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In this paper, we develop for the first time to our knowledge an analytical theory of second harmonic generation 
(SHG) in a generic nonuniform χ�2� medium. It is shown that by varying the properties of the medium gradually 
enough, the system can enter an autoresonant state in which the phases of the fundamental pump and of the 
generated second harmonic wave are locked. The effect of autoresonance allows efficient transfer of energy be-
tween the waves and, due to the continuous phase-locking in the system, all the energy of the pump could be 
converted to the second harmonic. Simple closed-form expressions for the waves amplitudes as a function of 
the longitudinal coordinate are derived, and an explicit criterion for the stability of the autoresonant state is ob-
tained. Our analytical theory is compared to the numerical solution of the coupled mode equations, which are 
found to be in excellent agreement with each other. The analytical closed-form expressions that we derive could be 
very useful for practical design of SHG devices with increased performances, such as highly efficient, wideband 
frequency converters. 

OCIS codes: (190.7220) Upconversion; (190.4223) Nonlinear wave mixing; (190.4410) Nonlinear optics,
parametric processes; (190.7070) Two-wave mixing; (190.4975) Parametric processes; (230.7405) Wavelength
conversion devices.

1. INTRODUCTION
Second harmonic generation (SHG) is among the simplest
processes of nonlinear optics and involves the conversion
of energy from a fundamental pump wave at frequency ω1

to its second harmonic at frequency ω2 � 2ω1 [1]. Since the
pioneering studies of nonlinear optics at the beginning of
the 1960s [2,3], SHG was studied extensively in various types
of materials and configurations and has been exploited in
numerous applications. Over the years, various theoretical
and experimental studies have shown that in many systems,
the SHG conversion efficiency and bandwidth could be
increased by varying the properties of the medium along the
direction of the waves propagation [4–8]. Similar conclusions
were obtained in other parametric processes, e.g., two-step
third-harmonic generation [9], three-wave mixing (TWM) in
the undepleted pump regime [10–12], and also TWM and
four-wave mixing (FWM) where pump-depletion was taken
into account [13–15].

In this paper, we develop an analytical theory of SHG in a
generic spatially dependent χ�2� medium and support it by
comparison with numerical simulations in plane, monochro-
matic wave conditions. One of the most significant results
of our theory is the derivation of simple, closed-form expres-
sions for the energy distribution between the fundamental and
the generated second-harmonic waves along propagation.
Moreover, we define the conditions in which the conversion
efficiency could be improved, eventually leading to complete
pump depletion. It should be emphasized that these condi-
tions differ from the corresponding criteria in a TWM process
in nonuniform media (see [14]) and cannot be derived from

them as some sort of a specific degenerate case. We show that
the dynamics of the considered system could be explained in
terms of the autoresonance effect. In autoresonance, a non-
linear wave or oscillator maintains a continuous phase-
locking with (an) other wave(s) or with an external driving
force due to a gradual variation of the parameters of the sys-
tem in time or space. Utilizing autoresonance in wave-mixing
processes allows to transfer energy between one type of wave
or mode in the system to another with very high conversion
efficiency. The attractive advantages of autoresonant wave
mixing have already been demonstrated in additional proc-
esses to those mentioned above, e.g., two-wave interaction
in nonlinear optics [16,17] and stimulated Raman scattering
in plasmas [18–23].

2. MATHEMATICAL MODEL
We start by writing the envelope equations describing the
process of SHG for plane, monochromatic waves in a nonuni-
form χ�2� medium where ω2 � 2ω1 [1]:
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The coupling coefficients are defined by ηj � 2deffω2
j ∕�kjc2�

where c is the speed of light in vacuum and deff is the effective
nonlinear susceptibility. ωj and kj are the j-th wave frequency
and wavevector, respectively, and Aj�z� is the corresponding
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envelope, i.e., the electric field of the j-th wave is Ej�z; t� �
Aj�z�ei�kjz−ωj t�. We assume slowly varying wavevectors kj�z�
for each of the interacting waves and define the wavevectors
mismatch Δk�z� � 2k1 − k2. For simplicity, we take into ac-
count the medium nonuniformity in our theory only by intro-
ducing the z dependence of the wavevectors mismatch Δk,
i.e., kj in the coupling coefficients ηj are replaced by some aver-
age values kj;avg along the medium. Next, we define dimension-
less coordinate ζ � z∕l and dimensionless complex amplitudes
aj � η−1∕2j Aj∕�η−1∕21 jA1;0j� where l � ��η1η2�1∕2jA1;0j�−1. In our
notations, the subscript “0” denotes initial condition values.
Using our definitions, we transform Eqs. (1) and (2) to the
dimensionless form
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Our next step is to represent the complex amplitudes aj
by their absolute value Bj and real phase ϕj by applying
the definitions a1 � B1 exp�iϕ1� and a2 � B2 exp�i�ϕ2�
l
R ζ
0 Δk�ζ0�dζ0��. We substitute these expressions into Eqs. (3)

and (4) and decompose the resulting equations into their real
and imaginary parts to obtain the following set of equations:

dB1

dζ
� B1B2 sin Φ; (5)

dB2

dζ
� −

1
2
B2
1 sin Φ; (6)

dΦ
dζ

� lΔk� Q cos Φ; (7)

where we defined the phase mismatch Φ � 2ϕ1 − ϕ2 and
Q � B2

1B2�4B−2
1 − B−2

2 �∕2. From the two differential equations
for the real amplitudes Eqs. (5) and (6), the algebraic Manley–
Rowe relation can be derived (note that according to our
definitions B1;0 ≡ ja1;0j≡ 1):

B2
1 � 2B2

2 � B2
1;0 � 2B2

2;0 � 1� 2B2
2;0: (8)

In the following, we assume for simplicity that the wavevec-
tor mismatch is a linear function of position and define α as
the nonuniformity rate coefficient by the relation Δk �
α�z − z��∕l2 � α�ζ − ζ��∕l, where the subscript � denotes the
point of perfect wavevectors matching Δk � 0. It is convenient
to introduce a shifted normalized coordinate ξ � ζ − z�∕l � ζ −
ζ� since the wavevectors are matched at ξ � 0. Equations (6)
and (7) can then be rewritten as

dB2

dξ
� −

1
2
B2
1 sin Φ; (9)

dΦ
dξ

� αξ� Q cos Φ: (10)

In the rest of this paper we will focus on studying the set
of two differential equations (9) and (10) for the variables B2

and Φ in which the amplitude B1 is expressed by Eq. (8). In

Figs. 1 and 2, we present the numerical solution of Eqs. (9) and
(10) as a function of the normalized distance along propaga-
tion jαjξ when solving them in the interval −20 < jαjξ < 20 for
the initial condition B2

1;0 � 1, B2
2;0 � 0 and Φ0 � 0. In Fig. 1

(where α � 0.1), we see that when starting far from the wave-
vector matching point jαjξ � 0, phase-locking (Φ ≈ π) is ob-
tained immediately. This continuous phase-locking results
in a monotonic pump depletion (in average) until jαjξ →

���
2

p

where the pump is almost completely depleted and phase-
locking is lost. In Fig. 2 where the nonuniformity parameter
is large (α � 10), we see that the initial dynamics is essentially
the same as in Fig. 1 but now phase-locking is maintained
only until jαjξ ≈ −5, and consequently the final conversion
efficiency is much lower than in the previous example.

In the following sections we will develop an analytical
theory that explains the findings that are seen in the numerical
examples of Figs. 1 and 2.

