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Abstract

Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We
have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL
Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and
Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several
multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio
X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of
which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes.
There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania.
This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need
for sequencing more strains to understand fully the genomic composition of this parasite.
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Introduction

The protozoan parasite Trypanosoma cruzi, causative agent of

Chagas disease, infects 7.7 million people in Latin America and

causes 12,500 deaths annually [1]. Transmission of the parasite

most commonly occurs if infected faeces of the haematophagous

triatomine insect vector makes contact with mucosae or abraded

skin. Most morbidity is associated with the chronic stage of the

disease, which can take several years to develop. There is no

vaccine against T. cruzi infections and drug treatment is restricted

to a small number of drugs with insufficient efficacy and

potentially harmful side effects.

Multiple genotyping strategies support the subdivision of T. cruzi

into six major phylogenetic groups, recently renamed discrete typing

units (DTUs) I-VI by international consensus [2]. DTU distribution

can be loosely defined by several parameters including ecology,

vector and host preference, geography and disease association [3],

although patchy sampling precludes definitive associations. Likewise,

an accumulating number of in vitro and in vivo experiments indicate

significant phenotypic variation between T. cruzi strains in terms of

physiology, biochemistry and infectivity [4,5,6,7,8,9,10,11,12,13].

Again, however, there are few clear-cut correlations between genetic

groups and pathogenic potential and the genetic determinants of

such differences remain enigmatic. Genome sequencing can provide

crucial data to facilitate such research.

TcI is the predominant agent of Chagas disease in the Americas

North of the Amazon e.g. [14] [15] [16], although it is by no

means uncommon in patients in other regions (e.g. [17]). In

contrast, TcII, TcV and TcVI are the predominant causes of

Chagas disease in the Southern Cone countries, where megaoe-

sophagus and megacolon are more common [18,19,20,21,22,

23,24,25]. TcI shows spectacular abundance among wild hosts

and vectors throughout the endemic range of T. cruzi, especially,

but not exclusively, in association with Didelphis sp. opossums

[3,26]. Whereas the other strains responsible for most human

disease, TcII, V and VI, are rarely isolated from natural reservoirs

or triatomines. Indeed, minimal diversity across multiple markers

in putative TcII/TcIII hybrids TcV and TcVI, and their

widespread southerly distribution, are consistent with a recent

origin alongside domestic transmission cycles (Lewis et al,

submitted). In phylogenetic terms TcI and TcII are most divergent

and nucleotides models estimate their MRCA at 3-16 MYA [27].

Concurrent with substantial intraspecific genetic diversity, Chagas

disease is characterized by a highly variable clinical presentation

[1]. This has long been assumed to be, at least in part, a product of

genetic differences between strains of T. cruzi [15]. However,

despite important advances in T. cruzi genotyping [28] [14] and

population genetics [29,30], the genomic variation between

lineages or individual clones of T. cruzi remains largely unexplored.

The haploid genome of T. cruzi CL Brener (TcVI) is

approximately 55 Mbp in size [31]. Analyses of the sequence

revealed a repeat-rich, hybrid genome, with long regions of

conserved synteny to Leishmania major [32] and Trypanosoma brucei

[33]. A strong signature of the putative TcII/TcIII hybridization
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that gave rise to TcVI remains. As such, CL Brener predominantly

comprises two divergent haplotypes, named Esmeraldo-like (TcII)

and non-Esmeraldo-like (TcIII) (abbreviated to Esmeraldo and

non-Esmeraldo here). The hybrid nature and repetitive content of

this genome complicated its assembly, leaving the first T. cruzi

genome incomplete by comparison to those L. major and T. brucei.

A later effort to place the contigs and scaffolds into predicted

chromosomes increased the length of scaffolds, although resolution

still requires considerable improvement [34].

