
Exact Reconstruction of THz Sub-λ Source 
Features in Knife-Edge Measurements

Marco Peccianti, Matteo Clerici, Alessia Pasquazi, Lucia Caspani, Sze Phing Ho, Fabrizio Buccheri, Jalil Ali,
Alessandro Busacca, Tsuneyuki Ozaki, and Roberto Morandotti

(Invited Paper)

Abstract—The spatial features of a subwavelength terahertz
source are not accessible using time-integrated knife-edge (KE)
techniques due to the nonseparable space-time nature of the ra-
diated field and to systematic modifications induced by the blade
itself. We show that by combining KE with a time-resolved electro-
optical sampling, the space-time coupling can be addressed and the
source field profile can be exactly reconstructed.

Index Terms—Phase-sensitive field characterization, spatiotem-
poral field characterization, subwavelength sources, terahertz
(THz) sources.

I. INTRODUCTION

T ERAHERTZ (THz) imaging has been the subject of in-
tense research efforts in the last few years, owing to the

recognized THz spectroscopic capabilities in material analy-
sis [1]–[5]. The long wavelengths associated with THz radia-
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tion (100–1000 μm) impose stringent limitations on the spatial
resolution achievable exploiting standard imaging systems. For
this reason, several near-field techniques have been proposed
and successfully implemented after the first demonstrations by
Hunsche [6] and Chen et al. [7], achieving subwavelength reso-
lution down to the nanometric scale (see, e.g., [8]–[10]). These
schemes employ subwavelength apertures, tips, or other spatial
discriminators to scan the THz illuminated object and are usu-
ally associated with a poor signal-to-noise ratio (SNR)—see,
e.g., [11] and [12]. Yuan et al. demonstrated that the SNR could
be boosted—when generating a THz field spatially localized on
deeply subwavelength dimensions—by exploiting the optical
rectification from a focalized optical pump [13]. This can be
conveniently exploited for an alternative THz imaging scheme,
based on a localized generation, illuminating an object placed
within the source near-field. An imaging raster-scan approach
can then be implemented by steering the optical pump. In this
perspective, the investigations on the spatial and spectral prop-
erties of a subwavelength THz source and its interaction with
the object to be imaged are essential for the realization of an
imaging protocol. This issue has been recently addressed, e.g.,
by spectrally resolving the knife-edge (KE) measurement tech-
nique [14]–[16]. However, a subwavelength beam profiling by
KE is still the subject of experimental and theoretical inves-
tigations since several effects, mainly polarization dependent,
concur in deteriorating the quality of the retrieved informa-
tion [17], [18].

In this paper, we discuss the origin of some inherent aber-
rations in the KE characterization of subwavelength sources,
which appear evident when the full, spatiotemporal electric-
field profile is resolved. Specifically, we address the problem
of the transmission of an electromagnetic field from a perfectly
conducting half-plane with the exact Sommerfeld approach and
we show that the KE technique introduces a spatiotemporal aber-
ration of the field under test that affects the source profiling and,
to some extent, limits the reliability of certain subwavelength
imaging protocols relying on raster scanning.

By exploiting the temporal electric-field resolution associated
with THz time-domain spectroscopy (TDS), we theoretically,
numerically, and experimentally address the aberration issue and
we show how, under a limited set of conditions, such aberration
can be eliminated.

The manuscript is organized as follows. Section II addresses
the space-time nonseparability characteristic of extremely lo-
calized optical fields and its effect on a KE measurement. In
Section III, we introduce the basis for a field-resolved KE



Fig. 1. Reference system: the blade is in the plane z = 0 for xo > 0.

measurement and we describe the experimental apparatus em-
ployed for the generation and detection of a subwavelength,
single-cycle THz wave. We also show the numerical modeling,
implemented through a finite-difference time-domain (FDTD)
approach, of the KE measurement and the appearance of a space-
time aberration in the reconstructed field. In Section IV, we
provide some physical insight on the origin of the observed
space-time aberration through an exact analytical model. We
derive the explicit form of the transfer function of the KE mea-
surement, which allows for the retrieval of the original source
profile from the measured one. Finally, we draw the conclu-
sions summarized in Section V. An Appendix follows, where
we describe the details of our theoretical model.

II. SPACE-TIME COUPLING IN KE MEASUREMENTS

The KE technique is one of the most-established approaches
for the characterization of the spatial profile of optical beams.
In the classical implementation, it is based on measuring the op-
tical power transmitted by a blade behaving like a semi-infinite
plane, blocking a portion of the optical beam. By repeating the
measurement for several transverse positions of the blade in its
plane, it is possible to collect the integral of the source optical
power along the direction spanned by the blade. Thus, in a large
number of cases, the spatial source profile can be retrieved, e.g.,
by direct differentiation.

This approach is very mature and has the striking advantage
to provide an extremely accurate measurement of the beam
spatial distribution without the need of cameras. It has also been
exploited for the characterization of subwavelength features that
cannot be addressed with standard far-field imaging techniques
[17].

