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Abstract — Amongst renewable generators, photovoltaics (PV) 
are becoming more popular as the appropriate low cost solution 
to meet increasing energy demands. However, the integration of 
renewable energy sources to the electricity grid possesses many 
challenges. The intermittency of these non-conventional sources 
often requires accurate forecast, planning and optimal 
management. Many attempts have been made to tackle these 
challenges; nonetheless, existing methods fail to accurately 
capture the underlying characteristics of the system.  There exists 
scope to improve present PV yield forecasting models and 
methods. This paper explores the use of apriori knowledge of PV 
systems to build clear box models and identify uncertain 
parameters via heuristic algorithms. The model is further 
enhanced by incorporating black box models to account for 
unmodeled uncertainties in a novel grey-box forecasting and 
modeling of PV systems.   

I. INTRODUCTION 
Photovoltaic (PV) energy is now positioned amongst the 

top three new power generation means installed in Europe and 
is expected to remain so [1]. Power from PV sources provides 
a number of benefits over other renewable energy sources 
(RES). It can be supplied locally to loads, reducing the cost of 
transmission lines and associated power losses. Furthermore, 
advances in technology and large scale manufacturing have 
led to the decline in PV cost at a steady rate [2]. Despite a high 
capital setup cost, the operation and maintenance costs of PV 
are almost zero [3]. 

Nonetheless, like other RES, PV sources pose a number of 
integration challenges such as the impact on voltage profile 
[4],[7], impact on operational costs of the grid [5], regulation 
and load-following requirements [6]. Advance knowledge of 
the expected yield from PV sources will help tackle these 
challenges, to allow for proper planning of available 
generation sources and provide insights into the impact of PVs 
on the power network. However, the forecasting task requires 
non-primitive techniques, as power yield from PVs is 
intermittent in nature.  The intermittent and non-linear 
characteristics of PV data is due to an interplay of various 
factors such as the variability in sunrise and the amount of 
sunshine, sudden changes in atmospheric conditions, cloud 
movements and dust [8]. The PV power data can thus be 
viewed as consisting of two parts: the deterministic and the 
stochastic parts. The former represents the mathematical 
equations of irradiance that depend on location, sun’s position, 
and equations of PV cells, whilst the latter represents the 

sudden atmospheric changes such as dust, clouds, and wind 
blow.     
Various mathematical models that capture physics of PVs or 
clear-box models are possible but are inaccurate or impractical 
for large systems [9]. However, clear-box models possess 
various strengths such as that their structures are of physical 
meaning and usually have fewer parameters to estimate [10].  

On the other hand, data-driven or black-box models based 
on statistics or artificial-intelligence are popular methods as 
they are simple and easy to use.   Dynamic Neural Networks 
(DNNs) such as the ‘Focused Time-Delay Neural Networks’ 
(FTDNN) and the ‘Distributed Time-Delay Neural Networks’ 
(DTDNN) [11] have been studied for PV forecasting. These 
methods can handle nonlinear time-series data that are 
dynamic in nature. However, black-box models require good 
data for proper modeling – both quality and quantity. It is also 
difficult to design due to large number of parameters and lack 
of a systematic way to arrive at an optimal structure.  

This paper will therefore focus on the identification of 
proper grey box photovoltaic models. Section II provides an 
overview of related works in clear-box models for solar PV. In 
Section III, uncertain parameters in the clear-box model are 
identified and optimised using Particle Swarm Optimisation 
(PSO). The model is then extended into a grey-box model to 
account for unknown effects during forecast. Two grey-box 
models are developed and the results and observations are 
discussed in Section IV. Section V concludes the paper. 

 

II. SOLAR PV POWER MODELS 

A. General overview 
There exist various forecasting models proposed for PV 

systems [9]-[30]. The simplest ones are naïve or persistence 
models where the next power value is assumed to be same as 
the previous step. Such models are usually taken as reference 
models in forecasting studies [13].  

