

Messy Tabletops: Clearing Up The
Occlusion Problem

Abstract

When introducing interactive tabletops into the home

and office, lack of space will often mean that these

devices play two roles: interactive display and a place

for putting things. Clutter on the table surface may

occlude information on the display, preventing the user

from noticing it or interacting with it. We present a

technique for dealing with clutter on tabletops which

finds a suitable unoccluded area of the display in which

to show content. We discuss the implementation of this

technique and some design issues which arose during

implementation.

Author Keywords

Tabletop; occlusion; clutter; algorithm

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g.,

HCI): Miscellaneous.

General Terms

Algorithms; Design

Introduction

When introduced into environments such as the home

or workplace where space is often limited, interactive

tabletops will begin to compete for space with existing

furniture. In the home, for example, an interactive

Copyright is held by the author/owner(s).

CHI’13, April 27 – May 2, 2013, Paris, France.

ACM 978-1-XXXX-XXXX-X/XX/XX.

 Euan Freeman, Stephen Brewster

Glasgow Interactive Systems Group

School of Computing Science

University of Glasgow

Glasgow, G12 8QQ UK

e.freeman.1@research.gla.ac.uk,

stephen.brewster@glasgow.ac.uk

tabletop is likely to replace a coffee table in the living

room rather than be introduced as an additional piece

of furniture. As a consequence the interactive tabletop

will also have to fulfill the role of the furniture it

replaces. In many cases this means acting as a storage

device; a place for books, letters and the many small

items which clutter our coffee tables (e.g. Figure 1).

This clutter inevitably constrains interaction and can

prevent information from being observed by the user.

When the user is actively engaged with the system this

could simply be addressed by moving items off the

display, freeing up space for interaction. We feel that

interactive tabletops, the coffee table of the future, will

also be ideal for more passive applications because of

their prominent placement within the home. Such

applications may display information intermittently

throughout the day. Reminders about appointments,

new email notifications and information about the

home, e.g. warnings that a tap has been left running,

could be delivered to a prominent display in the living

room. However, users may not know that information is

being occluded by items on the table.

The work reported here is part of an ongoing study into

the use of tabletops in the home. In this paper we

introduce a technique which efficiently finds unoccluded

regions of the display. Using this technique, virtual

content can be moved to a visible region of the display.

We discuss an efficient algorithm for finding visible

regions and discuss some design issues we encountered

when developing our technique. Future work which fully

addresses these issues will allow tabletops to be used

effectively in the home, both as a display and place for

storage.

Background

O'Hara [5] noted that although an interactive tabletop

in a bar provided a dual purpose as both interactive

device and normal tabletop, use of the tabletop as a

storage device often constrained its use as an

interactive display and vice versa. Some patrons

avoided using the device as a normal table as they did

not wish to obstruct the display. In some settings,

particularly in the home, use of interactive tabletops as

normal furniture is unavoidable, often because such

devices will be competing for space with normal

furniture [6].

To allow tabletop computers to be effectively used as

both interactive display and normal piece of furniture,

occlusion management is required. Javed et al. [3]

proposed several techniques for making the user aware

of occluded content. They presented three categories of

techniques for identifying occluded objects: awareness-

supporting, identification-supporting and access-

supporting.

To identify and manage occlusion on interactive

surfaces projected from above, Cotting and Gross [1]

used patterns projected onto the surface to identify

areas which were not suitable for display. Their bubble-

based user interface would warp around areas deemed

unsuitable for displaying content. This approach also

addressed 3D occlusion, where content is not directly

covered by an object but is not visible to the user as a

protruding object on the table surface blocks the line of

sight of the user.

Khalilbeigi et al. [4] presented a novel awareness-

supporting occlusion management technique which

used pressure input to provide a more detailed

Figure 1. Messy table surfaces - a

familiar sight!

overview of occluded objects. Access to occluded

objects was available through “interactive proxies”

which presented more detailed information in response

to applying pressure to the occluding object on the

table surface. Users could then drag the proxy into an

un-occluded area of the tabletop to gain access.

Furumi, Sakamoto and Igarashi [2] created SnapRail,

an access-supporting widget which moved occluded

virtual items onto a rail surrounding the occluding

object. Users can then access the virtual objects either

by touching them, or touching the rail to move all

attached virtual objects.

Another form of occlusion when interacting with touch

devices is that caused by the hand of the user. Vogel

and Balakrishnan [8] used bubble-like callouts in a

similar manner as Shift [9] to display important

information which was occluded by the hand and

forearm of the user when interacting with a tabletop.

Occlusion Management

We chose to implement an access-supporting occlusion

management technique as we believed this would be

the most effective way of dealing with occlusion when

parts of the display are still available. Such techniques

make occluded content visible in an unoccluded part of

the display. Whilst awareness-supporting techniques

could be used to inform the user that content is

occluded, our approach (motivated by Javed et al.'s

Move method [3]) makes the most of the available

display space. Our approach differs from SnapRail [2]

in that we move occluded content to a clear location on

the table rather than around the occluding object. We

believe this approach is more appropriate when there is

a lot of clutter on the tabletop.