Let us recall some basic concepts considering the reference
system in Fig. 1 for a beam propagating along the z coordi-
nate. The blade is defined in the plane z = 0 and covers the
optical field on xo > 0. If I(x, y) is the intensity distribution
of the optical field in the plane of the blade, the collection of
the transmitted power for several positions of the blade edge xo

(varied through small steps dx) operatively implements the oper-
ation

∫ xo

−∞
∫ ∞
−∞ I(x, y)dxdy. This measurement, after a deriva-

tive along x, provides the x varying function
∫ ∞
−∞ I(xo, y)dy,

i.e., the integral projection of the field intensity along y.
When the intensity can be expressed as the product of two

independent functions I(x, y) = Ix(x)Iy (y), i.e., it is separable
in x and y, the KE along x directly provides the estimation
of the x varying component Ix(x)

∫ ∞
−∞ Iy (y)dy, and the same

consideration can be implemented for the y varying component

Fig. 2. (a)–(c) Propagation of a superwavelength field: (a) field in space and
time, (b) Fourier transform, and (c) intensity profile after the integration in time.
(d)–(f) and (g)–(i) are the same as (a)–(c) for two different subwavelength dis-
tributions: different space-time profiles share the same intensity-reconstructed
profile.

(see, e.g., [19] and [20]). However, when the field exhibits a
nonseparable spatial distribution at the measuring plane, the KE
fails to reconstruct the correct beam profile, not accessible in
the single integral projection approach. The problem is usually
addressed in a tomographic fashion, by cutting the transverse
optical distribution with a blade at different angles in the x–y
plane.

The temporal dependence of the field under test is usually
neglected in standard KE. The method is historically designed
to characterize paraxial beams described by a field distribution
with a separable temporal and spatial dependence.

Several kinds of wavepackets, as for instance those arising
from second-order nonlinear interactions, can be featured by
the nonseparability of space and time [21], [22]. In such cases, a
separate spatial and temporal characterization of the field prop-
erties such as coherence [23], [24] and the biphoton probability
distribution [25], [26] fails to provide the correct information.
We remark that, at a fixed propagation distance z, the time axis t
is here considered as the coordinate orthogonal to the transverse
plane x–y, in the reference frame comoving with the pulse group
velocity.

When nonparaxiality is concerned, such as in the case of
extremely localized sources, the field spatial and temporal coor-
dinates are coupled, as can be intuitively understood by consid-
ering the space-time profile of a spherical wave. This, in turn,
limits the application of the standard KE technique, since the
power measurement performed with an energy sensitive slow
detector is equivalent to a temporal integration of the intensity
distribution.

Fig. 2(a) and (b) shows the spatiotemporal distribution of a
paraxial field in x and t (for simplicity we neglect the depen-
dence along y) and its spatiotemporal spectrum in the space of



wavenumbers kx and angular frequencies w (refer to Section IV
for the definitions of the Fourier transforms employed here). In
this case the field can be factorized into two independent tem-
poral and spatial contributions: the profile of the field intensity
along x, shown in (c) after integration in time, provides a faith-
ful estimation of the beam spatial distribution. Fig. 2(d), (e) and
(g), (h) show a field with the same temporal spectrum of (a, b),
but with different subwavelength spatial features. In the Fourier
space, it is evident that the components of the field moved to-
ward the straight lines kx = ±ω/c. This is simply due to the
nature of the Green function of the electromagnetic field that
corresponds in the transformed domain to the transfer function

Ǧ ∝ 1
√

(ω/c)2 − k2
x

. (II.1)

Such function possesses a couple of complex conjugate poles
on the straight lines kx = ±ω/c, where the field is condensed,
as it appears for the subwavelength distributions in Fig. 2(e)
and (h). Such distributions evidently cannot be factorized into
temporal and spatial spectral components (ω and kx ) in the
Fourier domain, and consequently, the same holds for the direct
domain (x, t).

As expected, the measurement of the intensity profile after a
temporal integration does not provide a proper characterization
of the field: while cases (d), (e) and (g), (h) possess a clear
different behavior in both space and time, their intensity profile
along x is the same (f), (i). For a subwavelength distribution is,
thus, necessary to address the whole spatiotemporal domain in
order to obtain a reliable characterization of the field.

III. THZ TDS AND KE CHARACTERIZATION: A
SPACE-TIME FIELD-RESOLVED APPROACH

As can be inferred from the previous considerations, temporal
resolution is essential to address the features of a subwavelength
source. When THz is concerned, the commonly adopted detec-
tion approach, namely TDS, allows for a direct measurement of
the THz electric field resolved in time. A typical example of TDS
is the time-resolved electro-optical sampling scheme [27], [28].
A polarized optical probe is overlapped in space to the THz pulse
under test in an electro-optical crystal, such as Zinc Telluride
(ZnTe). The duration of the THz electric-field oscillations typi-
cally exceeds largely those of the probe pulse. Hence, at different
THz-optical probe delays, the probe experiences the action of a
quasi-static electric field that, through the electro-optical effect
enabled by the crystal nonlinearity, translates into a modifica-
tion of its polarization state. By resolving in time (via different
delays) such polarization change, it is thus possible to directly
map the THz electric field.

By combining a TDS approach with the KE technique, the
characterization of subwavelength THz sources can take advan-
tage of the temporal, field-resolved detection, which is more than
what is required by the separability considerations expressed in
the previous section.

In its standard form, a time-resolved KE approach would
require to measure the total power radiated by the source after
the blade clipping [17]. In such a case, the measured quantity is

the time-resolved energy (or average power) at different blade
positions

U (x0 , t) =
∫ xo

−∞
I (x, t) dx (III.1)

and the spatiotemporal intensity profile can be readily obtained
by a direct derivative of U (x0 , t) with respect to the blade coor-
dinate. However, for subwavelength sources the requirement of
collecting the total radiated power poses serious experimental
issues.

