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Abstract

Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at
least six discrete typing units (DTUs) reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is
likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether
epidemiologically important information is ‘‘hidden’’ at the sub-DTU level, we developed a 48-marker panel of polymorphic
microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI.
This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine
vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we
demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental
scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the
majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic
diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known
local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices
indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic
strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be
ruled out. The epidemiological significance of these findings is discussed.

Citation: Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, et al. (2009) Genome-Scale Multilocus Microsatellite Typing of Trypanosoma cruzi Discrete
Typing Unit I Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection. PLoS Pathog 5(5): e1000410. doi:10.1371/
journal.ppat.1000410

Editor: Edward C. Holmes, The Pennsylvania State University, United States of America

Received January 30, 2009; Accepted April 1, 2009; Published May 1, 2009

Copyright: � 2009 Llewellyn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by a Wellcome Trust junior research fellowship (MWG), The European Union Seventh Framework Programme rant 223034
(MAM), The Dr. Gordon-Smith Scholarship (MSL), The Swire Charitable Trust (MSL), The De Laszlo Foundation (MSL), and FONACIT (Venezuela) project
G-2005000827 (HJC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: martin.llewellyn@lshtm.ac.uk

Introduction

T. cruzi, the etiological agent of Chagas disease, is a vector borne

zoonosis and considered the most important parasitic infection in

Latin America. In excess of 10 million people are thought to carry

the parasite, with ten times that number at risk (http://www.who.

int). Consistent with a long history on the continent [1], T. cruzi

ecology in the silvatic environment is highly complex. Over 73

mammalian genera and just over half of 137 described species of

haematophagous triatomine bug are involved with parasite

carriage and transmission [2,3]. T. cruzi has an endemic range

that stretches from the Southern USA to Northern Argentina.

Most human infection is found in Central and South America and

occurs primarily through contact with the contaminated faeces of

domiciliated triatomine vector species.

Genotypic data support the existence of six stable discrete typing

units (DTUs) in T. cruzi: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe

[4]. Greatest molecular divergence is observed between TcI and

TcIIb [1,4]. TcIIa and TcIIc have distinct genotypes but their

affinities to other DTUs are inadequately understood [4,5]. TcIId

and TcIIe are hybrids, and have haplotypes shared across TcIIb and

TcIIc [1,6]. The ecological and epidemiological relevance of different

T. cruzi DTUs have been the subject of considerable debate. Using a

retrospective analysis of all available genotype records, we recently

showed that diversification in the silvatic environment is likely to be

driven by ecological niche as well as host species, with arboreal

Didelphimorpha (opossums) the principal hosts of TcI, and terrestrial

Cingulata (armadillos) the principal hosts of TcIIc [7]. TcI is a major

agent for human disease north of the Amazon Basin [8,9], but is also

ubiquitous in silvatic transmission cycles throughout the Americas

[10,11]. In the Southern Cone region of South America, DTUs

TcIIb, TcIId, and TcIIe cause most human infection [10]. With the

exception of putative epizootic outbreaks [12], TcIIb, TcIId, and

TcIIe are so far rare in the silvatic cycle [7].
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The current six-genotype classification of T. cruzi is likely to

provide a poor reflection of the total diversity present. Abundant

evidence from nucleotide sequence [13,14], microsatellite [5,15],

RAPD [16] and MLEE [11,17] data exists to suggest that

considerable genetic variation is hidden at the sub-DTU level.

Combining an adequate sample size with a genetic marker of

sufficient resolution to unravel fine-scale relationships, however,

remains a significant challenge. Indeed few, if any, detailed studies

exist to document the population genetic diversity of a mammalian

protozoan parasite in its true silvatic cycle. For many zoonotic

infections, e.g. Cryptosporidium spp, Trypanosoma brucei sspp, Leishmania

spp, and Toxoplasma gondii, domestic mammals and (where

applicable) associated vectors are the obvious target for popula-

tion-level studies of parasite genetic variation since these are the

most likely source of human outbreaks. For T. cruzi, this rationale

must also extend to wild reservoir hosts. Many, especially

opportunistic scavengers like D. marsupialis, also come into close

contact with humans, either directly, or via infected silvatic vector

species. In areas now free or without a history of vectorial domestic

transmission, oral outbreaks are a growing concern [18].