This paper discusses the design and implementation of

an occlusion management technique for tabletops

which use reflected infrared (IR) light for detecting

input. This approach is commonly used in interactive

tabletops. IR light is shone towards the rear side of the

table surface. Anything in contact with the tabletop

(items, hands, etc.) reflects light which is captured by

cameras (diffused illumination tabletops) or sensors

(e.g. Microsoft’s PixelSense) inside the device.

Figure 2 shows an example of an image captured by

the cameras inside a diffused illumination tabletop.

White areas of the image represent reflected infrared

light. Nothing is known about these objects other than

their 2D footprint. An access-supporting occlusion

management technique must display occluded

information in an unobstructed area of the tabletop.

There are two parts to this project: (1) detect items on

the tabletop and (2) find a visible area for display.

Tabletop Item Detection

Images taken directly from the cameras inside the

tabletop, such as that shown in Figure 2, can be used

to detect objects on the table surface using computer

vision techniques. To reduce the amount of noise

present in the image, a simple threshold can be applied

to the image. A blob detection algorithm can then be

used to detect objects in the image. Taking the convex

hull of each blob gives the footprints of all items atop

the table. To avoid classifying hands or fingers as items

on the surface, blobs corresponding to touch points

should be ignored.

Finding Visible Areas

Having discovered items which are occluding the

display, the next step is to find a suitable space for

Figure 2. Reflected IR light.

Figure 3. Matrix constructed for

the image in Figure 2.

displaying information. As a geometric problem this

would be complex and computationally expensive.

Instead, we opt for efficiency and choose to approach

this as a matrix problem.

Using the 2D footprints of items, a binary matrix is

constructed which shows which regions of the display

are occluded. In this matrix, a value of 1 represents an

area of the image which is occluded and 0 represents

an area of free space. Figure 3 shows the 40x30 matrix

constructed for the image shown in Figure 2. In this

image, a black cell represents a value of 1 (i.e. an

item) and a white cell represents a visible area of the

tabletop. The size of the binary matrix is arbitrary; we

found that a size of 40x30 offers a balanced trade-off

between speed of computation and the accuracy with

which item edges are represented.

Using this matrix it is then possible to identify regions

of the table surface which are suitable for presenting

information. A dynamic programming algorithm was

implemented which finds all maximal zero rectangles

within the matrix. A zero rectangle is a rectangular area

containing only 0 values (i.e. an unoccluded area).

This algorithm, shown in Listing 1, iterates over each

cell in the matrix and determines how far to the top,

left, and right a border can be extended such that each

border marks the first boundary between an occluded

and unoccluded cell. For unoccluded cells, these

borders represent the edges of the maximum area

rectangle, up to the current row, which contains the

current cell. Using the border positions L, R and T (for

the left, right and top borders, respectively), the

corners of the largest zero rectangle at row r, column c

can be found.

Previously calculated values are placed on a stack, s,

and are re-used to improve the efficiency of the

algorithm. Processing each cell has complexity O(m) in

the worst case, resulting in an overall complexity of

O(m2n) for m, the number of columns and n, the

number of rows. Each of the resulting zero rectangles

represent a suitable area of the surface for displaying

information. Different heuristics could then be used to

select the “best” area for display, considering

properties such as size and location. Figure 4 shows the

largest area found in the infrared image shown in

Figure 2.

for r in range(0, n):

 # 1. Compute T

 for c in range(0, m):

 if matrix[c, r] == 1:

 T[c] := r

 # 2. Compute L

 s.clear()

 for c in range(0, m):

 while (|s| > 0 and T[s.peek()] <= T[c]):

 s.pop()

 L[c] := |s| == 0 ? -1 : s.peek()

 s.push(c)

 # 3. Compute R

 s.clear()

 for c in range(0, m):

 while (|s| > 0 and T[s.peek()] <= T[c]):

 s.pop()

 R[c] := |s| == 0 ? m : s.peek()

 s.push(c)

 # 4. Zero rectangles at each column

 for c in range(0, m):

 topLeft := (L[c] + 1, T[c] + 1)

 bottomRight := (R[c] - 1, r)

Listing 1. Algorithm to calculate L, R and T.

Figure 4. The largest unoccluded

area found in Figure 3 and this

area shown on the original infrared

image.

Discussion

This access-supporting occlusion management

technique allows tabletops to locate a suitable

unoccluded area of space for displaying information.

The efficiency of this approach allows applications to

respond dynamically to changes on the table surface

and move content as the state of the tabletop changes.

Our approach to occlusion management only considers

the 2D footprint of items on the tabletop. A limitation of

2D occlusion management is that it does not consider

occlusion caused by the height of objects. Whilst

content on the display may not be directly under an

object on the table, that content may not be visible to

the user because items on the table protrude into the

user's line of sight.