Conversely, for an electric-field-resolved measurement the
most direct way to retrieve the spatiotemporal electric-field pro-
file via KE would be to record a signal that is proportional to
the integral of the electric field, rather than the power. In such a
case, the KE measurement would read

e (x0 , t) ∝
∫ xo

−∞
e(i) (x, t) dx (III.2)

where e(i) (x, t) is the THz real-valued electric field under test
(incident field) that may be obtained by a direct differentiation
of the measured field e (x0 , t).

The electric field in the far-field z → ∞ is proportional to
the Fourier transform of the field at the blade plane. Its value
at a point x = 0 is then proportional to the integral of the field
radiated after the blade clipping; formally

e (x = 0, z → ∞, t) ∝
∫ +∞

−∞
e (x, z = 0, t) dx (III.3)

(we again consider only a single spatial dimension for the sake of
simplicity). Thus, for an electric-field-resolved KE spatiotem-
poral imaging, in contrast to the classical intensity resolved case,
it is sufficient to record the field at a point in the far-field of the
blade plane.

Operatively, the low THz fields emitted by optical rectifi-
cation on subwavelength areas will require an optical system—
with an impulse response h (x, y)—that allows performing TDS
of a reasonably strong signal.

The field in the reconstruction plane z = zout then reads:

e (x, y, zout) =
∫∫ ∞

−∞
e (ξ, η, z = 0)h(x − ξ, y − η)dξdη.

(III.4)
The field in the image plane sampled in the point x = 0, y = 0

is, thus, approximated by the integral of the field in the image
plane, whenever the size of any spatial feature of interest is
much smaller than the system spatial resolution

e (x = 0, y = 0, zout) =
∫∫ ∞

−∞
e (ξ, η, z = 0)h (−ξ,−η) dξdη

≈
∫∫ ∞

−∞
e (ξ, η, z = 0) dξdη (III.5)

that in our case translates into the requirement of an impulse
response function nearly constant over few wavelengths.

For this purpose, we considered an imaging system composed
by two off-axis parabolic mirrors of limited aperture. Since
both the spatial resolution and the signal at the detection plane
are directly proportional to the numerical aperture (NA) of the



Fig. 3. Sketch of the experimental setup employed for the generation and
characterization of the subwavelength THz source.

imaging system, a tradeoff between a correct implementation of
a field-resolved KE (low NA) and a reasonably high SNR in the
detection (high NA) has to be found. It has to be noted that the
imaged radiation is not monochromatic; hence, the effect of a
finite NA also unavoidably translates into a high-pass temporal
frequency filter, which accompanies our measurements. Finally,
we point out that the broken radial symmetry determined by
the vectorial effects accompanying nonparaxial focusing is not
accounted for in our investigations [29].

A. Experimental Setup

The experimental setup adopted for our study is sketched
in Fig. 3. An 800-nm, 100-fs, 5-nJ train of pulses at 80-MHz
repetition rate, delivered by a Ti:sapphire ultrafast oscillator
(MaiTai, Spectra Physics), is tightly focused by a 5 cm focal
lens on a second-order nonlinear crystal. Due to the extreme
divergence of the generated subwavelength THz field, the effec-
tive source dimension is limited by the crystal thickness. Hence,
in order to produce a highly localized THz emission, the optical
rectification is excited in a 〈1 1 0〉-oriented, 20-μm-thick (sub-
wavelength for THz) ZnTe crystal, bonded on a 500-μm-thick
〈1 00〉 ZnTe substrate, which does not contribute to the gener-
ation. By varying the pump beam diameter in front of the lens,
the effective THz beam waist can be controlled.

For the experiment reported here, the pump beam waist was
set to 30 μm, i.e., nearly λ/10 of the generated THz wavelength
(carrier wavelength � 300 μm).

The THz radiation is then partially collimated by a gold-
coated, 2-in aperture off-axis parabolic mirror, with a 2-in equiv-
alent focal length, setting the numerical aperture of the diagnos-
tic at NA � 0.45 (compatible with the requirement of field
integration on areas with radii < 150 μm). The collimated THz
beam is finally focused into the detection crystal by a second
parabolic mirror (identical to the first one), featured with a small
aperture that allows an optical probe pulse to reach the THz fo-
cus. The detection crystal is a 3-mm, 〈1 1 0〉 cut ZnTe, and a
standard electro-optical sampling scheme is employed for the
THz time-resolved electric-field measurement.

The KE is performed via an aluminum blade directly con-
tacted to the surface of the generation crystal and the time-

Fig. 4. (a) Electric field measured in the focus of the second parabolic mirror,
as a function of the blade position xo and time. (b) Electric field retrieved by
means of spatial differentiation.

resolved electric field at the detection focus is then recorded for
different blade-edge to optical pump beam distances xo . Fol-
lowing our previous considerations, due to the limited NA of
the imaging system, the TDS implements a time-resolved field-
sensitive detection, for any blade position, of the mean field at
the blade plane (also the generation plane). The measured field
is shown in Fig. 4(a).

By taking the derivative of the measured time-resolved elec-
tric field along the blade coordinate, it is then possible to retrieve
the spatiotemporal electric-field profile of the source, which is
shown in Fig. 4(b): an evident asymmetry along the spatial co-
ordinate appears despite the expected spatial symmetry of the
THz source.

