these samples, we also explored variants that had demonstrated significant
results on the main effects of systolic or diastolic blood pressure [2] and coronary artery disease
[3] in other published genome-wide association studies.

We then selected variants with the lowest p-values in Stage I for genotyping in Stage II
among European ancestry participants from the Genetics of Hypertension Associated Treat-
ment (GenHAT) ancillary case-only study of the ALLHAT clinical trial [15, 16]. Briefly, ALL-
HAT was a randomized, double-blind, multicenter clinical trial of hypertensive adults designed
to determine if the incidence of fatal CHD and nonfatal myocardial infarction was lower
among patients randomized to one of four antihypertensive drug classes: a calcium channel
blocker (amlodipine), an ACE inhibitor (lisinopril), and an alpha-adrenergic blocker (doxazo-
sin), each compared with a diuretic (chlorthalidone). The case-only phase of GenHAT focused
on discovering pharmacogenetic associations with candidate genes among 11,599 ALLHAT
participants who experienced an adverse event (fatal CHD or nonfatal myocardial infarction,
stroke, heart failure, coronary revascularization, angina, peripheral arterial disease, end-stage
renal disease, all-cause death).
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Although we did not have power for discovery analyses among non-European ancestry par-
ticipants, we nevertheless conducted exploratory analyses to evaluate evidence for antihyper-
tensive pharmacogenomic effects among African-American (AA) participants from four of the
discovery studies (ARIC, CHS, Health ABC, MESA), as well as GenHAT and the Jackson
Heart Study (JHS) and to provide additional context to our discovery findings. Each study fol-
lowed a pre-specified analysis protocol and findings from the within-study analyses were then
combined via meta-analysis, as described below.

Ethics Statement
All studies were approved by local ethics committees and all participants provided written
informed consent. The ethics committees for the individual studies are: AGES: The National
Bioethics Committee, Iceland; ARIC: University of North Carolina at Chapel Hill Office of
Human Research Ethics; CHS: University of Washington Human Subjects Division IRB; FHS:
Institutional Review Board of Boston University Medical Campus and Boston Medical Center;
GenHAT: UAB Institutional Review Board for Human Use (IRB); Health ABC: clinic protocols
were approved by the University of Pittsburgh Institutional Review Board and the University
of Tennessee Health Science Center Institutional Review Board, and the Coordinating Center
protocols were approved by the UCSF Human Research Protection Program/Committee on
Human Research; HVH: Group Health Cooperative Human Subjects Review Committee; JHS:
The Institutional Review Board of the University of Mississippi Medical Center; MESA: Los
Angeles Biomedical Research Institute at Harbor-UCLA Human Subjects Institutional Review
Board; PROSPER: Research Ethics Committee of the Cork Teaching Hospitals (CREC), Scot-
tish Multi-Regional Ethics Committee A, and Medical Ethical Committee (METc) of the Lei-
den University Medical Center Rotterdam Study: Medical Ethics Committee of the Erasmus
Medical Center.

Study participants
This study was restricted to participants with treated hypertension, defined by the use of anti-
hypertensive medications. Participants in longitudinal cohort studies entered the cohort of
treated hypertensives at the examination when antihypertensive medications were first
recorded and remained in the analysis for all observations in which they were users of antihy-
pertensives. Participants with prevalent CVD at study baseline or prior to the initiation of
HTN medication were excluded.

Definition of drug exposure
We examined four therapeutic classes of drugs: ACE inhibitors, beta blockers, calcium channel
blockers, and thiazide diuretics. Drug groupings were based on manually-curated lists that
were reviewed by experts from each study to include all relevant drugs from the U.S. and
Europe. Participants were classified as thiazide users if they took a thiazide or thiazide-like
diuretic in a single or combination preparation, with or without potassium sparing diuretic or
potassium supplements. Calcium channel blockers included both long- and short-acting prepa-
rations. For primary analyses, angiotensin receptor blockers (ARBs) were grouped with ACE
inhibitors.

Drug exposures were assessed by medication inventory or self-report (prospective cohorts),
computerized databases (HVH), or through randomized treatment assignment updated by
self-report during follow-up (GenHAT). For each analysis, users of a given class were treated
as the exposed group, users of all other classes served as the reference group. In this way,
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participants who used multiple classes of drugs appeared in multiple analyses and users were
allowed to change drug classes during the course of follow-up, approximating an as-treated
analysis.