3. AUTORESONANT DYNAMICS
We start the analysis at a negative value of jαjξini far from the
wavevector matching point, where we assume that the initial
amplitude of the second harmonic wave is small, i.e.
B2;0 ≪ B1;0 ≡ 1. At first we focus on the initial stage defined
by the requirement that B2�z� ≪ B1. Consequently, at this
stage we neglect the depletion of the pump wave and analyze
only the evolution of B2. Under these assumptions, Eqs. (9)
and (10) can be approximated by

dB2

dξ
� −

1
2

sin Φ; (11)

dΦ
dξ

� αξ −
1

2B2
cos Φ; (12)
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Fig. 1. Autoresonant evolution of (a) the wave envelopes B2
j and

(b) the phase mismatch Φ versus the normalized distance jαjξ for
a spatial nonuniformity rate α � 0.1. The numerical solution of Eqs. (9)
and (10) is plotted by colored curves. In (a), the fundamental wave B1
and the second harmonic wave B2 are plotted by red and blue, respec-
tively, and the black curves represent the value of the analytical
expressions Eqs. (19) and (20). The vertical dashed line is located at
jαjξ �

���
2

p
where complete pump depletion is obtained and phase-

locking is lost. Note that there is an excellent agreement between the
numerical solution and the analytical autoresonant solution, and the
corresponding curves are overlapping until jαjξ �

���
2

p
.
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where we used the approximate expressionQ ≈ −B2
1;0∕�2B2�≡

−1∕�2B2� (according to our definition of variables B1;0 ≡ 1).
Note that Eqs. (11) and (12) are a particular case of Eq. (11)
in [15]. Following the analysis there, we see that the solution
of Eqs. (11) and (12) can be expressed in the form

Z � −

1
2αξini

�
eiα�ξ

2
−ξ2ini�∕2 −

ξini
ξ

�
; (13)

written in terms of a single complex new variable
Z � B2 exp�iΦ�. As jξj decreases, the term ξini∕ξ becomes
dominant and Z approaches 1∕�2αξ�. Therefore, at some point
our system phase-locks at Φ � Φ̂ with either Φ̂ ≈ π or Φ̂ ≈ 0
for α positive or negative, respectively (note that the values of
Φ̂ are opposite to those in [15]). One can see this adiabatic
initial phase-locking transition in the numerical examples in
Figs. 1 and 2. At the same time B2 grows as B2 � jZj ≈
1∕j2αξj and thus, at some point, as jαjξ → −1∕2, one must also
include the depletion of the fundamental wave.

We continue our analysis by taking into consideration the
effect of pump depletion and assuming that the phase Φ is
locked around the value Φ̂ [satisfying the relation cos Φ̂ ≈ −s
where s≡ sign�α�]. The set of equations that describe the
autoresonant phase-locked state (denoted by the hat symbol)
is obtained by the requirement that the left hand side of
Eq. (10) vanishes,

αξ − sQ̂ � 0; i:e: Q̂ � jαjξ; (14)

and by rearranging Eq. (9):

sin Φ̂ � −

2

B̂2
1

dB̂2

dξ
: (15)

Here Q̂ � B̂2
1B̂2�4B̂−2

1 − B̂−2
2 �∕2 can be expressed in terms of

B̂2
1 using the Manley–Rowe relation that is given by Eq. (8).

Assuming that the initial amplitude of the second harmonic

wave is negligible with respect to the initial pump amplitude
�B2;0 ≪ B1;0 ≡ 1�, the Manley–Rowe relation can be approxi-
mated by

B2
1 � 2B2

2 � 1: (16)

Eliminating B2 from Eq. (16) and substituting it in Q̂ yields

Q̂ � 2 − 3B̂2
1��������������������

2�1 − B̂2
1�

q : (17)

Substituting this expression in Eq. (14) results in an algebraic
equation for B̂1:

2 − 3B̂2
1��������������������

2�1 − B̂2
1�

q � jαjξ: (18)

After some algebraic transformations, a quadratic equation in
B̂2
1 can be derived from Eq. (18). The solution of our system is

the root for which B̂2
1 → 1 as jαjξ → −∞ that is a monotonic

decreasing function of jαjξ, i.e.,

B̂2
1 �

6 − �jαjξ�2 − jαjξ
�����������������������
6� �jαjξ�2

p
9

; jαjξ
���
2

p
: (19)