B. Numerical Modeling of the Experimental Setup

In order to investigate the asymmetry revealed by our exper-
imental findings, we performed a set of numerical simulations
with an FDTD numerical solver. We modeled all the main com-
ponents of the experimental setup: a subwavelength, p-polarized
(polarization parallel to the blade edge) THz source; a metal-
lic blade; and the imaging system. The parabolic mirror sizes
and foci have been chosen in order to match the NA of the
experimental imaging system.

Due to computational constraints, we consider a reduced, 2-
D+1 geometry [(x, z)+t]. Although different from a full 3-D+1
case, the results are qualitatively compatible with the prediction
of a full 3-D theory (see Section IV).

We modeled the sub-λ source as a pulsed current source term
in Maxwell’s equations, polarized along y (corresponding to
the p-polarization in our experiment), with a carrier wavelength
λ = 300 μm. The current source term has a 50 μm diameter (full
width at 1/e) along the x-axis, no extension in the z direction,
and a 0.5 ps duration (full width at 1/e).

A 10-μm-thick metallic blade, extended for xo > 0 along
the x-axis, was placed in the focus plane of the first parabolic
mirror, 25 μm far from the source. We propagate the THz pulse
for different blade-edge positions (xo ) and we monitored the
electric field in a point in the focal plane of the second parabolic
mirror.

The results of our simulations are reported in Fig. 5: panel
(a) shows the field in the focus of the second parabolic mirror,
while in panel (b) we plot the reconstructed field obtained by



Fig. 5. (a) Electric field in the focus of the second parabolic mirror, evaluated
through FDTD numerical simulations. (b) Electric field retrieved by means of
calculating the derivative along xo .

performing the spatial derivative of the field in (a) along the
moving blade direction.

The numerical results match qualitatively well the experi-
mental findings, showing a similar asymmetry in the retrieved
field. As we will see in the next section, this effect has to be
regarded to as inherent to the investigated technique.

In order to better understand the physical origin of this asym-
metry, we developed an analytical model describing the inter-
action between the blade and the subwavelength source.

IV. THEORETICAL ESTABLISHMENT OF FIELD

RECONSTRUCTION THROUGH SPACE-TIME

KE: A NEW TRANSFER FUNCTION

We present in this section the analytical derivation of the
transfer function of an ideal KE+TDS system for the character-
ization of the electric field. Under ideal conditions, the blade can
be assumed as a perfectly conductive semi-infinite plane, with
negligible thickness. In this case, it is possible to find an analyt-
ical rigorous solution of the scattered electric field: historically,
the scattering of an electromagnetic field by a semi-infinite con-
ductive plane is the first rigorous diffraction problem solved in
electromagnetism; the solution was obtained by Sommerfeld in
1896. For the benefit of the reader, we will briefly recall the
approach in the Appendix, targeting the specific problem of the
reconstruction of THz fields generated by optical rectification.
Here, we will directly employ the results for the derivation of
the exact equation for the KE+TDS system in the case of a THz
field p-polarized to the blade edge (y polarized in the geometry
depicted in Fig. 1). The case for a general transverse polarization
is treated in the Appendix.

Before entering in the details, we define here the conventions
on the Fourier transforms adopted in the text: the THz electric
field is defined in time t/frequency ω by the Fourier relation

e (r, t) = 2Re

∫ ∞

−∞
E (r, ω) e−iω t dω

2π
(IV.1)

in the r, ω space. Considering z the propagation coordinate, it
is useful to define a spatial Fourier transform for the transverse
coordinates x,y as (we omit here the dependence on ω)

Ě (kx, ky , z) =
∫∫ ∞

−∞
E (x, y, z) e−ikx x−iky y dxdy (IV.2)

that is, for the total spatiotemporal field:

e (x, y, z, t) = 2Re

∫∫∫ ∞

−∞
Ě (kx, ky , z, ω)eikx x+iky y−iω t

×dkxdkydω

(2π)3 . (IV.3)

We model the blade as a semi-infinite perfectly conductive
plane defined in z = 0 for xo > 0. As discussed previously, the
TDS system implements the integral along x and y of a specific
polarization associated with the field transmitted by the blade
in the plane z = 0+ , i.e., for each position of the blade, we
collect the quantity

∫∫ ∞
−∞ E (x, y, z = 0+ , ω) · ûdxdy, where û

is a versor parallel to the transverse polarization detected by
the system. This operation is equivalent to sampling the Fourier
transform at zero:

Ě
(
kx = 0, ky = 0, z = 0+ , ω

)
· û. (IV.4)

With a scan along x we can then only reconstruct the integral
along y of the electric field in z = 0, i.e., in the transformed
space Ě(i) (kx, ky = 0, z = 0+ , ω). For simplicity, we will omit
the dependences on z = 0+ and ky = 0 in the expressions which
will follow.

If we consider a y-polarized input field E(i) = E(i) ŷ and a
detection along û = ŷ, the following exact relation between the
incident E(i) and the total integral of the field transmitted by the
blade holds

Ě(kx = 0, ω) = Ě(i) (kx = 0, ω)

−
∫ ∞

−∞

2i

sx

√

1 +
csx

ω
Ě(i) (sx, ω) ei sx x0

dsx

2π
.