High-resolution population genetic studies of other parasitic

zoonoses have facilitated epidemiological tracking of human

disease outbreaks, with obvious implications for the planning of

effective disease control [19,20]. Molecular methods transformed

our early understanding of T. cruzi epidemiology, with the

revelation that distinct transmission cycles (domestic/silvatic)

could harbour different major lineages of parasite [21]. Predom-

inantly clonal propagation observed in T. cruzi is in keeping with

this result, where micro-endemic clones with characteristic host

propensities, geographic distribution, medical significance and

biological attributes should exist within the parasite population

[22]. However, widespread multi-host T. cruzi lineages like TcI

persist outside of this paradigm. With the advent of the T. cruzi

genome [23], the stage is now set to re-examine the micro-

epidemiology of human disease outbreaks in TcI in the context of

ultra-high resolution genetic analysis and, crucially, silvatic

parasite populations. In this study we have developed a multilocus

microsatellite typing (MLMT) system for TcI and applied it to

parasite isolates from throughout the Americas. While this is

among the largest panel of isolates from a single DTU ever

analysed, sample sizes are still restrictive. Similarly, widespread

deviation from Mendelian sexuality in T. cruzi limits the inferences

that can be made from standard population genetic analyses. To

circumvent these issues, we largely avoided model-based popula-

tion assignment protocols (e.g. Structure [24]). In spite of these

limitations, we are able to identify key features of silvatic TcI

populations and highlight population genetic processes that

accompany a switch to the human host in two endemic areas.

In doing so we show that the pattern of within-DTU parasite

genetic diversity may contain vital epidemiological information in

terms of control strategies, parasite pathogenesis and ultimately

human disease.

Results

A final dataset comprising 12,329 alleles (excluding missing

data) from 135 isolates was subjected to analysis. Most strains

presented one or two alleles at each locus. Multiple ($3) alleles

were observed at a small proportion of loci (0.98%) and only

among strains not biologically cloned. Multiclonality, rather than

aneuploidy, was determined to be the major source of this

phenomenon by reference to analysis of a subset of nine

microsatellite loci across 211 clones taken from a subset of eight

strains that demonstrated multiple alleles at individual loci in the

uncloned state (data not shown). Samples were allocated to seven

populations: North and Central American (AMNorth/Cen), Vene-

zuelan silvatic (VENsilv), North Eastern Brazil (BRAZNorth-East),

Northern Bolivia (BOLNorth), Northern Argentina (ARGNorth),

Bolivian and Chilean Andes (ANDESBol/Chile) and Venezuelan

domestic (VENdom). A full list of sample allocations is included in

Table S2 and the rationale for the assignment of individuals to

populations is detailed in the Methods section.

Genetic diversity and rare allele frequency distributions
Greatest genetic diversity was observed in populations drawn

from palm and lowland moist forest associated ecotopes in VENsilv,

BRAZNorth-East and BOLNorth (Allelic richness (Ar) = 2.229–2.344,

Table 1). Small, genetic-drift prone populations lose rare alleles at

a faster rate than they can be replenished by mutation. Poisson-

distributed rare allele frequency plots for VENsilv, BRAZNorth-East

and BOLNorth are, instead, characteristic of populations with a

large, stable Ne at mutation-drift equilibrium (Figure S1) [25]. It is

of note that patterns of both allelic richness and rare allele

distribution are consistent across VENsilv (n = 37) BRAZNorth-East

(n = 39) and BOLNorth (n = 16), largely independent of sample size

(Table 1, Figure S1). Additionally, the size of geographic focus had

little relevance in determining the amount of diversity present in

these populations. A marginal reduction in allelic richness, for

example, was observed between BRAZNorth-East and BOLNorth

(Ar = 2.344–2.229, Table 1), despite a massive reduction in

sampling area (,4,500,000 km2–10 km2).

A considerable reduction in diversity among silvatic isolates from

AMNorth/Cen was observed with respect to VENsilv, BRAZNorth-East

and BOLNorth, again independent of sample size (Ar = 1.532,

Table 1), concurrent with a reduction in rare allele frequency

(Figure S1) and, assuming neutrality, implying that this population

has been subject to a greater level of genetic drift in its recent past.