Definition of CVD outcome
The primary outcome of the study was incident CVD, which included myocardial infarction,
coronary death, sudden death, or stroke. In secondary analyses, we considered an endpoint
limited to incident MI events. Details of event definitions and surveillance methods for each of
the participating studies are provided in Supplementary Material (Section B in S1 File).

Genotype arrays and imputation
Genome-wide SNP genotyping was performed within each cohort using Illumina or Affyme-
trix genotyping arrays. Follow-up (“Stage II”) genotyping of selected variants was performed
using a custom content on the Illumina Human Exome array. Details of genotyping and QC
are provided in Supplementary Material (Section C in S1 File); these procedures generally
involved exclusion of participants on the basis of sex mismatches and duplicate samples; limi-
tation to unrelated individuals in all cohorts except the family-based FHS; exclusion of samples
with genotyping success rate<95%; and exclusion of SNPs failing genotyping call rate thresh-
olds, typically between 95% and 99%.

To increase coverage and facilitate evaluation of the same SNPs across cohorts, SNPs pass-
ing quality control were used to impute to the HapMap Phase 2 reference panels using MaCH
[17], BEAGLE, [18] or BIMBAM [19].

Statistical analysis
Stage I Analysis. For the discovery analyses, each study performed four analyses of inci-

dent CVD across approximately 2 million autosomal SNPs. For the Stage I analyses, depending
on individual study design and availability of follow-up data, studies evaluated drug-gene inter-
actions in one of two ways: (1) Cox proportional hazards regression models with time-varying
antihypertensive medication exposures in which participants entered the risk set at the first
known report of antihypertensive treatment, remained in the risk set for all observations in
which they were users of antihypertensive medications (i.e., those who stopped could re-enter
upon re-initiation), and were followed until their first CVD event, death, or at the date of last
follow-up; (2) Logistic regression in which all hypertensive CVD cases were compared to an
age and sex-matched set of population-based hypertensive controls. [10]

All regression models included an additive SNP×drug interaction term and were adjusted
for age, sex, recruitment site (when appropriate), and principal components for global ancestry
(as needed); family based studies additionally adjusted for relatedness. Details of the software
packages used to estimate cohort-specific results are shown in Supplementary Materials (Sec-
tion D in S1 File).

Study-specific interaction estimates (β) and standard errors (SE) were combined by fixed
effects inverse variance weighted meta-analysis using METAL. [20] To control inflation for
poorly-calibrated tests for less common variants among less common drug exposures, we first
calculated SNP-specific degrees of freedom for each cohort as the product of the number of
drug-exposed participants, the number of CVD events, the rate of drug exposure, the SNP
imputation quality (range: 0, 1), and the minor allele frequency (MAF) (range: 0, 0.50). We
excluded cohort-specific results for SNPs with fewer than 10 degrees of freedom. Per-study, we
omitted SNPs from the meta-analysis if estimates were only available from two or fewer con-
tributing studies or if the absolute value of the β estimate for interaction was greater than 5.0,
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indicating non-convergence of the regression. Finally, study-specific results were corrected by
their respective genomic inflation factors (λgc) before meta-analysis according to the genomic
control method. [21] The genome-wide threshold for significant drug-SNP interaction was
P< 5.0×10−8.

Stage II Analysis. We used p-values from the Stage I discovery meta-analysis to select
approximately 200 high signal markers for each of the three classes of hypertension drugs
tested in the ALLHAT trial (ACE inhibitors, diuretics, and calcium-channel blockers). Because
beta-blockers were not a randomization group for ALLHAT (and instead were the default sec-
ond-line agent), we did not pursue discovery findings from this drug class in the GenHAT
case-only study. When multiple SNPs clustered at a single locus, we “trimmed” the list of SNPs
on the basis of linkage disequilibrium (r2 < 0.7). Using a custom-content Illumina HumanEx-
ome Chip, we then attempted to genotype these signal SNPs, along with proxies selected on the
basis of GWAS associations (discovery p-value within 10X of the signal marker) and 1000
Genomes linkage disequilibrium patterns.

The case-only GenHAT study estimated drug-gene interactions by modeling genotype as
the predictor and drug exposure as the outcome [22, 23], a modeling strategy that assumes that
genotype is not associated with choice of medication, which is a weaker assumption in ALL-
HAT because of the randomization.

Limiting to one SNP per locus (either lead or proxy, depending on Stage II availability),
results from the Stage II case-only analyses were combined with the Stage I meta-analysis
results in a fixed-effects inverse variance meta-analysis using METAL.