(IV.5)

Equation (IV.5) is directly obtained by evaluating the total
field transmitted by a perfectly conductive half-plane, as can be
found in several references (see, e.g., [30]) and reported in detail
in the Appendix.

We define a “reconstructed” field eR (x0 , t), function of the
blade position coordinate x0 , by differentiating (IV.5) with re-
spect to x0 and transforming back in the temporal domain. We,
thus, obtain

eR (x0 , t) ∝ Re

∫∫ ∞

−∞

√

1 +
csx

ω
Ě(i)(sx, ω)eisx x0 −iω t dsxdω

(2π)2 .

(IV.6)
Equation (IV.6) is formally equal to the Fourier transform (in

the position of the blade x0) of the input function Ě(i) (sx, ω),
multiplied by the radical term of (IV.6). Considering that the
Fourier transform of a real signal possesses a complex con-
jugate symmetry and that, by hypothesis, Ě(i) (sx, ω) is the
Fourier transform of a real signal, it holds Ě(i) (sx, ω) =
conj(Ě(i) (−sx,−ω)). Thus, in order to ensure that eR (x0 , t) is
a real function, the radical term in (IV.6) must possess a complex
conjugate symmetry as well. It is easy to verify that this holds



Fig. 6. Effect of the transfer function of the KE+TDS system for a super-
wavelength (a), (b) and subwavelength (c), (d) fields in pseudocolor. (a) and (b)
Direct and transformed space of the function in Fig. 2(a) and (b) after a multi-
plication with (IV.8) in the transformed space. The lines indicate the boundaries
of the region where (IV.8) is zero. (c) and (d) Same for the subwavelength field
in Fig. 2 (e) and (f).

only when it is real; thus, (IV.6) can be rewritten as

eR (x0 , t) ∝
∫∫ ∞

−∞
H

(

1 +
ckx

ω

)√

1 +
ckx

ω
Ě(i)

× (kx, ω) eikx x0 −iω t dkxdω

(2π)2 (IV.7a)

where H is the Heaviside theta function. Considering the Fourier
transform of the reconstructed field, we get

Ě(R) (kx, ω) ∝ H

(

1 +
ckx

ω

)√

1 +
ckx

ω
Ě(i) (kx, ω) .

(IV.7b)

From (IV.7b), we obtain the transfer function of the KE+TDS
system, where we consider explicitly the Heaviside theta
function

Ť (kx, ω) ≡

⎧
⎪⎪⎨

⎪⎪⎩

√

1 +
ckx

ω
, for kx > −ω

c

0, for kx < −ω

c
.

(IV.8)

For fields with spatial localization above the wavelength scale,
the spectrum is localized in a region where the spatial frequency
kx is small when compared to ω/c, as also visible in the example
in Fig. 2(a) and (b). The effect of the transfer function on such
fields is negligible as Ť (kx, ω) tends to the unit value for small
values of ckx/ω. As heuristically expected, in this case the
reconstructed field is proportional to the field under test, as it
is clearly visible in Fig. 6(a) and (b) where the distributions
proposed in Fig. 2(a) and (b) are multiplied in the transformed
space by Ť (kx, ω)—see (IV.8).

Fig. 7. (a) and (b) Spatiotemporal spectra of the experimental and numerical
data in Figs. 4 and 5, respectively. A clear accumulation appears on the straight
kx = +ω/c (red) and quenching on kx = −ω/c (yellow).

Conversely, the transfer function plays a relevant role for sub-
wavelength localized fields, filtering out part of the spatiotem-
poral components of the reconstructed field: Ť (kx, ω) is zero
for the superluminal components corresponding to the region
bounded by the straight lines kx = −ω/c and ω = 0. The field
reconstructed by the KE+TDS system then undergoes an asym-
metric quenching of the spatiotemporal spectrum that translates
into an asymmetric distribution in the direct space. This effect
is shown in Fig. 6(c) and (d) where Ť (kx, ω) is applied to the
subwavelength distribution in the example of Fig. 2(d) and (e).

The asymmetric filtering effect can be now clearly recog-
nized in the experimental and numerical results: their Fourier
transforms, reported in Fig. 7(a) and (b), respectively, possess
components with low energy in the subluminal region where
Ť (kx, ω) is zero.

From this analysis, it is clear that the KE+TDS system can
provide a measurement of the field under test only in the por-
tion of the spatiotemporal spectrum where (IV.8) is significant.
However, when it is possible to guess a spatial symmetry in
the field under test, this information is sufficient for the full
reconstruction of the field. As the symmetry in the direct space
corresponds to symmetry in the transformed space, the miss-
ing components of the field for kx < −ω/c are equal to the
components for kx > ω/c available in the measurement.

Moreover, if the KE is implemented for negative xo (i.e., the
blade acts for xo < 0), its transfer function becomes

Ť− (kx, ω) ≡

⎧
⎪⎪⎨

⎪⎪⎩

−
√

1 − ckx

ω
for kx >

ω

c

0 for kx <
ω

c
.

(IV.9)

Remarkably, Ť− (kx, ω) is significant where (IV.8) is zero. In
turn, a generic subwavelength field can be completely recon-
structed when two different KE measurements are performed
for positive and negative xo . In this case, the investigated field
in the Fourier domain can be determined with the aid of the two
functions

Ě(i)
± (kx, ω) ∝ ±H

(

1 ± ckx

ω

)√
ω

ω ± ckx
Ě(R)
± (kx, ω) .