Among three further populations, either exclusively comprised of

domestic isolates (i.e. VENdom), or including a mixture of domestic

and silvatic isolates (i.e. ANDESBol/Chil, ARGNorth), a reduction in

diversity was also observed (Ar = 1.407–1.794). Here, to varying

Author Summary

The arrival of the Trypanosoma cruzi online genome now
provides vital information for the study of Chagas disease.
Using this resource, we identified and developed a
genome-scale panel of rapidly evolving microsatellite
markers that can be used to unravel the micro-epidemi-
ology of this parasite. We then tested these against a panel
of isolates belonging to the most widely occurring and
ancient major lineage, T. cruzi I (TcI). Our study includes
samples from across the geographical distribution of this
lineage, including isolates from wild vectors, domestic
vectors, as well as wild mammalian reservoirs and human
hosts. This is the first time T. cruzi has been subjected to
such high-resolution population genetic analysis. Our
study shows that important epidemiological information
lies at the intra-lineage level, especially when wild and
domestic populations of parasite are compared. Crucially,
in Venezuela, where Chagas disease may be resurgent
despite decades of control effort, genotypes of parasites
found in the wild are rarely represented in humans,
despite evidence that infected wild vectors do invade
houses. In this manuscript, we examine the epidemiolog-
ical implications of this finding and others, and suggest
how the approach we have developed can now be used to
investigate the true nature of parasite transmission at
Chagas disease foci throughout the Americas.

T. cruzi I Phylogeography
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degrees, rare allele frequency plots again demonstrate a possible

reduction in Ne by comparison to major silvatic populations

(Figure S1).

Heterozygosity indices
High levels of genetic diversity in the principal silvatic

populations sampled (VENsilv, BRAZNorth-East and BOLNorth) gave

rise to correspondingly large estimates of expected heterozygosity

(HE = 0.571–0.643, Table 1). However, observed levels of

heterozygosity were substantially lower than those expected under

Hardy-Weinberg Equilibrium (HO = 0.383–0.467, Table 1) and

statistical significance could be attached to this observation at the

level of individual loci (Table 1). Silvatic isolates from AMNorth/Cen

demonstrated similar heterozygous deficit over loci, but, owing to

sample size constraints, the same effect was not statistically

supported at individual loci. In contrast to exclusively silvatic

populations, observed levels of relative heterozygosity (HO:HE,

Table 1), were raised in populations that included domestic

isolates, especially in VENdom (0.421:0.422) and ANDESBol/Chile

(0.406:0.396).

To ascertain whether within-population subdivision had any

effect on estimates of heterozygosity (i.e. Wahlund effects [26]), a

number of subpopulations were picked (Table S2), representing, as

far as possible, ‘true’ populations in space and time and within

which no statistically supported genetic subdivision was observed

on the basis of individual pair-wise distance measures (,75%

bootstrap support, Figure 1). If a Wahlund effect was in operation,

hidden population subdivision would act to artificially decrease

observed heterozygosity levels (increase FIS). Mean FIS estimates

over loci across three silvatic populations, two from BOLNorth and a

further from VENsilv, instead remained positive (FIS = 0.157) with a

99% confidence interval (CI) of 0.042:0.288 obtained by boot-

strapping over loci, thus providing non-probabilistic support for

the deficit of heterozygosity as observed previously among the

populations from which they were drawn, but also suggesting

limited evidence of a Walhund effect. A similar analysis of VENdom

and selected isolates from ANDESBol/Chile returned a negative FIS

value (FIS = 20.157), although with a larger 99% CI encompass-

ing zero (CI = 20.421:0.12). A test for significant difference

between FIS values over loci between these sub-population groups

(BOLNorth+VENsilv.ANDESBol+VENdom) generated by random

shuffling of alleles between groups, was negative (p = 0.0639),

albeit marginally, but suggests that direct comparisons of overall

heterozygosity levels between these population groups should be

approached with caution.

FIS values were also analysed by syntenous sequence fragment

(SSF) (as defined by the CL-Brener genome project; no

chromosomal assembly is currently available), of which nine are

represented in our panel with $2 microsatellite loci (Table S3,

Figure 2). Calculations included both large and small (‘true’)

population groupings for comparison. Mean FIS values per SSF

were consistently positive across major silvatic populations

BOLNorth, VENsilv & BRAZNorth-East. This provides support for

heterozygote deficiency at the population level, but also for a

consistent level of heterozygosity between fragments. The same is

broadly true for AMNorth/Cen, concomitant with an increase in

error associated with both a reduction in genetic diversity and

sample size. FIS values for sub-population groupings from

BOLNorth (BOLNorth
1 & BOLNorth

2) and VENsilv (VENsilv
3) reflect

those of their source populations. A marginal decrease in FIS

across some SSFs could be attributed to a Wahlund effect, and not

uniquely to error, but major inconsistencies were not observed. In

contrast, high inter-SSF variance was observed in both ANDESBol/

Chil and VENdom, and to a lesser extent ARGNorth, with some

strongly negative values regardless of an increase in error about

the mean. These data provide support for a distinction between

these populations and those exclusively from the silvatic

environment. At the sub-population level, the exclusion of Chilean

isolates from ANDESBol did not have a major impact on the

derived values, although error in this case was extremely high.