We considered the sequencing of a smaller, less repetitive, non-

hybrid T. cruzi genome to be a sensible approach to improving

resolution. Furthermore, an evolutionarily distinct genome, from a

DTU with broader host preferences than TcVI, could provide an

interesting basis for comparative genomics. Not only are TcI

parasites highly divergent from TcVI in ecology and evolution, but

typically they have smaller genomes [28,35,36,37] and have

relatively low levels of heterozygosity [30]. They are thus the ideal

candidate for analysis. Here we describe shot-gun sequencing and

partial genome assembly of Sylvio X10/1, originally isolated in

1983 from a male individual in Pará State, Brazil, suffering from

acute Chagas disease [38]. Sylvio X10/1 is a common reference

strain of TcI and is frequently used in both in vivo and in vitro

experiments [39] [40] [41] [42]. The genomic contigs and

sequence reads were subsequently compared to CL Brener. We

found that the core gene content of the two T. cruzi lineages is

highly similar, but that they harbor large differences in repetitive

content and sequence, which may have functional and epidemi-

ological implications.

Materials and Methods

Accession numbers
This Whole Genome Shotgun project has been deposited at

DDBJ/EMBL/GenBank under the accession ADWP00000000.

The version described in this paper is the first version,

ADWP01000000. The data will also be available at TriTrypDB

[43].

Sequencing, assembly and annotation
Trypanosoma cruzi Sylvio X10/1 cells were cultured at 28uC in

RPMI liquid medium supplemented with 0.5% (w/v) tryptone,

20 mM HEPES buffer pH 7.2, 30 mM haemin, 10% (v/v) heat-

inactivated foetal calf serum, 2 mM sodium glutamate, 2 mM

sodium pyruvate and 25 mg/ml gentamycin. Genomic DNA was

extracted using the Gentra Puregene Tissue Kit (Qiagen).

Sequencing was performed using 454 technology (FLX/Titanium)

and sequence assembly was performed de novo using the CELERA

assembler (v5.4) [44].

Gene prediction and annotation was performed using Gene-

MarkS (v2.6p) [45] and best reciprocal BLAST hit to CL Brener.

Annotations were manually inspected by alignment to CL Brener

using Promer [46] and the Artemis Comparison Tool [47]. Gene

models were manually added if found to be missing. In cases

where genes were disrupted by sequencing errors, all fragments of

the genes were annotated. Truncated genes located on contig ends

were annotated when possible.

Gene specific and evolutionary analysis
Individual genes were identified using reciprocal BLASTp and

tBLASTn on both assembled and unassembled reads.

Alignments were created using ClustalW and used to call strain-

specific differences; both nucleotide differences and insertion-

deletion (indel) events. Calculation of dN/dS was carried out using

yn00 (PAML, v4.2) [48]. The McDonald-Kreitman test (MK-test),

as implemented in BioPerl (v1.6), was used to evaluate protein

adaptation [49], using alignments created by transAlign [50] with

T. brucei used as the outgroup. Synonymous sites were assumed to

be neutral while non-synonymous sites were assumed to be

deleterious, neutral or confer an advantage. Positive selection was

assumed to take place if the number of inter-species non-

synonymous changes was greater than the intra-species changes.

A contingency table and Fisher’s exact test was used to test for

significance. The neutrality index (NI = (Pn/Ps)/(Dn/Ds)) was

used to test the direction of adaptation, which is expected to be 1

under neutrality, .1 for positive selection and ,1 for purifying

selection. Using NI, the proportion of adaptive substitutions can be

estimated as a = 1 - NI.

Multigene family analysis
Sequence reads with similarity to known gene families in CL

Brener were analyzed. Initially, homologous genes were collapsed

into families using the clustering tool cdhit [51] at a 90% identity

threshold. Subsequently clusters were subject to multiple align-

ments with ClustalW. Profile hidden markov models (pHMM)

were created using hmmbuild (v3, with the parameter –symfrac 0),

concatenated to a single file and compressed using hmmpress [52].