The other approach to forecast PV power is to model solar 
data using statistical methods. Regression models can be used 
where power value is expressed as a regression of previous 
power values, irradiance, and temperature [14]. Statistical 
approaches adopt classical time-series forecasting methods 
that assume the data to be stationary. Auto-regressive (AR), 
AR with exogenous input (ARX), and AR with integrated 
moving average (ARIMA) [13] are some of the famous 



statistical models used in solar PV forecasting.  As the 
parameters in these models usually do not represent a physical 
phenomenon or quantity, such models are often referred to as 
‘black-box’ models or functional approximates. The artificial 
neural network (NN) is another example of these models and 
is gaining popularity in PV forecasting owing to their 
modularity in handling non-linear models. There are various 
structures of NN, but they can be categorized into two: static 
[15] and dynamic [16]. However, artificial intelligence models 
can suffer from generalization problems. Also, there is no 
systematic way in arriving at the structure of the model.  
An alternative to this is the ‘clear-box’ model based on 
physical principles. The benefits of these models were 
outlined in the introduction. These equations are based on the 
physics of PV modules and are detailed in the preceding 
section. 

B. PV Module Equations 
There are different physical models proposed for PV 

modules - double diode models [17], simplified single diode 
model (SSDM), and further SSDM are some of them in a 
descending order of complexity. The higher complexity can 
provide better accuracy on the expense of increased 
computational burden which not suitable for real-time online 
applications. 

The best model that gives a good compromise between 
simplicity and accuracy [18] is the simplified single diode 
model shown in Fig. 1. 

 
Figure 1. PV cell/array Single Diode Simplified model 

 
The following equations describe the relation between the 
current and voltage output of the PV cell/array: 

 (1) 

 
(2) 

Where I is the output current of the cell in Amperes, V is the 
solar cell voltage in Volts,  Iph is the photocurrent in Amperes, 
Id is the Shockley diode equation, Io is the reverse saturation or 
leakage current of the diode, Vt=kT/q is the thermal voltage of 
the array, q is the electron charge (1.60217646 x 10-19 C), k is 
the Boltzman constant (1.3806503 x 10-23 J/K), T is the 
temperature of the cell in Kelvin, and  a is the ideality factor 
constant. More details of these equations can be found in [18]. 
To calculate power yield, values for I and V are usually 
computed using numerical methods [17],[18]. The 
mathematical approach is usually tedious especially when 
applied to large or widely spread PV systems [9]. 

C. Simplified PV Equations 
Furthermore, the aforementioned equations of PV modules 

require numerical solution and thus are sometimes replaced 
with simplified equations that relate the power output with the 
efficiency of the system and variation in radiation and 
temperature [19],[20]. These equations are basically a 
translation of performance measurement from standard test 
measurements (STC; Air Mass 1.5 spectrum with global 
irradiance (G=1000W/m2 and module temperature = 25oC). 
One famous simple method is that of Osterwarld [19] which 
can be described as follows: 

 (3) 

Where Pm is the cell/module maximum power (W), Pmo is the 
cell/module maximum power in STC (W),  is the cell 
maximum power coefficient (oC-1) which ranges from -0.005 
to -0.003 oC-1 in crystalline silicon and can be assumed to be -
0.0035oC-1 with good accuracy. 
Another version of equation (7) is given below [20]: 

 (4) 

  

Gt is the global irradiance on the titled surface in W/m2, KT is 
thermal derating coefficient of the PV module in %/oC, Aa area 
of the PV array in m2, m is the module efficiency, dust is 1-the 
fractional power loss due to dust on the PV array, mis is 1-the 
fractional power loss due module mismatch, DCloss is 1- the 
fractional power loss in the dc side, MPPT is 1-fractional power 
loss due to the MPPT algorithm, TC is the cell temperature in 
oC, Tao is the ambient temperature at STC conditions in oC. 
The ac power of the PV system is then estimated by using 
manufacturer’s efficiency curve of three phase inverter.  
The simplified PV equation adopted for this work is given 
below [21]: 

Ppv = Gt . A. PV . loss . inv [1- .(Tm – 25)] (5) 
In this equation, miscellaneous losses including dust were 
lumped together in loss; PV cell efficiency PV and MPPT or 
inverter efficiency inv are kept separate. Tm is the module 
temperature. 
The aforementioned equations require detailed modeling of 
the global irradiance falling on a tilted surface Gt as outlined 
in the next section. 