Pair-wise measure of genetic distance
Figure 1 shows a Neighbor-joining tree based on pair-wise DAS

measures between individual isolates. Good bootstrap support was

found for the grouping of isolates from VENdom and AMNorth/Cen

(88.5%), for subdivision within Argentinean isolates (100%), for

subdivision within BOLNorth (92.5%), as well as for the grouping of

isolates obtained from the Bolivian and Chilean Andes. In the

silvatic environment no clear diversification was observed by

reservoir host, a phenomenon supported by a non-significant

estimate of FST between Didelphis sp. and non-Didelphis sp. reservoir

hosts in BRAZNorth-East (FST = 0.006, p = 0.594). Sample size

restricts similar comparisons in other silvatic populations.

Table 1. Population genetic parameters for seven TcI populations.

Population N/G MNA Ar
a HO

b HE
b % HDc %HEd IA

e P-Valuef

AMNorth/Cen 7/7 1.92 1.532 0.332 0.445 0.00 0.00 2.39 0.005

VENsilv 37/37 6.45 2.337 0.449 0.637 44.19 0.00 1.38 ,0.001

BRAZNorth-East 39/39 6.67 2.344 0.383 0.571 50.00 0.00 2.03 ,0.001

BOLNorth 16/16 4.67 2.229 0.467 0.643 17.50 0.00 3.98 ,0.001

ARGNorth 10/10 2.41 1.794 0.535 0.551 8.82 2.94 12.37 ,0.001

ANDESBol/Chile 11/11 1.73 1.407 0.406 0.396 3.85 7.69 2.05 ,0.001

VENdom 13/13* 2.02 1.486 0.421 0.422 7.14 14.29 1.21 0.011

*Two samples included in Figure 1 were excluded from population analysis due to DNA availability issues and consequential high levels of missing data.
aAllelic richness (sample size corrected).
bMean observed and expected heterozygosity across all loci.
cProportion of loci showing a significant deficit in heterozygosity after a sequential Bonferroni correction.
dProportion of loci showing significant excess heterozygosity after a sequential Bonferroni correction.
eThe Index of Association.
fP-value for index of association, calculated by comparison to a null distribution of 1,000 randomised datasets.
N, number of isolates in population; G, number of multilocus genotypes per population; MNA, mean number of alleles per locus.
doi:10.1371/journal.ppat.1000410.t001

T. cruzi I Phylogeography
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A portion of the pair-wise genetic diversification observed in the

dataset could be attributed to isolation by distance (IBD). A

Mantels test for matrix correspondence between pair-wise genetic

(DAS) and geographic distance (km) revealed a highly significant

positive correlation between these two measures (RXY = 0.394,

p,0.0001, Figure 3). Nonetheless, pair-wise comparisons also

revealed considerable diversification between isolates from the

same site in some instances (e.g. BOLNorth - Mean DAS = 0.479+/

20.009 (Standard Error)). Additionally, a number of outliers,

representing comparisons within and between some groups of

samples, are seen in Figure 3. These correspond to geographically

disperse but relatively genetically homogeneous groups. Of

particular interest are domestic isolates from Venezuela (VENdom),

comparisons between which lie within the dashed box labelled ‘D’

in Figure 3. No significant IBD is observed among these isolates

when analysed separately (RXY = 0.225, p = 0.0531) in contrast to

those from the silvatic environment, which do show significant

IBD (VENsilv (Colombian outlier excluded, see Table S2) -

RXY = 0.292, p = 0.0001). A related observation is made among

isolates from AMNorth/Cen, where no significant IBD (RXY = 0.360,

p = 0.161) is observed. Again, these isolates fall as outliers in

Figure 3 (Box B).

Population subdivision
Despite evidence of spatial structure across Amazonia at an

individual level (Mantel’s test VENsilv, BRAZNorth-East, and

BOLNorth combined - RXY = 0.533, p,0.0001) the level of

subdivision between these populations was generally low

(FST = 0.108–0.148, Table S1). Another observation not wholly

consistent with IBD was a significant degree of subdivision

between isolates from ANDESBol/Chil and BOLNorth (FST = 0.304)