Sylvio X10/1 and CL Brener reads were translated into the six

reading frames and hmmscan (with the parameters –nobias and –

nonull2) was used to conduct searches. To make the results

comparable to Sylvio X10/1, Sanger reads from CL Brener were

cut into smaller pieces before the HMM search was conducted.

Results and Discussion
We used 454 technology whole genome shot-gun sequencing

[53] to produce a partial assembly as well as a read-based analysis

of the TcI reference strain Sylvio X10/1 (TcI) genome. We then

conducted a comparison to the genome of the reference strain CL

Brener (TcVI). This has allowed the first genome-scale analysis of

genetic diversity in T. cruzi. The architecture of the two genomes

was highly similar, composed of large, co-transcribed, gene-dense

‘‘core’’ coding regions, which displayed highly conserved synteny

interspersed with regions of repetitive sequence. The draft

assembly has good coverage of these gene dense regions, but is

more fragmented in repetitive regions due to the technical

difficulties associated with accurate assembly of repeat sequences.

However, we have complemented this assembly with a read-based

analysis. Thus we were able to characterize comparatively the

repeated genes in both genomes. The core gene content of the two

Author Summary

Chagas disease is a major health problem in Latin America
and it is caused by the protozoan parasite Trypanosoma
cruzi. The genome sequence of the T. cruzi strain CL Brener
(TcVI) has revealed a genome with large repertoires of
genes for surface antigens, among other features. In the
present study, we sequenced the genome of a represen-
tative member of TcI, the predominant agent of Chagas
disease North of the Amazon and performed comparative
analyses with CL Brener. Genetic variation between strains
can potentially explain differences in disease pathogenesis,
host preferences and aid the identification of drug targets.
Our analysis showed that the two genomes have very
similar sets of genes, but contain large differences in the
relative size of several important gene families. Moreover,
an abundance of allelic sequence variation was found in a
large fraction of genes, and an evolutionary analysis
indicated that many genes have evolved at different rates.
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genomes was virtually the same but we identified abundant

nucleotide and amino acid sequence differences. Furthermore, in

the comparison between Sylvio X10/1 and CL Brener we found

large differences in the proportion of sequence with homology to

multigene families. CL Brener was found to have approximately

5.9 Mbp more of haploid sequence related to the DGF, RHS,

mucin, MASP, GP63, and transsialidase gene families. The

expansion of these gene families underlies most of the genome

size difference between Sylvio X10/1 and CL Brener.

Sequencing and comparative analyses
Genome sequencing of the TcI isolate Sylvio X10/1 was carried

out using 454 technology [53], which generated 582 Mbp

sequence data (nreads = 1,688,475, Table 1, Figure S1A), where

79 Mbp (nreads = 301,005) corresponded to maxi/mini circles.

Sequence assembly resulted in 7092 contigs (N50 = 5659 bp)

yielding an average coverage of 11x (Figure S1B). Subsequently,

contigs from the assembly were aligned to both CL Brener

haplotypes [34] which revealed large blocks of synteny, represent-

ing the core gene content of these genomes (i.e. excluding

repetitive regions). The amount of heterozygosity in the assembly

was examined by counting the number of high quality mismatches

between aligned reads, which estimated the heterozygosity to be

less than 0.08% in the core genome.

In the coding regions the mean nucleotide identity was higher

between Sylvio X10/1 and non-Esmeraldo i.e. TcIII (98.2%) than

between Sylvio X10/1 and Esmeraldo i.e. TcII (97.5%) (Table 2,

Figure 1 and 2). The mean nucleotide identity between the two CL

Brener haplotypes Esmeraldo and non-Esmeraldo was 97.8%.

This is independent genome-wide evidence of the generally closer

phylogenetic relationship between TcI (Sylvio X10/1) and TcIII

(non-Esmeraldo) than with TcII (Esmeraldo). The divergence

between these three T. cruzi lineages is therefore greater than

between T. brucei subspecies T. brucei brucei and T. brucei gambiense

(99.2%) [54] but less than between two representatives of different

Leishmania species complexes, L. major and L. infantum (94%) [55].