D. Irradiance Falling on a Tilted Surface: Hottel’s equations 
 
There exist various models for calculating irradiance on a 

tilted panel. However, some of these models rely on other 
meteorological data such as total irradiance on horizontal 
surface, diffuse irradiance on horizontal surface, beam normal 
irradiance. Models of this type include those of Perez [22],[23]  
and Klucher [22],[24]. Others are not accurate in cloudy 
conditions, Temps and Coulson [25], or in clear skies, Liu and 
Jordan [26]. Simple models that require no additional solar 
measurements were proposed by Hottel [9],[27],[28]  and are 



adopted in this work. Description of this model is outlined 
below: 
To explain irradiance equations, it is important first to present 
equations of solar angles as they are a pre-requisite to 
calculate solar equations. 
The derivation of irradiance on tilted surfaces requires the 
calculation of different solar angles. These equations are 
mainly based on [29] and [30]. Solar angles that define the 
position of the sun with respect to a PV plane are illustrated in 
Fig. 2.  
 
 

 
                 

 

 

 

 

 = Tilt angle of array. 

s = Solar elevation (altitude): the angle between the 
horizontal and line to the sun. 

 = Angle of incidence: the angle between normal to array 
surface and direct irradiance on a tilted surface (or line to the 
sun). 

z = Zenith angle: the angle between vertical line to earth and 
line to the sun. 

s = Solar azimuth angle: the angular displacement from south 
of the projection of beam radiation on the horizontal plane. 
Displacements east of south are negative and west of south are 
positive. 
 = Surface azimuth angle: the deviation of the projection on a 

horizontal plane of the normal to the surface from the local 
meridian, with zero due to south, east negative, and west 
positive; -180     180 . 
The zenith angle z can be written as follows: 

 (6) 
Where 
 is the declination angle given by 

 
(7) 

 is the latitude in degrees is the angular location north or 
south of the equator, north positive; -90     90 . 

 is the hour angle which is the angular displacement of the 
sun east or west of the local meridian due to rotation of the 
earth on its axis at 15  per hour; morning negative, afternoon 
positive. The hour angle can be calculated by first calculating 
the solar time given by: 
Solar time = standard time + 4. (Lst - Lloc) + E                       (8) 
Where Lst is the standard meridian for the local time zone, Lloc 
is the longitude of the location in question, and longitudes are 
in degrees west. The parameter E is the equation of time in 
minutes and is given by: 

 Where B is calculated as follows: 

The hour angle  can then be written as: 

Furthermore, the incidence angle  can be calculated using the 
following formula: 

 
 

(12) 

The solar irradiance falling on a tilted surface, Gt (W/m2) is 
composed of three parts: the direct irradiance Gtb (W/m2), the 
diffuse irradiance Gtd (W/m2) and reflected irradiance Gtr 
(W/m2), i.e. 

Gt = Gtb + Gtd + Gtr (13) 
The three components of irradiance can be calculated as 
follows: 

Gtb =  (14) 
Gtd =  (15) 

Gtr =  (16) 

Where Gon is the extraterrestrial radiation (W/m2), b is the 
beam atmospheric transmittance, d is the diffuse atmospheric 
transmittance, and r is the reflected atmospheric 
transmittance. Gon can be calculated as follows: 

Gon =  (17) 

 Where Gsc is 1367±5 W/m2 and d is the day of the year. 
The beam atmospheric transmittance b can be calculated as 
follows: 

 (18) 
Where a0, a1, and k are constants that can be calculated as 
follows: 

 (19) 
 (20) 

 (21) 
Where A is the altitude of the location in km, ro, r1, and rk are 
correction factors for different types of climates and are given 
in Table I. 