as compared with the strong connectivity between BOLNorth and

Figure 1. Unrooted neighbour-joining DAS tree showing TcI population structure across the Americas. Based on the multilocus
microsatellite profiles of 135 TcI isolates. DAS values were calculated as the mean across 1,000 random diploid re-samplings of the dataset to
accommodate multi-allelic loci. The presence of more than two alleles per locus did not disrupt the delineation of major clades (.90% majority
consensus support). DAS-based bootstrap values were calculated over 10,000 trees from 100 re-sampled datasets, and those .75% are shown on
major clades. Branch colour codes indicate strain origin. Black: Didelphis species; purple: non-Didelphis mammalian reservoir; green: silvatic triatomine;
red: human; blue: domestic triatomine. Colored block arrows and circles indicate broad population types. Yellow: Venezuelan domestic and North/
Central American groups; green: major silvatic populations; blue: South-Western clade. Black arrow indicates Colombian outlier assigned to Brazilian
population. Human symbol indicates putative genetic association with domestic transmission. Closed red circle area is proportionate to sampling
density. See text for details of population codes.
doi:10.1371/journal.ppat.1000410.g001
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Figure 2. Mean FIS values across loci on nine syntenous sequence fragments (SSFs) examined in eleven populations. Values suggest
that gene conversion is a genomically diffuse process in homozygous silvatic populations. Error bars represent +/2standard error about the mean.
Values without error bars correspond to SSFs containing only a single variable locus. Missing values correspond to SSFs containing no variable loci.
Populations with postfix 1,2,3,4 are subsamples of larger populations. Numbers in parentheses indicate population size (n).
doi:10.1371/journal.ppat.1000410.g002

Figure 3. Continental scale spatial genetic structure among 135 TcI isolates from across the Americas. The graph shows a comparison
between genetic (DAS) and geographic (km) distance across the entire dataset. Each data point represents a comparison between two isolates, and
there are thus 9,180 in total. A significant positive correlation between these two measures was observed (RXY = 0.394, p,0.0001). Outliers are
highlighted by dashed lines. A – VENdom vs AMNorth/Cen; B – AMNorth/Cen vs AMNorth/Cen; C 2 ANDESBol vs ANDESChile, D – VENdom vs VENdom. See text for
details of population codes.
doi:10.1371/journal.ppat.1000410.g003

T. cruzi I Phylogeography
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more distant lowland populations (e.g. BOLNorth - VENsilv

FST = 0.148, Table S1). Most striking was the high level of

discontinuity implied by the FST estimate between populations

VENdom and VENsilv (FST = 0.295), which approximately overlap in

their distribution. To place this observation in context, similar

subdivision is seen between populations VENsilv and ARGNorth

(FST = 0.226) which lie .5000 km apart.

Linkage disequilibrium in TcI populations
Accounting for known physical linkage and excluding loci of

unknown linkage group, the level of multilocus linkage disequilib-

rium was assessed using the IA, and was found to be statistically

greater than a null distribution generated from 1000 random

permutations in all populations (Table 1). Thus, the current

dataset is consistent with predominant clonality in this parasite.

Discussion

This study represents the most comprehensive attempt to

document within-DTU diversity in T. cruzi to date. Nonetheless,

some sample sizes remain limiting in population genetic terms,

although efforts were made to correct for any confounding effects.

Similarly, caution is required given the deviation of T. cruzi from

the assumptions of most standard population genetic models due

to clonality. Certainly, high levels of genetic diversity in the

principal silvatic TcI populations examined in this study are

consistent with the putative ancient (3–16 MYA) origin of this

DTU [1]. Similarly, rare allele frequency plots are consistent with

a large, stable Ne [25]. Furthermore, we have shown that similar

diversity indices could be derived from a study area of 10 km2

(BOLNorth) as from one of 4,500,000 km2 (BRAZNorth-East), which

suggests that this study has barely scraped the surface of the total

circulating diversity present. In the silvatic environment, no

apparent component of this diversity is partitioned by host. Thus,

a constrained, extant co-evolutionary relationship is not compat-

ible with the current dataset; contrary to a recent study using mini-

exon sequence data from a limited number of Didelphis TcI strains

[13]. Previously, we have suggested the ecological niche, rather

than reservoir host, plays the dominant role in driving T. cruzi

diversification [7]. This reflects a current model for wider

trypanosome evolution, where ‘‘ecological host-fitting’’ is thought

to define parasite clades [27]. Low levels of subdivision (FST)

between three populations sharing a similar ecotope across

Amazonia are consistent with this supposition. While we

demonstrate that TcI is eclectic in terms of host in arboreal

lowland silvatic cycles, significant documentary evidence exists to

suggest that D. marsupialis is the major carrier throughout much of

lowland tropical South and Central America [7]. The majority of

isolates examined here originate from this host. Tolerance by this

species of high circulating parasitemia [28], as well as a possible

propensity for non-vectorial transmission via infected territorial

anal scent gland secretions [29], may predispose D. marsupialis to

particularly intense T. cruzi transmission. Nonetheless, numerous

vectors and secondary hosts are also implicated in TcI transmis-

sion and carriage [7,30], and parasite dispersal between

geographic foci is unlikely to be linked to D. marsupialis alone.