The solution for the second harmonic wave is obtained by
substituting Eq. (19) into Eq. (16), resulting in a monotonic
increasing function of jαjξ:

B̂2
2 �

3� �jαjξ�2 � jαjξ
�����������������������
6� �jαjξ�2

p
18

; jαjξ
���
2

p
: (20)

Note that our autoresonant solution predicts that if phase-
locking continues, the pump could be completely depleted
and all its energy will be transferred to the second harmonic
wave while approaching jαjξ �

���
2

p
. Beyond this point, the

analytical solution that was derived becomes invalid (since
B̂2
1 must be nonnegative), meaning that phase-locking cannot

be preserved any more. The analytical solutions, Eqs. (19)
and (20), are plotted in Figs. 1 and 2 and are found to be
in excellent agreement with the local average of the numerical
solution as long as phase-locking is preserved. In the following
section, we will analyze the stability of the autoresonant
state and will derive a necessary criterion for its stability, from
which we could estimate what are the boundaries of the
autoresonant region.

4. STABILITY OF THE PHASE-LOCKED
SOLUTION
In the previous section we have discussed the autoresonant
state solution that exists in our system. We show now that the
phase-locked evolution of the system is stable as long as the
nonuniformity rate jαj is small enough. In studying the stabil-
ity, we assume that the solution is close to the autoresonant
state, i.e., we consider B2 � B̂2 � δB2 andΦ � Φ̂� δΦwhere
jδB2j, jδΦj ≪ 1. In our analysis we apply the approximate
trigonometric relations sin Φ � −s sin δΦ and cos Φ ≈ −s
(derived from sin Φ̂ � 0 and cos δΦ ≈ 1). We start by replac-
ing cos Φ by −s in Eq. (10) and expanding the equation to first
order in δB2:
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Fig. 2. Evolution of (a) wave envelopes B2
j and (b) phase mismatch

Φ for large value of the nonuniformity rate α � 10. Also in this
case, there is a very good agreement between the numerical solution
(colored lines) and the analytical autoresonant solution (black line).
Note that the corresponding curves are overlapping until jαjξ ≈ −5,
where phase-locking is lost. Because of the large value of jαj, the
stability condition for autoresonance, given by Eq. (24), is not satisfied
after jαjξ ≈ −5 and consequently the final conversion efficiency is
relatively low.
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dΦ
dξ

� s�jαjξ − Q̂� − sQ̂0δB2; (21)

where Q̂0 denotes the derivation of Q with respect to B2 evalu-
ated at B̂2. Recalling that phase-locking (dΦ̂∕dξ � 0) is
defined by Eq. (14), we see that

d�δΦ�
dξ

� −sQ̂0δB2: (22)

The following differential equation for δB2 is obtained by
substituting the relation dB̂2∕dξ � jαj∕Q̂0 [derived by
differentiation of Eq. (14)] and the lowest order expansion of
Eq. (9) in the variables δB2, δΦ, into the relation d�δB2�∕dξ �
dB2∕dξ − dB̂2∕dξ:

d�δB2�
dξ

� s
B̂2
1

2
sin δΦ −

jαj
Q̂0 ; (23)

where we used sin Φ � −s sin δΦ. Equations (22) and (23)
are the Hamilton equations for the canonical variables δB2

and δΦ that are related to the Hamiltonian

H�δB2; δΦ; ξ� � −s
Q̂0

2
�δB2�2 � Veff�δΦ; ξ�;

where V eff � sB̂2
1∕2 cos δΦ� jαjδΦ∕Q̂0 and ξ acts as “time”

variable. Note that Veff is a tilted “washboard” potential with
slow “time”-dependent parameters B̂1 and Q̂0. Hence, the
phase-locked state remains stable as long as the effective po-
tential has well defined minima (since cos δΦ ≈ 1 − �δΦ�2∕2),
i.e., for

jαj < Ω2; (24)

where Ω2
≡ Q̂0B̂2

1∕2. An explicit expression for the spatially
dependent frequency Ω is obtained by substituting Eqs. (19)
and (20) into the definition of Ω2:

Ω2 � �jαjξ�2
3

−

2jαjξ
�����������������������
�jαjξ�2 � 6

p
3

� 2; jαjξ <
���
2

p
: (25)

We present the dependence ofΩ2 on jαjξ in Fig. 3, where we
see that Ω2 decreases monotonically with jαjξ until it vanishes
at jαjξ �

���
2

p
. This conclusion agrees with the finding that

the spatial frequency of the small amplitude modulations that
are seen in Figs. 1 and 2 around the slowly evolving average
wave amplitudes [given by Eqs. (19) and (20)] and around
Φ̂ ≈ π, decreases with jαjξ (in particular, these modulations
are seen well in the graphs of Φ).

In light of Eq. (24), Fig. 3 shows that for any given value of
jαj, the autoresonant state is initially stable when starting in a
negative value of jαjξ far from the perfect wavevector match-
ing point jαjξ � 0, but it becomes unstable at some point be-
fore jαjξ �

���
2

p
. Because of the decreasing dependence of Ω2

as a function of jαjξ, we see that for a smaller value of jαj, the
violation of the stability criterion occurs later. Therefore, for a
small enough value of the nonuniformity rate, say jαj ≤ 0.1, it
is possible to preserve phase-locking almost until jαjξ �

���
2

p

and practically achieve complete pump depletion. This impor-
tant conclusion agrees well with the numerical results that are

presented in Fig. 1 for α � 0.1. For the larger value of α � 10
that is presented in Fig. 2, we see that phase-locking is lost at
jαjξ ≈ −5 where the stability criterion is not satisfied and the
final conversion efficiency converges to about 25%, which is
considerably lower when compared with the first example.

Note that even in the case of large jαj there are some
advantages with respect to the known result in a uniform
medium and arbitrary constant wavevector mismatch Δk. In
the uniform case, the conversion efficiency is a periodic func-
tion of position and the spatial average conversion efficiency
decreases strongly as a function of the wavevector mismatch
[3]. The amplitude of the spatial oscillation is equal to the local
average; hence, for any given length of a uniform medium,
there are frequencies for which the final conversion efficiency
is zero or close to it. Moreover, an involved dynamics occurs
when relaxing the plane, monochromatic wave condition
(see, e.g., [24]). On the contrary, in a nonuniform medium, the
conversion efficiency increases monotonically as a function of
position and could be designed to be very high within a large
bandwidth. The robustness of autoresonant schemes is ex-
pected to allow achieving high conversion also in multidimen-
sional configurations, as demonstrated for instance in [22].

In Appendix A, we derive an explicit criterion for the
stability of the phase-locked solution allowing practically
complete energy conversion of the initial pump energy to
the second harmonic. In terms of the physical parameters, this
criterion is written as

jΔkfin − Δkinij
L

<
0.23
l2

; (26)

where L is the length of the χ�2� medium,Δkini andΔkfin are the
wavevector mismatches at the initial and the final boundaries
of the medium (Δk � 2ω1�n1 − n2�∕c), and

l �
��

cε0
8π2

�
·
n2
1;avgn2;avgλ1λ2

d2effI1;0

�1∕2
: (27)

Here nj (the subscript “avg” denotes spatial average) and λj
denote the material refractive index and the vacuum wave-
length at frequency ωj , I1;0 is the initial fundamental wave
intensity, ε0 is the vacuum permittivity, and c is the speed of
light in vacuum.
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Fig. 3. Stability function Ω2 versus jαjξ given by the analytical
expression in Eq. (25). Satisfying the criterion jαj < Ω2 continuously
is required for the stability of phase-locking.
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At this point it is worth comparing the results that were
obtained through our analysis of autoresonant SHG in a
nonuniform medium with other autoresonant wave-mixing
processes in nonuniform media that were previously studied,
namely TWM and FWM [14,15]. A common feature to all these
three autoresonant processes is the improvement of the con-
version efficiency as the nonuniformity rate jαj decreases.
However, while in SHG and FWM there is a well-defined point
jαjξ in which complete-pump depletion can be obtained, that
is followed by saturation of the energy partition between
the interacting waves, in TWM there is a gradual increase
of the conversion efficiency as a function of position that only
asymptotically may reach 100%.