Analysis among African-Americans. We further explored top associations from the Stage
I meta-analysis among African-American participants from ARIC, CHS, Health ABC, MESA,
JHS and GenHAT.

Results
We performed genome-wide association analyses across 15,375 EA participants from 9 studies
to examine whether common genetic variants modified the associations between four common
antihypertensive therapies and the risk of incident CVD (3,527 cases of the composite CVD
outcome; 2,114 of which were cases of myocardial infarction) with targeted follow-up in a
case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 Afri-
can-Americans (1,267 CVD cases). Characteristics of 21,267 study participants are shown in
Table 1 and Tables A & B in S1 File. On average, participants were predominantly female and
middle-aged (mean age range = 56–77 years). The estimated prevalence of drug exposure at
study baseline among the EA discovery sample was highest for diuretics and lowest for calcium
channel blockers (Table 1, Table C in S1 File). Approximately 2 million autosomal SNPs were
available for analysis after applying genotyping, imputation, and analytic quality control mea-
sures (Table D in S1 File). Q-Q plots based on meta-analyses of the cohort-specific, drug-SNP
interaction parameters revealed little evidence of inflation of p-values demonstrated by lamb-
das less than 1.0 (Figure A in S1 Figs).

We did not detect any genome-wide significant interactions (P< 5.0×10−8) for any of the
four drug classes in Stage I (Figure B in S1 Figs). Thus the originally planned case-only repli-
cation effort became a second stage of discovery. However, when we combined results from
Stage I and the 1,751 EA GenHAT CVD cases from Stage II, no SNP×drug interaction esti-
mates attained statistical significance (p< 5.0×10−8) (Fig 1, Table E in S1 File). Further, the
top ten loci from the combined Stage I and Stage II analyses showed no evidence of significance
among the 4,141 African-American participants from Stage I and II (Table F in S1 File) com-
bined. When we repeated the analyses limited to MI (rather than combined CVD) as an

CHARGE CVD Anti-Hypertensives Pharmacogenetics

PLOS ONE | DOI:10.1371/journal.pone.0140496 October 30, 2015 7 / 13



T
ab

le
1.

C
h
ar
ac

te
ri
st
ic
s
o
fS

tu
d
y
P
ar
tic

ip
an

ts
.