Continental scale spatial structure in silvatic TcI (Figure 3) fits with

the general ecology of undisturbed wild transmission. Most

triatomine vectors, for example, are ill-adapted to long-range

flight, and are thus incapable of rapid parasite dispersal between

distant foci, providing ample time for spatial differentiation to

occur among parasite populations.

Sample size corrected genetic diversity estimates suggest a

considerable reduction in genetic differentiation in AMNorth/Cen

with respect to core silvatic populations. Furthermore, IBD breaks

down among these isolates and a loss of rare alleles in this

population could be interpreted as evidence of a recent population

bottleneck [25]. Until recently, genetic studies of TcI diversity

have failed to detect the signature of a rapid biogeographic

expansion of this DTU into the USA [31]. Our findings are

bolstered by low genetic diversity identified among new mini-exon

sequence data derived from North and Central American TcI

isolates [13], but greater sampling from this region would confirm

our observations. The expansion of TcI into North and Central

America is likely to have occurred since the formation of the

Isthmus of Panama 2–4 MYA, providing a useful phylogeographic

calibration point for future studies, and may correspond to the

northerly migration of didelphid marsupials [32].

In this study, TcI strains from infected humans were sampled

widely in Venezuela (Table S2). Although their sample size is

currently limited (n = 15 for the domestic clade – includes one

vector isolate (Table S2)), their robust genetic clustering, by

comparison to the extensively sampled and genetically diverse

parasite population from the silvatic environment, serves to make

them representative and important. There are suggestions that

Chagas disease is locally resurgent [33], and genetic discontinuity

between the domestic population and most silvatic isolates raises

significant questions regarding human disease transmission.

Molecular data from the low-lying west of the country demon-

strates that most silvatic and domestic populations of the principal

vector, Rhodnius prolixus, are indistinguishable [34] and it follows

that the parasite should also be invasive. However, in our study,

the predominant T. cruzi strains infecting humans in the same and

nearby areas bear little resemblance to those in the silvatic

environment. Intriguingly, however, silvatic TcI genotypes prevail

among almost all adult intradomiciliary triatomines sampled. All

three triatomine species, Triatoma maculata, Panstrongylus geniculatus,

and R. prolixus are also described from the silvatic environment in

Venezuela [3] and could, therefore, be invasive, and the parasite

strains infecting them not of human origin.

The occurrence of a domestic TcI clade in Venezuela, in spite

of the presence of silvatic strains inside houses, presents an

interesting problem. Among African trypanosomes (T. brucei sspp.),

human infective forms display only a limited array of genotypes (T.

b. rhodesiense & gambiense [20,35]). Detailed studies of T. b. brucei

population genetics in the silvatic environment are, however,

lacking. Some evidence suggests that vectors and domestic

mammalian reservoirs in T. b. brucei populations sympatric with

human T. b. rhodesiense outbreaks support a greater diversity of

strains [20]. However, no specific genes associated with human

infectivity are known in T. cruzi, unlike in T. b. rhodesiense [36], that

might drive the domestic expansion of an epidemic clone.

Furthermore, silvatic-type TcI strains were capable of sustaining

long-term, symptomatic infection in a subset of patients studied

(Table S2). One possible confounder in our sampling, as in a

recent population study of strains from West African T. b. gambiense

symptomatic human infections [35], is a lack of samples from

asymptomatic patients, which are required to refute an association

between parasite genotype and virulence or pathogenicity.

In the absence of a clear adaptive explanation for the lack of

diversification among Venezuelan domestic isolates on the basis of

current data, an ecological one may be more parsimonious. Low

transmission of the parasite to the human host by invasive adult

triatomines may reflect the inefficient stercorarian route by which

T. cruzi is normally spread [2]. Instead, repeated blood meals taken

by domestic triatomine colonies may be necessary to ensure

infective contact with the human host. In this case, other humans

or domestic reservoirs will be the primary sources of human
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infection, human and domestic vector migration the main driver of

parasite dispersal, and a widespread, uniform domestic parasite

genotype the result. This is an observation supported by a lack of

IBD among domestic strains. The distribution of this genotype

may be wider than described here, and there is now preliminary

mini-exon sequence evidence that a domestic TcI genotype may

also occur in Colombia [14].