(IV.10)



Fig. 8. Results from the data inversion considering the transfer function T.
(a) Initial spatiotemporal field simulated via FDTD. (b) Retrieved field obtained
via KE+TDS: under the hypothesis of a symmetric geometry. (c) Retrieved
experimental field profile under the same conditions. (d) Comparison between
the beam profile obtained by (blue, solid) and without (red, dashed) taking into
consideration the effect of the asymmetric KE transfer function.

In the next section, we show the results obtained by exploit-
ing the developed inversion method on the experimental and
numerical data shown in Figs. 4 and 5.

A. Numerical and Experimental Data Inversion

In order to retrieve the spatiotemporal field profile from the
numerical and experimental data, we proceeded by dividing the
spatiotemporal spectra by the KE transfer function T. After that,
under the assumption of a symmetric source we recovered the
missing information by imposing the spectral-spatial symme-
try (kx → −kx ). Considering the source shown in Fig. 8(a),
and by applying the method described before on the simulated
KE+TDS measurements (see Fig. 5), we retrieved the field
shown in Fig. 8(b), thus confirming the validity of the pro-
posed method. On the other hand, we note the appearance of a
temporal phase shift of on the reconstructed x–t field that may
be interpreted as a consequence of the Gouy phase shift, as
recently commented by Yi et al. for subwavelength localized
sources [31].

Finally, we performed the same analysis on the experimental
data shown in Fig. 4. The retrieved spatiotemporal field profile
is presented in Fig. 8(c), while in panel (d) we compare the
time-integrated spatial beam profile obtained by evaluating the
intensity of the retrieved field (blue) with the same quantity
determined by the direct integration of the field in Fig. 4(b), i.e.,
before the inversion through the T-function.

V. CONCLUSION

This study reports on our recent studies related to the char-
acterization of subwavelength THz sources, the main ingredi-
ent for an aperture-free THz near-field imaging. Starting from
the consideration that extremely diffractive waves, e.g., non-
paraxial, are featured by space-time coupling, we discussed the

validity of the standard KE-based approach for a proper beam
profiling. Exploiting the unique electric-field time-resolved ca-
pabilities offered by THz TDS, we thus investigated experi-
mentally and numerically a field-resolved spatiotemporal char-
acterization technique relying on the combination of KE and
electro-optical sampling. We pointed out a systematic error af-
fecting this field-resolved approach and, resorting to the exact
Sommerfeld formulation of the scattering problem from an in-
finite, conducting half-plane, we provided a simple solution for
retrieving the full spatiotemporal structure of the sampled field.

As a closing remark, we stress that the proposed investiga-
tion is propaedeutic for properly addressing the issues related to
raster-scan imaging of subwavelength structures, where system-
atic aberrations may arise as a consequence of an asymmetric
transfer function, similarly to what presented here for a metallic
blade.

APPENDIX

A. Definition of the Vector Potential Equations for the KE

We will treat the diffraction problem from a half-plane and
define the polarization-dependent transfer function of the KE
with the aid of the vector potential A.

In the (r, ω) space, A is defined by the relations with the
electric field

E =
1

iωε0

(
∇∇ · A + k2

0A
)

(A1)

where ε0 is the vacuum dielectric constant and ko = ω/c is the
wavenumber in vacuum. The THz field is generated by optical
rectification under the hypothesis of weak generation, i.e., the
pump is not depleted/ modified by the generation itself. In this
case, the optical field acts as a pure source for the THz field,
proportional to a current source J(i) (defined in the space z < 0)
by way of the nonlinear second-order tensor. Using the definition
in (A1), the vector potential satisfies the wave equation

∇2A + k2
0A = J. (A2)

It is important to note that the vector potential A is always
parallel to the current source. As it physically represents the
optical field, that is paraxial along the propagation coordinate
z, neither the current J(i) nor the vector potential A(i) pos-
sess longitudinal components along z. Moreover, if the optical
beam is x(y) polarized, we obtain a vector potential that is x(y)
polarized.

As discussed previously, the quantity under test is
Ě(i) (kx, ky = 0, z = 0, ω). We can express this quantity in
function of the spatial Fourier transform Ǎ(i) (kx, ky , z = 0)
of the vector potential in the plane of the blade, z = 0. For z >
0 we have

A (x, y, z)

=
∫

Ǎ (kx, ky , z = 0) eikx x+iky y+i|z |
√

k 2
0 −k 2

x −k 2
y
dkxdky

(2π)2 .

(A3)



Substituting into (IV.4) for z = 0+ and ky = 0 (we will omit
this dependence for simplicity), we obtain

⎡

⎢
⎢
⎣

Ě
(i)
x (kx, ω)

Ě
(i)
y (kx, ω)

Ě
(i)
z (kx, ω)

⎤

⎥
⎥
⎦ =

1
iωε0

⎡

⎢
⎢
⎣

(
k2

0 − k2
x

)
Ǎ

(i)
x (kx, ω)

k2
0 Ǎ

(i)
y (kx, ω)

−kx

√
k2

0 − k2
x Ǎ

(i)
x (kx, ω)

⎤

⎥
⎥
⎦ .

(A4)
Note that if we have a y-polarized source, the field on the

blade will be y-polarized; conversely, for an x-polarized source
the field will have a zero y component.

If we can reconstruct Ǎ(i) (kx, ω), (A4) will then provide the
electric field Ě(i) (kx, ω).