S
ta
g
e
I

M
o
d
el

C
as

es
,N

N
o
n
-C

as
es

,N
A
g
e,

y
F
em

al
e,

%
A
C
E
,%

B
B
,%

C
C
B
,%

D
iu
re
ti
cs

,%

A
G
E
S

C
23

6
12

67
76

.7
63

%
22

%
57

%
29

%
43

%

A
R
IC

C
21

3
23

13
58

.1
54

%
21

%
57

%
29

%
43

%

C
H
S

C
43

9
14

30
71

.8
65

%
32

%
29

%
29

%
48

%

H
ea

lth
A
B
C

C
12

8
75

5
75

.5
51

%
52

%
36

%
39

%
36

%

M
E
S
A

C
66

87
4

66
.4

51
%

50
%

35
%

25
%

48
%

C
as

es
,N

C
o
n
tr
o
ls
,N

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

F
H
S

L
13

2
66

0
67

.4
66

.4
36

%
36

%
41

%
40

%
36

%
34

%
31

%
22

%
30

%
29

%

H
V
H
-1

L
12

85
10

05
66

.4
65

.9
45

%
38

%
39

%
37

%
36

%
35

%
22

%
19

%
35

%
40

%

H
V
H
-2

L
38

1
68

2
64

.2
65

.1
40

%
38

%
42

%
45

%
43

%
36

%
16

%
18

%
40

%
45

%

P
R
O
S
P
E
R

L
40

6
26

21
75

.7
75

.3
48

%
64

%
22

%
20

%
36

%
34

%
38

%
30

%
57

%
57

%

R
S

L
24

1
24

1
77

.6
75

.9
59

%
59

%
36

%
38

%
53

%
56

%
27

%
23

%
30

%
38

%

S
ta
g
e
II–

C
as

e
O
n
ly

M
o
d
e
l

C
as

es
,N

C
o
n
tr
o
ls
,N

A
g
e,

y
F
em

al
e,

%
A
C
E
,%

B
B
,%

C
C
B
,%

D
iu
re
ti
cs

,%

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

G
en

H
A
T

L
17

51
n/
a

69
.8

n/
a

32
%

n/
a

27
%

n/
a

n/
a

n/
a

28
%

n/
a

47
%

n/
a

A
fr
ic
an

-A
m
er
ic
an

E
xt
en

si
o
n

M
o
d
el

C
as

es
,N

N
o
n
-C

as
es

,N
A
g
e,

y
F
em

al
e,

%
A
C
E
,%

B
B
,%

C
C
B
,%

D
iu
re
ti
cs

,%

A
R
IC

C
10

5
95

4
55

.7
68

%
24

%
22

%
23

%
47

%

C
H
S

C
11

2
38

5
72

.2
68

%
32

%
20

%
44

%
50

%

H
ea

lth
A
B
C

C
86

62
1

74
.3

62
%

46
%

24
%

45
%

45
%

M
E
S
A

C
42

84
6

64
.5

56
%

46
%

26
%

38
%

57
%

C
as

es
,N

C
o
n
tr
o
ls
,N

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

C
as

es
C
o
n
tr
o
ls

JH
S

L
34

68
60

.7
60

.6
67

%
67

%
68

%
12

%
27

%
52

%
50

%
34

%
44

%
53

%

G
en

H
A
T

L
88

8
n/
a

68
.8

n/
a

47
%

n/
a

30
%

n/
a

n/
a

n/
a

26
%

n/
a

48
%

n/
a

A
ge

in
di
ca

te
s
m
ea

n
ag

e.
M
od

el
in
di
ca

te
s
an

al
ys
is
m
et
ho

d:
C
,C

ox
pr
op

or
tio

na
lh

az
ar
ds

re
gr
es

si
on

;L
,l
og

is
tic

re
gr
es

si
on

.F
or

pr
ev

al
en

ce
of

an
tih

yp
er
te
ns

iv
e
m
ed

ic
at
io
n
us

e
A
C
E

in
di
ca

te
s
A
ng

io
te
ns

in
-c
on

ve
rt
in
g
en

zy
m
e
in
hi
bi
to
r
(o
r
an

gi
ot
en

si
n
re
ce

pt
or

bl
oc

ke
r)
;B

B
,b

et
a-
bl
oc

ke
r;
C
C
B
,c

al
ci
um

ch
an

ne
lb

lo
ck
er
;D

iu
re
tic
s,

th
ia
zi
de

di
ur
et
ic
s.
F
or

st
ud

ie
s

an
al
yz
ed

w
ith

lo
gi
st
ic
re
gr
es

si
on

,s
um

m
ar
ie
s
ar
e
pr
ov

id
ed

se
pa

ra
te
ly
fo
r
ca

se
s
an

d
co

nt
ro
ls
.

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
40
49
6.
t0
01

CHARGE CVD Anti-Hypertensives Pharmacogenetics

PLOS ONE | DOI:10.1371/journal.pone.0140496 October 30, 2015 8 / 13



outcome among the EA sample, the results were similarly null (Table G in S1 File, Figures C
& D in S1 Figs). Because beta-blockers were not a first line agent in GenHAT; we did not per-
form a combined Stage I & Stage II meta-analysis; however, no results attained statistical signif-
icance in Stage I (Table H in S1 File).

Of the 75 well-validated GWAS variants for coronary artery disease (n = 46) and blood pres-
sure (n = 29), 66 were directly available in our Stage I meta-analysis. Meta-analyses restricted
to these 66 SNPs were similarly null (interaction P> 0.0001 [0.05/264 tests], Tables I & J in S1
File).

Discussion
In this study with a combined sample size of 17,126 European ancestry participants from 10
studies, we evaluated evidence for drug-gene interactions that influenced risk of incident CVD
among participants treated for hypertension. Although we were well powered to discover mod-
est interactions for common variants, we did not identify any genetic variants that significantly
modified the association of antihypertensive medications with the risk of CVD in this large
population-based sample of participants. Further characterization of top associations from the
EA analyses among 4,141 African-Americans from 6 studies, a group with generally higher
HTN medication usage and higher CVD event rates, did not reveal any significant associations.

Fig 1. Plots show the individual interaction p-values based on Stage I (indicated as solid dots) or Stage I + Stage II meta-analysis (indicated as
outlined dots with “+” symbol) against their genomic position for the combined cardiovascular disease (CVD) outcome for the four
antihypertensive medication exposures: (a) Angiotensin-converting enzyme (ACE) inhibitors, (b) Beta-blockers, (c) CalciumChannel Blockers,
and (d) Thiazide Diuretics.Within each chromosome, shown on the x-axis, the results are plotted left to right from the p-terminal end. The nearest genes are
indicated for variants with an interaction p-value less than 1×10−5 in the meta-analysis.

doi:10.1371/journal.pone.0140496.g001
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Further, in addition to performing a genome-wide association study evaluating potential
drug-gene interactions, we separately evaluated interactions for 66 SNPs previously associated
with coronary artery disease or blood pressure main effects. Even using a less stringent signifi-
cance threshold, we found that no previously identified SNPs modified the association between
blood pressure lowering medications and the risk of CVD. This null result is perhaps not sur-
prising, as SNPs selected on the basis of an extreme p-value for a single main effect may be less
likely to harbor heterogeneity across population subgroups.