The origin of the divergent Venezuelan human TcI population

remains enigmatic. Isolates bear closest resemblance, by all

measures employed in this study, to the North and Central

American clade. In all likelihood, TcI populations migrated to the

North prehistorically in conjunction with invasive mammalian

reservoir hosts during the Great American Interchange [32]. Low

genetic diversity is also identified in domestic R. prolixus

populations from Central America [37], although presumably

their northerly migration occurred many thousands of years later

alongside human populations. It is highly improbable that

domestic TcI strains carried northwards with R. prolixus subse-

quently dispersed so widely into the silvatic environment. The

source of the domestic outbreak identified here probably remains

sequestered among silvatic transmission cycles somewhere in the

northerly distribution of TcI in South America.

A greater sampling effort is required around Cochabamba

(ANDESBol) from both human and wild reservoirs before

satisfactory conclusions can be drawn regarding local parasite

transmission. Intriguingly, temporal heterogeneity seems to be

negligible, and ,20 years separate the isolation of human and

rodent strains (Table S2). Epidemiologically, congruence between

populations from these two hosts is not unexpected. Local

domestic and silvatic T. infestans populations match genetically

and morphologically [38], and rodent isolates were collected

within two kilometres of a major suburb of Cochabamba, where

active urban transmission still occurs [39]. It is not clear, however,

whether the parasite is invasive to the domestic setting, or whether

domestic strains have re-invaded the silvatic cycle.

A major observation of this study, and in others examining genetic

diversity in T. cruzi [1,4,15], is the deficiency of heterozygosity with

respect to Hardy-Weinberg expectations observed in most popula-

tions. Similar observations are frequently made in the Leishmania spp.

populations [40–42]. These levels of homozygosity are atypical with

respect to other clonally reproducing diploids [35,43,44], where

diversity is known to accumulate between alleles within the individual

in the absence of recombination, leading to extreme levels of

heterozygosity at homologous loci (the ‘Meselson effect’ [45]).

Heterozygous deficiency in silvatic populations in our dataset cannot

be uniquely attributed to hidden subdivision (Walhund effect). We

still find positive FIS values in non-subdivided sub-samples of isolates

within populations. Here, some increase in heterozygosity was

observed (Figure 2), but not to the extent predicted by the Meselson

effect. Multilocus linkage disequilibrium suggests that recombination

is at most infrequent in the current dataset, although the Index of

Association [46] is a relatively insensitive measure [44]. Thus,

widespread loss of heterozygosity due to homologous recombination

or gene conversion, not inbreeding, is the most likely genetic

phenomenon that would result in the observed diversity in our data.

Importantly, we can show that these events are apparently

genomically diffuse, in silvatic populations at least. Most SSFs show

similar levels of heterozygosity within populations, rather than some

showing strong evidence of the Meselson effect (strongly negative FIS)

and others showing complete homozygosity, as would be expected of

larger scale effects like ploidy cycles [47] or those following genome

fusion events in yeast [48].

Populations ANDESBol/Chil and VENDom share many features in

population genetic terms: reduced diversity; non-equilibrium rare

allele frequencies; and high inter-SSF variance in FIS values where

strongly negative values on some SSFs reflect marginally raised

overall heterozygosity at the population level. It remains to be seen

whether these are unique characteristics of human TcI clades,

whether they reflect possible past recombination events or some

form of balancing selection, and we could not attribute significance

to a decrease in FIS from background levels. DTUs TcIId and

TcIIe both show fixed heterozygosity at most loci because they are

almost certainly hybrids [1,5], not due to the Meselson effect, and

far in excess of heterozygosity levels observed in our dataset.

Confirmation of the characteristics we have observed will come

with more intensive sampling from domestic foci in both regions,

as well as others across South America. Our data now show, with

increasing support from other studies [13,14,49,50], that most T.

cruzi lineages actually represent highly heterogeneous populations

across their distribution, heterogeneity that may be highly

informative in epidemiological terms. Control strategies would

now greatly benefit from high density parasitological surveys in

and around individual endemic disease foci, especially if a

pathogenic human TcI genotype does exist, signalling a return

in study design, if not methodology, to the early investigations of

the 1970s [21]. Such studies should include parasite samples from

silvatic mammals and vectors, as well as domestic sources,

including both symptomatic and asymptomatic (or indeterminate)

human cases. To this extent, using microsatellite markers

developed here, T. cruzi population genetics can be observed at

the finest scale and provide real insights into the true nature of

Chagas disease transmission.

Methods

We assembled a panel of 135 T. cruzi samples belonging to TcI

from throughout the silvatic distribution of this lineage (Table S2).