TABLE I. COFFIECIENTS VALUES DEPENDENT ON CLIMATE  
Climate type r0 r1 rk 
Tropical 0.95 0.98 1.02 
Midlatitude Summer 0.97 0.99 1.02 
Subarctic Summer  0.99 0.99 1.01 
Midlatitude Winter 1.03 1.01 1.00 

III. PV SYSTEM DESCRIPTION AND IDENTIFICATION VIA PSO 
The test-bed system, located in Masdar city close to Abu 

Dhabi airport, is a 220,000 m2, 10MW PV plant [31],[32]. The 
plant consists of around 87,777 panels: 17,777 are 

 

(9) 

 
(10) 

 (11) 

 
Figure 2. Solar angles of a PV plane 



polycrystalline and 70,000 are thin-film from Suntech and 
First Solar respectively. The parameters for the model were 
taken from data sheets of panels [33],[34] and from Engineers 
in Masdar and are given in Table II. These are the parameters 
with best engineering values taken from data sheet and 
engineers of the PV system. The model with these values will 
be referred to as the clear box model.  

 
TABLE II. PARAMETERS OF CLEAR BOX PV MODEL 

Longitude 54.45o 
Latitude 24.43o 
Altitude 1 m 

Area of SunTech panels, ASun 30,911 m2 
Area of First Solar Panels, AFirst 72,500 m2 

Miscellaneous losses (Suntech group), loss_Sun 5% (i.e. loss_Sun = 95%) 
Miscellaneous losses (Firstsolar group), loss_First 6%  (i.e. loss_First= 94%) 

Efficiency of PV panel (Suntech), PV_Sun 11% 
Efficiency of PV panel (Firstsolar), PV_First 10% 

Efficiency of Inverter (Suntech panels), inv_Sun 95% 
Efficiency of Inverter (Firstsolar), inv_First 94% 

Temperature coefficient (%/Co),  5% 
ro 0.27 
r1 0.29 
r2 0.32 

Albedo,  0.35 

A. CAutoD for Uncertainities in Clear-box Model: 
The clear box model assumes different parameters with the 
values outlined in data sheet or are of constant value 
throughout the system. However and in reality values change 
with variation in atmospheric conditions and with aging of the 
materials. For the PV system studied in this work, some 
parameters were of uncertain value and thus were candidates 
for exploration of better practical values. These are the 
different PV efficiencies, albedo of ground, temperature 
coefficient, and miscellaneous losses; eight parameters in 
total. The practical ranges of these values are given in Table 
III. The identification of the best or optimized parameter value 
was conducted through PSO as explained in the preceding 
paragraphs. 
 

TABLE III. RANGE OF UNCERTAIN PARAMETERS FOR CAutoD 
CLEAR BOX PV MODEL  

loss_Sun 92 - 96%  
loss_First 92 - 96%   
PV_Sun 10 - 12 % 
PV_First 10 - 12 % 
inv_Sun 92 - 99 % 
inv_First 92 - 99% 

 2% - 6% 
ro 0.2 - 1.0 
r1 0.2 - 1.0 
r2 0.2 - 1.0 

 0.3 - 0.5 

B. Grey-box PV Model: 
Enhancement of the model was explored by introducing black-
box models to account for unknown effects. The parameters of 
efficiency of inverter are known to be adaptive and are 
function of their loading [35]. Therefore, the following two 
grey-box models are proposed to model the change in 
efficiency with loading: 
 

inv_Sun  = 0.45 + a1 . Po + a2. Po
2 + a3. Po

3 + a4. Po
4 

+ a5. Po
5 

inv_First  = 0.45 + a6 . Po + a7. Po
2 + a8. Po

3 + a9. Po
4 

+ a10. Po
5 

Grey-box 1 

inv_Sun  =  
 

inv_First  =  

Grey-box 2 

Po =   

where Po is the fractional loading calculated by dividing the 
Pdc output of PV by nominal DC rating of the inverter. 
The first model, Grey-box 1, is of a polynomial form while the 
second, Grey-box 2, is based on Padé approximation. Both 
will be explored to find the most suitable model for this 
application. The coefficients of these models were identified 
using PSO.  
PSO was chosen as an identification algorithm to optimize the 
parameters in the CAutoD clear model and to find best 
coefficients in the grey box models respectively. The objective 
function for the identification is to minimize the Root Mean 
Square Error (RMSE) between actual and identified model in 
terms of PV power output. The RMSE is calculated as 
follows: 

 

(22)

Where Pi
a is the ith actual output power, Pi

p is the ith predicted 
power by model, and n is number of data points.  