To further explore potential occlusion from clutter in

the home we invited people to send us photos of

tabletops in their homes, e.g. coffee tables in the living

room. We received photos of 11 coffee tables during

this study, some of which are shown in Figure 5. The

photos showed that most clutter consisted of small

items which were unlikely to cause significant 3D

occlusion. Books, paper and crockery were the most

common tabletop items. The height of these items

combined with the low height of the table relative to

someone sitting nearby would suggest that 3D

occlusion is not likely to be a significant problem in this

case.

Design Issues

During the design and implementation of our occlusion

management technique we encountered some

interesting problems. Some of these issues relate to the

implementation of our occlusion management

approach, others to the general problem of dealing with

occlusion on the tabletop.

Positioning content appropriately

We tested the effectiveness of our technique under a

variety of conditions, from a small amount of clutter to

large amounts of clutter almost entirely covering the

display. The largest suitable area for displaying content

was chosen. This heuristic was unsuitable with low

levels of clutter because it would often result in content

moving a lot in response to changes on the table

surface. This is a limitation of our algorithm; the largest

rectangular space is chosen, when other spaces on the

display may also be suitable. The “best” area on the

table surface for presenting information may also be

the position closest to the user. Future work will

investigate better heuristics for positioning content.

Distinguishing between moving and new content

Our technique responds dynamically to objects moving

on the table surface. As items are moved on the

surface, new visible areas are chosen for content

display. In our initial implementation we instantly

moved occluded content to a new position on the

tabletop. We found that it was not clear what was new

content and what was content just being moved on the

display. We made the distinction between existing and

new content through the use of animation. As virtual

items were moved on the display, they followed a

smooth, curved path to their destination. This

animation showed the user that the virtual item was

just being rearranged on the display. New items were

faded in gradually such that they appeared to be

arriving on the display for the first time.

Figure 5. Some of the photos

received during the study.

Responding to touch appropriately

When identifying items atop the table it is important

that hands are not incorrectly classified as occluding

objects. This allows users to interact with widgets

without them moving in response to a finger upon the

table. Occlusion caused by the user's body should still

be addressed using techniques such as callout bubbles

[8]. We used information provided by the Microsoft

Surface SDK to ignore fingers.

Respecting intentional occlusion

Occlusion management is not appropriate for all

contexts of tabletop use. Steimle et al. [7] suggested

that occlusion can be meaningful, e.g. when the user

logically groups paper and virtual documents together.

Future work will investigate how best to toggle

occlusion management, to prevent meaningful piles of

virtual and physical objects from being rearranged.

Dealing with very messy tables

In situations where the table surface is heavily

cluttered other information delivery modalities may

have to be used. Ambient lights placed in the bezel

around the display, for example, could be used to make

users aware that new content on the display is being

completely occluded. Microsoft Surface 1.0 uses lights

behind its glass bezel to communicate hardware status.

Using ambient lighting to create a glow around the

tabletop is similar to the Glow technique suggested by

Javed et al. [3], who rendered a glowing outline around

occluding objects on the display.

Conclusion

In this paper we introduced an access-supporting

occlusion management technique for tabletops. This

technique detects items atop the table and finds a

visible region of the display suitable for showing

content. We also discussed issues which arose during

implementation. Our future work will address these

design issues and investigate interesting applications of

our technique.

References
[1] Cotting, D. and Gross, M. Interactive Environment-
Aware Display Bubbles. Proc. UIST 2006, ACM Press
(2006), 245-254.

[2] Furumi, G., Sakamoto, D. and Igarashi, T.

SnapRail: A Tabletop User Interface Widget for
Addressing Occlusion by Physical Objects. Proc. ITS
2012, ACM Press (2012), 193-196.

[3] Javed, W., Kim, K., Ghani, S. and Elmqvist, N.
Evaluating Physical/Virtual Occlusion Management
Techniques for Horizontal Displays. Proc. Interact 2011,
(2011), 391-408.

[4] Khalilbeigi, M., Schmittat, P., Mulhauser, M. and
Steimle, J. Occlusion-Aware Interaction Techniques for
Tabletop Systems. Ext. Abstracts CHI 2012, ACM Press
(2012), 2531-2536.

[5] O’Hara, K. Interactivity and Non-Interactivity on

Tabletops. Proc. CHI 2010, ACM Press (2010), 2611-
2614.

[6] Salovaara, A., Zarabi, R. and Perry, M. The Fine Art
of Surfacing: Practices of Use at the Tabletop. Proc.
SIMTech 2008 (2008).

[7] Steimle, J., Khalilbeigi, M., Muhlhauser, M. and
Hollan, J.D. Physical and Digital Media Usage Patterns
on Interactive Tabletop Surfaces. Proc. ITS 2010, ACM
Press (2010), 167-176.

[8] Vogel, D. and Balakrishnan, R. Occlusion-aware
interfaces. Proc. CHI 2010, ACM Press (2010), 263-272

[9] Vogel, D. and Baudisch, P. Shift: A Technique for
Operating Pen-Based Interfaces Using Touch. Proc. CHI
2007, ACM Press (2007), 657-66