DTU-level genotyping was achieved through analysis of the non-

transcribed spacer region of the mini-exon gene, as described

previously [51]. Microsatellite motifs were extracted from the draft

sequence of the T. cruzi genome available at http://www.genedb.

org. Four Mb of sequence, including at least 13 syntenous

sequence fragments, were scanned for di- and tri-nucleotide

repeats using a pattern matching script written in sed. An extension

of the algorithm was included to extract the up and downstream

flanking regions of the microsatellite sequence (,200 bp). Primer

design was achieved in PRIMER3 [52].

Among 200 microsatellite loci identified, 45 were polymorphic.

A further three were included from two previous studies [6,15].

Primers and binding sites are listed in Table S3. The following

reaction cycle was implemented across all loci: a denaturation step

of 4 minutes at 95uC, then 30 amplification cycles (95uC for

20 seconds, 57uC for 20 seconds, 72uC for 20 seconds) and a final

20 minute elongation step at 72uC. With a final volume of 10 ul,

16 ThermoPol Reaction Buffer (New England Biolabs (NEB),

UK), 4 mM MgCl2, 34 uM dNTPs; 0.75 pmols of each primer, 1

unit of Taq polymerase (NEB, UK) and 1 ng of genomic DNA

were added. Five fluorescent dyes were used to label forward

primers – 6-FAM & TET (Proligo, Germany), NED, PET & VIC

(Applied Biosystems, UK). Allele sizes were determined using an

automated capillary sequencer (AB3730, Applied Biosystems,

UK), manually checked for errors and typed ‘‘blind’’ to control

for user bias.

Microsatellite diversity analysis
Allelic richness estimates were calculated in FSTAT 2.9.3.2 [53]

and corrected for sample size using Hurlbert’s rarefaction method

[54] in MolKin v3.0 [55]. Pair-wise estimates of population
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subdivision (FST, Table S1) and heterozygosity indices (Table 1)

were estimated in ARLEQUIN 3.0 [56]. P-values for multiple tests

were corrected using a sequential Bonferroni correction [57]. FIS

provides an alternative measure of heterozygosity by assessing the

level of identity of alleles within individuals compared to that

between individuals where +1 represents all individuals homozy-

gous for different alleles, and 21 all individuals heterozygous for

the same alleles. Mean FIS estimates over loci in selected groups of

sub-populations were calculated in FSTAT 2.9.3.2 using Weir and

Cockerman’s (1984) unbiased estimators [58]. Confidence inter-

vals for FIS estimates were calculated by bootstrapping over loci

and tests for significant differences between values also in FSTAT

2.9.3.2 using 10,000 random permutations. Mean FIS values per

sequence fragment per population were calculated across standard

(not Weir and Cockerman’s) FIS values in FSTAT 2.9.3.2. To

assess the level of multilocus linkage disequilibrium, the Index of

Association (IA, multilocus) was calculated in MULTILOCUS

1.3b [46,59] (Table 1). Genetic distances between isolates were

evaluated in MICROSAT under an infinite alleles model of

microsatellite evolution using DAS (1-proportion of shared alleles at

all loci / n) [60] (Figure 1). To accommodate multi-allelic loci, a

script was written in Microsoft Visual Basic to make multiple

random diploid re-samplings of each multilocus profile (software

available on request). Individual-level genetic distances were

calculated as the mean across multiple re-sampled datasets. A

single randomly sampled dataset was used for population-level

analysis. A Mantel’s test for matrix correspondence was executed

in GENALEX 6 to compare pair-wise geographical (km) and

genetic distance (DAS) [61] (Figure 3). Samples were assigned to

populations on an a priori basis according to geography and

transmission cycle. DAS - defined sample clustering was also used

to inform population identity, and obvious outliers assigned to the

correct genetic group (Figure 1). Rare allele frequency plots were

calculated as in Luikart et al., 1998 [25], to detect perturbation

following putative population events (e.g. population bottlenecks).

Supporting Information

Figure S1 Allele frequency classes among seven TcI popula-

tions.

Found at: doi:10.1371/journal.ppat.1000410.s001 (6.79 MB TIF)

Table S1 FST estimates of interpopulation differentiation for

seven TcI subpopulations based on microsatellite data.

Found at: doi:10.1371/journal.ppat.1000410.s002 (0.04 MB

DOC)

Table S2 Panel of T. cruzi TcI genotype isolates assembled for

microsatellite analysis.

Found at: doi:10.1371/journal.ppat.1000410.s003 (0.31 MB

DOC)

Table S3 Microsatellite loci and primers employed in this study.

Found at: doi:10.1371/journal.ppat.1000410.s004 (0.12 MB

DOC)
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