Particle Swarm Optimization [36] is inspired by social 
behaviour of bird flocking or fish schooling. It can be applied 
as follows: 
Step 1: Initialize a population (array) of particles with random 
positions and velocities v on d dimension in the problem 
space. The particles are generated by randomly selecting a 
value with uniform probability over the dth optimized search 

space [ ], maxmin
dd xx .  

Step 2: For each particle x, evaluate the desired optimization 
fitness function, J, in d variables. 
Step 3: Compare particles fitness evaluation with xpbest, which 
is the particle with best local fitness value. If the current value 
is better than that of xpbest, then set xpbest equal to the current 
value and xpbest locations equal to the current locations in d-
dimensional space.  
Step 4: Compare fitness evaluation with population overall 
previous best. If current value is better than xgbest, the global 
best fitness value then reset xgbest to the current particle’s array 
index and value. 
Step 5: Update the velocity v as follows: 

 

        
(23) 

where, k is the number of iteration, i is the number of the 
particles that goes from 1 to n, d is the dimension of the 
variables, and rand1,2 is a uniformly distributed random 
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number in (0, 1),  are acceleration constants and are set, as 
recommended by investigators [36], equal to 2. The weight w 
is often decreased linearly from about 0.9 to 0.4 during the 
search process.  
Step 6: Update position of the particles, 

  (24)   
Step 7: Loop to Step 2, until a criterion is met, usually a good 
fitness value or a maximum number of iterations (generations) 
m is reached. 
PSO identification will search for 8 parameters in the CAutoD 
clear box model, 10 parameters in Grey-box model 1, and 12 
parameters in Grey-box model 2. 

IV. SIMULATION RESULTS AND DISCUSSION 
The models described in the preceding sections are 

simulated and compared as outlined below. The clear 
irradiance model based on Hottel’s equations (6)-(21) is 
simulated and illustrated in Fig. 3. Furthermore, the clear PV 
model is simulated with values given in Table II. For the 
CAutoD clear box model, PSO is used to search for the 
optimum values of the uncertain parameters in the clear-box 
model. The data available from the system was used in two 
phases: first to tune the models and second to test or validate 
the model. To train the model, data (hourly PV power and 
module temperature) of days 5-20 in July 2010 (summer) and 
days 5-20 in January 2011 (winter) were used. The fitness 
function of the identification is chosen as the average error of 
July and January as shown below: 
 
J =RMSEtrain= (RMSEJuly + RMSEJanuary) / 2                        (25) 
 
Once models are identified, the five consecutive days in both 
July 2010 and January 2011 are used to test the models and to 
compute the average forecasting RMSE (RMSEtest). For PSO, 
the number of particles is set to n = 50 with a maximum 
number of search iterations of 300. 
The results of the four models: clear-box, CAutoD clear-box, 
Grey-box 1, and Grey-box 2 are summarized below. The 
coefficients identified by PSO for the respective models are 
given in Table IV. In the same table, RMSEs for training and 
for testing are given for the four models. The progress for 
identification is given in Fig. 4 for three optimized models. PV 
power predicted (test data) by the four models is given in 
Figures 5 and 6. The difference between accuracy of the 
models is seen better by analyzing the errors of modeling 
shown in Figures 7 and 8.  
 
The following observations can be deduced from the results: 

 
1. In general, tuning the parameters of the clear-box model 

proved to enhance the forecasting capabilities of the 
model. This was clear in the CAutoD clear- box, Grey-box 
1, and Grey-box 2. Parameters from manufacturers require 
further adaptation to the unique atmospheric and location 
conditions of a given PV system. The RMSEs of tuned 
models are generally better than that of the clear-box 
model. 