From the alignments, a total of 77,349 putative fixed differences

were identified in the coding regions of a total of 5582 genes

(8.6 Mbp of sequence). Of these nucleotide differences 52% were

synonymous changes, 34% were non-synonymous changes giving

rise to chemically similar amino acids and 23% were non-

synonymous changes associated with radical amino acid replace-

ment. The average rate of nucleotide differences (ND) between

Sylvio X10/1 and non-Esmeraldo was 18 ND/kb/gene and

compared to Esmeraldo 25 ND/kb/gene (Figure 2A). In

comparison, the average ND rate between non-Esmeraldo and

Esmeraldo was 22 NT/kb/gene. This large number of nucleotide

differences is consistent with independent evolution of the T. cruzi

lineages over several million years [27], presumably due to

ecological, geographic, and/or reproductive isolation, limiting

homogenising forces that might act between lineages. Some of

these changes may be adaptive, although one explanation for the

high proportion of radical amino acid replacements might be low

rates of sexual recombination in T. cruzi leading to the

accumulation of mildly deleterious mutations over time (Muller’s

ratchet). Experimental phenotypic comparisons and associated in

depth annotation of the potential functional implications of such

radical amino acid changes may reveal biological consequences.

Multiple CL Brener genes originally thought to have a frame shift

not observed in Sylvio X10/1 (n = 169, Table S1) must now also

be considered in such comparisons, because our alignments and

confirmatory Sanger sequencing revealed they had been mis-

assembled and incorrectly annotated as pseudogenes in CL

Brener.

Nucleotide substitutions between CL Brener and Silvio X10/1

were not the only coding variations present. A search was also

conducted to identify indel events. We identified 1861 coding

indels dispersed in 1271 genes. The majority (n = 1350, 72.5%)

were caused by length variation in microsatellite tracts. Indels 3 bp

in length were the most common, followed by 6 and 9 bp.

Multiple genes with a functional annotation (i.e. non-hypothetical

genes) were found to contain indels, for example DNA

topoisomerase genes, helicase genes, various metabolic genes

and chaperones. Several functionally important genes contained

relatively large indels, including the DNA repair protein BRCA2,

which was found to contain a 44 codon N-terminal deletion in

Sylvio X10/1 spanning amino acids 82–125. Although this

deletion did not directly affect an evolutionarily conserved

domain, it may have functional consequences for BRCA2-

mediated homologous recombination capacity in this strain.

Deletions were slightly more prevalent in Sylvio X10/1, which

could possibly indicate reductive evolution in Sylvio X10/1, or,

conversely, that sequence expansion has generally been more

common in CL Brener. Similarly, the number of 195 bp satellite

repeats was greater in CL Brener [56] [36] and the sum of total

intergenic distances was marginally larger in CL Brener (Table 1).

The overall content of retroelements, LINEs and LTRs, assessed

across both genomes using RepeatMasker and conducted using

reads, showed little variation (Table 1).

The clear size differences between the CL Brener and Sylvio

X10/1 genomes were confirmed at the macro level. The Sylvio

X10/1 haploid genome size was estimated to be 44 Mbp, using

extrapolation from the combined length of the contigs from the

Sylvio X10/1 assembly (23 Mb) and the unassembled data from

repetitive regions (see following sections). Our estimate tallies with

previous studies that have estimated the Sylvio X10 genome size at

about 35–44 Mbp, using pulse-field gel electrophoresis [37] and

flow cytometry [28]. This value for haploid genome size is

considerably lower than that for CL Brener (,55 Mbp) [31]. The

Table 1. Data comparison Sylvio X10/1 and CL Brener.