The strengths of the project include: the large size of the case group; the population-based
designs for both the case-control and the cohort studies; and the high-quality ascertainment of
events and medication status.

We chose a well-measured phenotype with biologically plausible pharmacogenomic effects,
and our drug assessment methods were sensitive and reliable [24, 25], yet we were unable to
detect any genome-wide significant interactions.

Our study was well powered for common variants and modest-to-large interactions, but we
remained underpowered to detect smaller interactions; thus false negative findings that failed
to meet stringent genome-wide significance thresholds are also possible, in particular for rarer
alleles and less common exposures. Our analyses focused on common variants; so it is possible
that areas of the genome and types of variants not well covered by GWAS methods, such as
rare variants, may have been missed by this approach. Because common variants tend to be old
and global, we are likely to have missed recent, local, and rare variants responsible for drug-
gene interactions.

The other limitations are those of observational studies, including the possibility of con-
founding, selection bias, missing data, and population stratification or admixture. The clinical
trial analogue of the case-control and cohort studies is the on-treatment rather than the inten-
tion-to-treat analysis. Confounding from unmeasured or unknown factors or measurement
error in known risk factors remain alternative explanations for findings of all observational
studies [26, 27]. In particular, because medication use was ascertained through prescription
drug records or medication inventories, some level of exposure misclassification is possible.
Further, our approach compared users of one drug class to a reference group that included
users of three other classes and did not specifically account for simultaneous use of multiple
therapies.

While our study considered interactions between common antihypertensive medications
and variants across the genome, other strategies to investigate genetic influences on blood pres-
sure treatment have been employed with varying levels of success. For instance, the CHARGE
consortium investigated 30 candidate genes that code for proteins that are direct targets of anti-
hypertensive drugs and found that only a few (ADRB1, AGT, ACE) had significant, modest
associations with blood pressure levels (< 1mmHg) or with hypertension (<10% difference in
risk) [28]. Other studies have evaluated hypertensive susceptibility loci for potential effects on
response to antihypertensive drug therapies [29]. By largely focusing on the outcome of blood
pressure, the GWAS approach to antihypertensive drug-gene interactions has identified inter-
actions of small to modest effect sizes [4, 5, 8, 9].

Our study focused on the major disease endpoints of MI, stroke and sudden death among
treated hypertensive patients rather than the levels of blood pressure, primarily because these
devastating clinical events are complications of hypertension. Because blood-pressure differ-
ences in trials of drug therapy do not translate directly into differences in the risks of clinical
outcomes [30], we preferred to focus on cardiovascular events such as MI, stroke, and sudden
death as the primary outcomes of interest. Indeed, before screening for the relevant genetic var-
iants could be recommended, the drug-gene effects on blood pressure would need to be tracked
from the surrogate endpoint of blood pressure to the prevention of major disease endpoints
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[31]. In an effort to examine a less heterogeneous outcome, we limited endpoints to MI cases in
secondary analyses, which were also null. However, we did not have sufficient power to investi-
gate stroke as its own outcome. Larger sample sizes will be necessary to examine pharmacoge-
netic results specific to stroke and blood-pressure lowering medications.

For many patients, medications offer substantial benefits that can be maximized by avoiding
medications in patients who are susceptible to complications or by targeting particular medica-
tions to patients who are likely to benefit. The results presented here provide little evidence
that common variant alleles modify the effect of frequently-prescribed hypertension therapies
on the outcomes of MI, stroke and sudden death.

Although these findings do not illuminate new pathways in the risk of cardiovascular events,
these null results nevertheless provide important information from the point of view of public
health: our evidence suggests that there are no large common pharmacogenomic effects of
blood pressure medications on CVD health outcomes; thus at this time genetic screening to
guide choice of blood pressure therapy is not necessary. In conclusion, additional efforts to
assemble even larger sample sizes and to more fully interrogate the human genome may be
required to realize the potential of pharmacogenomics for antihypertensive drug treatment.
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