 
2. On the whole, introducing grey-box model enhanced the 

modeling accuracy compared with clear-box and optimized 
CAutoD clear-box as evident from both the training and 
testing the models. This can also be seen error plots in 
Figures 7 and 8. 

 
3. PSO exhibited stagnation in identifying clear-box and grey-

box models but at different times of progress. CAutoD 
clear-box identification was first to go through stagnation 
followed by Grey-box 2, though grey-box 2 reached a 
better RMSE. Grey-box 1 was better at stagnation 
indicating a better suited model for tuning via PSO. 

 
4. Although, Grey-box 2 model produced the best RMSEtrain, it 

was slightly surpassed by Grey-box model 1 in the testing 
phase. It can be said that Grey-box 2 exhibited 
generalization issue in comparison with the less complex 
Grey-box model 1. 

 
5. Increasing or decreasing the order of Grey-box 1 and 2 was 

found to deteriorate the models accuracy and therefore 
kept at the given values. 

 
6. General observation: the simplified model, equation 5, was 

found more sensitive to module temperature in July than in 
January i.e. excluding the temperature coefficient part (in 
brackets) had higher impact (worsen accuracy) in July than 
in January. This is expected as higher temperatures in July 
will impact the performance of the PV panels. 

 
The following areas of further improvements were identified: 
 
1. Different identification methods can be explored to 

further enhance the modeling capabilities. For example, 
PSO can be further enhanced to overcome the stagnation 
issue. 

2. Different structure for grey-box models can be explored. 
Also, clear-box model can be further explored to identify 
candidate parameters to be replaced by black-box models 
to account for uncertainties. 
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Figure 3. Clear-day irradiance model for one year 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE IV. IDENTIFIED MODELS AND RMSE 

Parameters Clear-box CAutoD 
clear-box 

Grey-box 1 Grey-box 2 

loss_Sun 95% 92% 96% 96% 

loss_First 94% 96% 96% 96% 

PV_Sun 11% 10% 10% 10% 

PV_First 10% 10% 10% 12% 

inv_Sun 95% 92% Replaced by Grey box 

inv_First 94% 92% 
 (%/Co) 5% 5.3% 2.3% 6% 

ro 0.27 0.2 1 0.2 

r1 0.29 0.2 0.2 0.2 

r2 0.32 1 1 0.2 

 0.35 0.3 0.3 0.5 

a1  
 
 

Not applicable 

-7.11 -2.42 

a2 0.55 5.21 

a3 6.36 -4.58 

a4 -1.46 -2.23 

a5 -5.24 -2.97 

a6 0.054 7.34 

a7 2.55 -1.32 

a8 3.73 4.16 

a9 -8.20 6.47 

a10 3.37 3.70 

a11 Not applicable 5.30 

a12 2.79 

RMSEtrain , kW 1322 835  775 770 

RMSEtest , kW  1636  1067  993 1010 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Progress of PSO identification for different models 
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Figure 6. PV power predicted by different models: July 2010 (20-22 

July). 
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Figure 7. Testing error in modeling for different models: January 2011 (20-22 January). 
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Figure 8. Testing error in modelling for different models: July 2010 (20-22 July). 
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Figure 5. PV power predicted for different models: January 2011 (20-22 

January). These were cloudy days. 
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V. CONCLUSION 
The enhancement of modeling and forecasting of clear-box 

PV power models through introduction of black-box models 
was discussed in this paper. It was found that practical values 
of parameters can be tuned to improve the accuracy of the 
models. Further enhancement can be achieved through the 
introduction of grey-box models to account for uncertainties in 
the PV models. A free-derivative particle swarm engine was 
utilized in the identification process and was found particularly 
beneficial with simple grey-box models. The work presented is 
a novel step towards exploring the benefits grey-box models 
can add in the PV forecasting and hence supporting a better 
integration of these renewable energy sources in power 
networks.  
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