Sylvio X10/1 CL Brener

Data amount (106 bp) 582 a 823 b

LINE content c 2.12% 2.27%

LTR content c 0.45% 0.50%

Unique ORFs 0 6

Intergenic distance d 500 bp 500 bp

a454 sequencing.
bSanger sequencing.
cIdentified using RepeatMasker.
dAverage intergenic distance.
doi:10.1371/journal.pntd.0000984.t001

Table 2. Sylvio X10/1 compared to the individual haplotypes.

non-Esmeraldo Esmeraldo

Coverage a 66% 62%

Nucleotide identity 98.2% 97.5%

Nucleotide diversity 0.0241 0.0310

aPercentage of the chromosomes that are covered by Sylvio X10/1 contigs.
doi:10.1371/journal.pntd.0000984.t002
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smaller genome size appears to be a general feature of TcI strains

[28].

Genome-specific sequences and evolutionary analyses
We found that Sylvio X10/1 and CL Brener have nearly the

same core gene complement, including housekeeping genes,

structural genes and genes of unknown function. Six annotated

open reading frames (ORFs) in CL Brener were not found in

Sylvio X10/1 (Table S2). As these ORFs were short (,350 aa)

and without a functional annotation, it is unclear whether they

are expressed at all. We were not able to identify any Sylvio

X10/1-specific genes or significantly long ORFs. However, we

note that minimal gene differences are also reported between T.

brucei subspecies genomes [54], as well as between those of

Leishmania species [55]. A similar trend has been observed in

Giardia lamblia [57,58]. Instead, the great majority of genetic

differences between strains of all these parasite genera consist of

SNPs and indels as well as, crucially, copy number (see following

section).

In the absence of strain specific genes in our dataset, we also

screened for those genes that might be under directional selection

between Silvio X10/1 and CL Brener. dN/dS ratios (v) identified

336 genes under positive selection (v .1), a significant proportion

of which (145) were unique to T. cruzi by comparison to T. brucei

and Leishmania. The presence of these rapidly evolving T. cruzi

specific genes could indicate important biological roles in

American trypanosomes, for example, genes regulating interac-

tions with hosts or vectors. Those genes that could be assigned

function included two genes encoding cell-surface targeted

proteins, one 90 kDa surface protein gene and one member of

the TolT family. MK tests (see Materials and Methods) for

adaptive selection between T. cruzi and T. brucei identified other

genes of known function and putative importance including

transporters and various other membrane coupled proteins, as well

as, surprisingly, some DNA repair proteins, chaperones and

cyclins (Table S2).

Estimation of multigene family content
Many surface proteins involved in interaction with the host in T.

cruzi are encoded by large repetitive gene families [31]. These

regions represent a major area of interest for comparisons between

CL Brener and Sylvio X10/1 genomes. Assembly of such

repetitive sequences is problematic, therefore we applied a novel

approach. The Sylvio X10/1 assembly contained only about 49%

of the generated sequence data, leaving 710,109 reads

(,236 Mbp) that did not enter the assembly. To evaluate these

data, sequence reads were classified into pre-defined categories

using profile hidden markov models. The size of each gene family

was estimated using the combined alignment length and

normalized to the total amount of sequence data (Figure 3). To

provide an estimate of the relative repeat abundance, the same

searches were performed on the CL Brener sequence data. To

verify the applied method, several single copy genes were included

in the analysis. The vast majority of the expected single copy genes

resulted in a 1:1 signal, indicating that the method can be used

reliably for copy number quantification.