We now take into account the quantity measured by the TDS
system (IV.4) and substitute into (A1). Considering that A does
not have longitudinal components, we obtain

Ě
(
kx = 0, ky = 0, z = 0+)

· û

= −iωη0Ǎ
(
kx = 0, ky = 0, z = 0+)

· û. (A5)

As discussed in the next sections, the integral of the total
vector potential at the output of the blade z = 0+ is

Ǎ
(
kx,= 0, ky = 0, z = 0+)

· û

= A(i) (
kx = 0, ky = 0, z = 0+)

· û

−
∫

2i

sx

√

1 +
csx

ω
Ǎ(i) (

sx, ky = 0, z = 0+)
· ûeisx x0

dsx

2π
.

(A6)

We can substitute (A6) into (A5), and differentiate for x0 and
transform back in time, as done for (IV.6). This yields

eR (x0 , t) ∝ Re

∫∫ ∞

−∞
−iωη0

√

1 +
cskx

ω
Ǎ(i)

× (kx, ω) eisx x0 −iω t dkxdω

(2π)2 . (A7)

Following the same considerations applied previously on the
radical function, and addressing two different KE measure-
ments for positive and negative xo , we can reconstruct the two
functions

Ǎ(i)
± (kx, ω) · û ∝ ±H

(

1 ± ckx

ω

)√
ω

ω ± ckx

Ě(R)
± (kx, ω)
−iωη0

· û.

(A8)
If we now distinguish the two polarizations x and y, consid-

ering (A4) we obtain

⎡

⎢
⎢
⎣

Ě
(i)
x,± (kx , ω)

Ě
(i)
y ,± (kx , ω)

Ě
(i)
z ,± (kx , ω)

⎤

⎥
⎥
⎦ ∝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

1 −
(

ckx

ω

)2
)

H

(
1 ± ckx

ω

)√
ω

ω ± ckx

Ě(R )
x,± (kx , ω)

H

(
1 ± ckx

ω

)√
ω

ω ± ckx

Ě(R )
y ,± (kx , ω)

− ckx

ω

√

1 −
(

ckx

ω

)2

H

(
1 ± ckx

ω

)√
ω

ω ± ckx

Ě(R )
x,± (kx , ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A9)

Equation (A9) generalizes (IV.10) for both polarizations.
In the next sections, we will treat the problem of the scattering

of an electric field by a perfectly conductive half-plane and we
shall derive the relations in (IV.4) and (A6), employed in the
paper for finding the transfer function of the KE+TDS system.

B. Definition of the Scattering Problem for the Vector Potential

We model the blade as a semi-infinite perfectly conductive
plane at z = 0 for xo > 0. The total field E is considered as
the superposition of an incident field E(i) and a scattered field
E(s) , generated, respectively, by the input source J(i) in the free
space and by an induced current J(s)on the metallic plane. In
particular, the tangential component of the total field E on the
metallic plane is zero. As discussed previously, since the optical
source is transversely polarized with respect to the metallic plane
we consider the input source parallel to the half-plane. For the
vector potential, the following relation holds:

A(i)
z = A(s)

z = 0. (B1)

We now look for the requirements associated with the vec-
tor potential in order to satisfy the following condition on the
half-plane:

E(i)
‖ + E(s)

‖ = 0 for z = 0 and x > x0 . (B2)

Using the relation on the electric field in (A1), and (B1) and
(B2) for the vector potential, we have

[
∂xx + k2

0 ∂xy

∂xy ∂yy + k2
0

]
(
A(i) + A(s)

)
= 0. (B3)

Since the operator acting on the vector potential is linear, the
condition in (B3) implies that

A(s) (x, y, 0) = −A(i) (x, y, 0) + A(s)
o for x > x0 (B4)

where A(s)
o is the solution to the equation

[
∂xx + k2

0 ∂xy

∂xy ∂yy + k2
0

]

A(s)
o = 0 (B5)

valid on the plane of the blade z = 0. We now calculate
the operator in the transformed wavevectors Fourier space



k = (kx, ky , kz ) of the spatial coordinate r = (x,y,z), that is
[−k2

x + k2
0 −kxky

−kxy −k2
y + k2

0

]

. (B6)

The determinant of this operator is zero when

k2
x + k2

y = k2
0 (B7)

i.e., A(s)
o is a field that propagates parallel to the blade. As we are

not interested in these components, we can consider A(s)
o = 0.

Hence, the relation in (B2) can be rewritten as

A(s) (x, y, 0) = −A(i) (x, y, 0) for x > x0 . (B8)

C. Solution for the Driven Wave Equation for the Potential

The scattered field is generated by a 2-D spatial current dis-
tribution on the plane z = 0:

J(r) = J(s) (x, y) 2πδ (z) . (C1)

Equivalently, in the 2-D transformed space it holds

J(s)(x, y) =
∫

J̌(s) (kx, ky ) eikx x+iky y dkxdky

(2π)2 . (C2)

Substituting (C2) into (A1), we obtain the solution for the
scattered electromagnetic potential

A(s) (x, y, z)

= − i

2

∫
J̌(s)

o (kx, ky )
√

k2
0 − k2

x − k2
y

eikx x+iky y+i|z |
√

k 2
0 −k 2

x −k 2
y
dkxdky

(2π)2

(C3)

or equivalently, we obtain that the Fourier transform on the
section z = 0+ of the scattered field is