Figure 1. Sequence identity of Sylvio X10/1 contigs compared to non-Esmeraldo and Esmeraldo. Shows the percentage identity
(horizontal axis) of the best Sylvio X10/1 versus CL Brener BLAST hit and the combined alignment length on the vertical axis. The black line (triangles)
represent Sylvio X10/1 compared to non-Esmeraldo and blue lines (circles) represent Sylvio X10/1 compared to Esmeraldo. Both comparisons have a
similar overall distribution of identities but Sylvio X10/1 compared to non-Esmeraldo is shifted to a slightly higher sequence identity. Sylvio X10/1
compared to non-Esmeraldo has a peak at 97% sequence identity and Sylvio X10/1 compared to Esmeraldo has a peak at 96% sequence identity.
doi:10.1371/journal.pntd.0000984.g001
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Figure 2. Nucleotide differences and dN/dS estimations. Black lines (circles) represent Sylvio X10/1 compared to non-Esmeraldo, blue lines
(triangles) represent Sylvio X10/1 compared to Esmeraldo and red lines (crosses) represent non-Esmeraldo compared to Esmeraldo. A) Shows the
distribution of single nucleotide differences (ND) in genes, normalized to show the number of ND per 1000 bp. Sylvio X10/1-Esmeraldo show the
largest number of ND, and have 25 ND/kb/gene in average. B) Shows the ratios of non-synonymous and synonymous nucleotide variation (horizontal
axis shows dN/dS) between the comparisons as a fraction of the genes examined (vertical axis). All comparisons have average dN/dS around 0.40 and
the shape of the curves has a similar appearance. About 95% of the examined genes have a ratio below 1, implying that the genes are under
purifying selection and 336 genes show evidence of positive selection (dN/dS .1).
doi:10.1371/journal.pntd.0000984.g002
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Figure 3. Gene content comparison between Sylvio X10/1 and CL Brener. Shows estimations of gene content between Sylvio X10/1 and CL
Brener as percent of the total data. Searches was performed on the read libraries of Sylvio X10/1 and CL Brener. DGF, mucin, MASP, GP63, RHS, 90 and
kinesin are more expanded in CL Brener. The sialidase family is indicated to be slightly smaller in Sylvio X10/1.
doi:10.1371/journal.pntd.0000984.g003
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By this classification approach, a total of 346,696 (49%,

137 Mbp) unused reads from Sylvio X10/1 were sorted into 69

different categories (Figure 3). From these unused reads, 233,574

(33%, 92 Mbp) were assigned to six categories only (sialidase,

DGF, RHS, mucin, MASP and GP63). In terms of combined

alignment length, these gene families were estimated to represent

7–8 Mbp of the haploid Sylvio X10/1 genome. For Sylvio X10/1

and CL Brener, the sialidase and DGF categories were the largest

for each genome respectively, comprising 5.4% and 6.1% of the

sequence data. According to this analysis, a smaller proportion of

the sequence reads match the DGF family in Sylvio X10/1,

suggesting that this family is expanded in CL Brener or contracted

in Sylvio X10/1. The analysis also indicated copy number

differences for the MASP, mucin, GP63 and RHS gene families

between the two genomes. It should be noted that this method

does not discriminate between pseudogenes and functional genes

and therefore, some of the predicted genes could represent non-

functional or non-expressed gene variants.

In addition to inter-genomic comparisons between the major

gene families, a more comprehensive analysis was performed on a

larger set of T. cruzi genes, which included 5874 different

homologous gene clusters, including singletons. The most

significant differences were found among some hypothetical genes,

and in most cases there was an expansion in CL Brener.

These comparative analyses of both the non-coding and coding

repetitive elements indicates significant differential expansion in

sequence corresponding to surface antigen repertoires and other

multicopy gene families. The CL Brener genome was estimated to

have about 5.9 Mbp (11.8 Mbp diploid) of extra sequence related

to multigene families than Sylvio X10/1. Therefore, we conclude

that expanded gene families in CL Brener underlie most of the

genome size difference between TcI and TcVI, and this may

theoretically enhance functional plasticity. CL Brener (TcVI) is the

product of hybridization between TcII and TcIII [59]. We cannot

determine whether the gene family expansions occurred pre- or

post-hybridisation (or both). However, TcII, TcIII and TcVI

strains all have similarly increased DNA contents relative to TcI

[28]. This suggests the bulk of expansion occurred within ancestral

TcII and TcIII.

Conclusions
This first intra-species comparative genomic analysis of T. cruzi

provides several significant insights. First, it is clear that core

genome synteny and gene identity are highly conserved between

TcI and TcVI, with very few unique and no major gene

differences. Similarly, the overall quantity of non-coding DNA is

largely unchanged between the two genomes. The most significant

variation between the two genomes is in the size of several

multigene families, which encode many important surface

proteins. These families are significantly larger in TcVI and

account for approximately 54% of the c.11 Mbp size difference

between TcVI and TcI. Our findings compare well with recent

comparative genomic studies of other parasitic trypanosomes at

the sub-species (T. brucei, [54]) and species complex (Leishmania,

[55]) level. In both cases few gene differences are apparent in the

core genomes, congruent with the remarkable synteny observed at

the inter-species level [31]. This apparent lack of genomic

rearrangement, gene deletion and insertion between trypanosome

genomes could derive from the constraints of polycistronic

transcription, disruptions of these long co-transcribed gene clusters

being likely to be deleterious.

Genetic recombination is a common mechanism by which

structural change may be introduced between genomes, as well are

providing sources of new genetic information. The excessive

accumulation of non-synonymous changes that we observe

between TcI and TcVI suggest that this recombination may be

infrequent in T. cruzi at the inter-DTU level at least. However, the

overall natural frequency of intra-species and intra-genotype

genetic recombination in all three major human parasitic

trypanosome genera is a still a matter of some uncertainty and

considerable debate [60,61,62,63,64,65]. Functional dissection of

the larger surface gene families in TcVI presents an interesting

problem. Both TcI and TcVI efficiently infect humans and TcVI

is found among far fewer hosts than TcI [3]. However, TcVI may

have emerged quite recently in conjunction establishment in the

human host (Lewis et al, submitted). It remains to be defined how

much of the differential surface gene diversity is actually expressed.

This study represents a significant advance in unraveling the

diversity of T. cruzi and encourages further comparative genomics

of the T. cruzi lineages and related species of the subgenus

Schizotrypanum. We are currently engaged in sequencing other

representatives of TcI, and the apparently bat specific trypano-

some T. cruzi marinkellei.

Supporting Information

Figure S1 Read lengths and assembly coverage. A) Shows

the number of reads (vertical axis) with a certain read length in

base pairs (horizontal axis). Shaded lines (light grey) represent 454

FLX reads and black lines represent 454 Titanium reads. One

major peak at around 250 bp is distinct for FLX and another

major peak at 500 bp is distinct for the 454 Titanium. B) Shows

the coverage of the assembly. Number of positions is plotted on the

vertical axis with a certain level of redundancy (coverage) on the

horizontal axis. The curve has a peak at 11 times coverage, which

is the mean coverage.

Found at: doi:10.1371/journal.pntd.0000984.s001 (0.10 MB PDF)

Table S1 Incomplete genes and incorrect pseudogenes
in CL Brener. An Excel file containing three sheets: A) Genes in

Esmeraldo (CL Brener) with sequence gaps and the corresponding

ortholog in Sylvio X10/1. B) Genes in non-Esmeraldo (CL Brener)

with sequence gaps and the corresponding ortholog in Sylvio

X10/1. C) Pseudogenes in CL Brener that is likely to contain a

sequencing or assembly error in this genome.

Found at: doi:10.1371/journal.pntd.0000984.s002 (0.10 MB XLS)

Table S2 Evolutionary analysis and specific genes. An

Excel file containing three sheets: A) Contains dN/dS estimates for

Sylvio X10/1 versus Esmeraldo and Sylvio X10/1 versus non-

Esmeraldo, along with product descriptions and information about

signal peptides and transmembrane domains. B) Contain detailed

results from the McDonald-Kreitman test, for those genes that

were subject to this analysis. C) A list of CL Brener open reading

frames that were not identified in Sylvio X10/1.

Found at: doi:10.1371/journal.pntd.0000984.s003 (3.37 MB XLS)
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