Ǎ(s) (
kx, ky , z = 0+)

= − i

2
J̌(s)

o (kx, ky )
√

k2
0 − k2

x − k2
y

. (C4)

D. Scattering Current Induced by a Plane Wave

The scattering problem in (B9) is valid only for x > x0 .
Hence, we can rewrite the identity in terms of a function that
coincides with the opposite incident field on the blade, but is
an arbitrary function f (x, y) for x < x0 . With the help of the
Heaviside theta function H(x), we define (in the direct and the
transformed space)

C (x, y) = −A(i) (x, y, 0) H(x − x0)

+ (1 − H(x − x0)) f (x, y) (D1a)

Č (kx, ky ) = π
[
f̌ (kx, ky ) −Ǎ(i) (kx, ky , z = 0)

]

+
[
f̌ (kx, ky ) +Ǎ(i) (kx, ky , z = 0)

]

⊗
(

i

kx
e−ikx x0

)

(D1b)

where the symbol ⊗ stands for the convolution with respect to
kx . Substituting (C3) into (B9) for z = 0, we have

− i

2

∫∫
J̌(s) (kx, ky )

√
k2

o − k2
x − k2

y

eikx x+iky y dkxdky

(2π)2

=
∫∫

Č (kx, ky )eikx x+iky y dkxdky

(2π)2 = 0 for x > x0 .

(D2)

The solution of (D2) must account for the fact that the current
is zero where the blade is not present

∫
eiky y dky

2π

∫
J̌(s) (kx, ky ) eikx x dkx

2π
= 0. (D3)

To solve the integral problem in (D2) and (D3) for the scat-
tering current J̌(s) (kx, ky ), we introduce a support function

J̌(s)
o (kx, ky , sx) defined as

J̌(s) (kx, ky ) =
∫

J̌(s)
o (kx, ky , sx) e−ikx x0

dsx

2π
. (D4)

As long as the term in (D4) converges, the condition in (D3)
can be simplified in
∫

J̌(s)
o (kx, ky , sx)e[ikx (x−x0 )] dkx

2π
= 0 for x < x0 ∀ky ,∀ksx.

(D5)
We can look for a function J̌(s)

o (kx, ky , sx) that satisfies the
conditions necessary to apply Jordan’s lemma in kx ∀ky ,∀ksx

and that has no poles in the complex lower half-plane im(kx) <
0: in this case, the condition in (D5) is verified.

If we now impose f̌ (kx, ky ) = Ǎ(i) (kx, ky , z = 0), we ob-
tain that C (x, y) is also related to the input field Ǎ(i)(kx,
ky , z = 0) through an integral relation

Č (kx, ky ) =Ǎ(i) (kx, ky , z = 0) ∗
(

2i

kx
e−ikx x0

)

= 2ie−ikx x0

∫
Ǎ(i) (sx, ky , z = 0)

kx − sx
eisx x0

dsx

2π
.

(D6)

Substituting (D6) into (D2), the problem simplifies to

∫
⎡

⎣ J̌(s)
o (kx, ky , sx)

√
k2

o − k2
x − k2

y

+ 4
Ǎ(i) (sx, ky , z = 0)

kx − sx
eisx x0

⎤

⎦

∗e[ikx (x−x0 )] dkx

2π
= 0, x > x0 , ∀ky ,∀ksx. (D7)

Since Ǎ(i) (sx, ky , z = 0) is a constant in the integral, (D7)
and (D5) represent the problem of the scattering of a single
plane wave by the conductive half-plane.

To solve (D7), we could simply require

J̌(s)
o (kx, ky , sx) = −4Ǎ(i) (sx, ky , z = 0)

∗eisx x0

√
k2

o − k2
x − k2

y

kx − sx
.

However, we note that the function would not satisfy
Jordan’s Lemma, as it is not zero for |kx | → ∞, and would

not satisfy (D5). We also note that the term 1/
√

k2
o − k2

x − k2
y



in the integral gives rise to a couple of complex conjugate poles

kx = ±
√

k2
o − k2

y , and only the pole kx =
√

k2
o − k2

y falls in

the upper complex plane, being thus relevant for the integration
with Jordan’s lemma. Then, also the following relation satisfies
the condition in (D7):

J̌(s)
o (kx, ky , sx) = −4Ǎ(i) (sx, ky , z = 0) eisx x0

∗

√√
k2

o − k2
y − kx

√√
k2

o − k2
y + sx

kx − sx
. (D8)

Since (C8) has only a pole in the upper complex plane, it also
satisfies (D5).

E. Total Diffracted Field

Summarizing the previous results, the Fourier transform of
the field in the section of the blade z = 0+ is such that

Ǎ
(
kx, ky , z = 0+)

= A(i) (
kx, ky , z = 0+)

+A(s) (
kx, ky , z = 0+)

. (E1)

Using (C4) and (C8) into (B4), we obtain

Ǎ(s)(kx, ky , z = 0+) = 2i
∫

Ǎ(i)(sx, ky , z = 0+)

∗

√√
k2

o − k2
y + sx

√√
k2

o − k2
y + kx

e[i(sx −kx )x0 ]

(kx − sx)
dsx

2π
. (E2)

By substituting (E2) into (E1), the total field can be propa-
gated using (A3) for z > 0. By letting kx = 0 and ky = 0, we
finally obtain (A6).
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