5. SUMMARY
In this paper, we have analyzed the process of autoresonant
SHG in a nonuniform χ�2� medium. We have shown that setting
a weak nonuniformity in this system allows the establishment
of a stable autoresonant state in which a conversion efficiency
of 100% could be obtained. We have derived closed-form
analytical expressions for the spatial solution of the wave am-
plitudes as a function of the longitudinal coordinate [Eqs. (19)
and (20)] and found a criterion for the stability of the autore-
sonant state [Eq. (24)]. These simple closed-form expressions
could be very useful for a practical design of SHG devices.
Because of the relative insensitivity of the final conversion
efficiency on the system parameters, e.g., the fundamental fre-
quency, it is expected that by choosing the design parameters
appropriately, new types of highly efficient frequency convert-
ers with large bandwidths could be fabricated with potential
applications in short pulses upconversion as shown in [4–8].
An estimation for the required values of the design parameters
associated with autoresonant SHG devices is provided in
Appendix A.

Considering the widespread use of SHG processes in
various nonlinear optics configurations and their numerous
applications, the authors expect that the robust autoresonant
SHG scheme that is described in this paper would be relevant
to a vast variety of applications. The simple explicit criteria
(derived in Appendix A) that are necessary for achieving
highly efficient autoresonant SHG are a valuable tool for that
purpose. We stress again that these practical design criteria
differ from the corresponding criteria in a TWM process in
nonuniform media (see [14]), and cannot be derived from
them.

Because of the insensitivity of the autoresonant scheme to
small variations of the system parameters, in realistic cases in
which the pump contains a range of frequencies, it is possible
to obtain high conversion efficiency of each one of the spec-
tral components of the pump (as described by our monochro-
matic wave model).

It should be stressed that although we considered explicitly
in this paper a case in which the wavevector mismatch be-
tween the waves is a linear function of position, the actual
functional dependence of the wavevector mismatch is not sig-
nificant as long as it varies monotonically along propagation.

When our manuscript was under review, we became aware
that some of the final conclusions of the current paper were
reported also by Porat and Arie, however, by applying a com-
pletely different analysis method [25]. We find that these two
separate points of view are complementary to each other, and

allow together a deeper understanding of the underlying
physical basis of the fundamental process of SHG in nonuni-
form media.

APPENDIX A: AUTORESONANT SHG 
DEVICE SPECIFICATIONS
In this appendix, we derive explicit formulas specifying the
properties of the nonlinear medium as well as the experimen-
tal setup conditions that are required for an efficient autore-
sonant SHG process. At first, we express the normalized
nonuniformity rate α and the position jαjξ in terms of the basic
physical parameters. Substituting the definitions after Eq. (2),
the normalization parameter for length takes the form

l �
��

cε0
8π2

�
·
n1;avgn2;avgn1;0λ1λ2

d2ef f I1;0

�
1∕2

≈
��

cε0
8π2

�
·
n2
1;avgn2;avgλ1λ2

d2effI1;0

�1∕2
; (A1)

where we used the relations ωj∕kj � c∕nj and c∕ωj � λj∕2π.
Here nj and λj denote the material refractive index and the
vacuum wavelength at frequency ωj , I1;0 � 2n1;0cε0jA1;0j2 is
the initial fundamental wave intensity, ε0 is the vacuum per-
mittivity, and c is the speed of light in vacuum [1]. From the
definitions after Eq. (8), we see that

α � l2

L
�Δkfin − Δkini�; (A2)

and

ξ � lΔk
α

� L
l
·

Δk
�Δkfin − Δkini�

; (A3)

therefore

jαjξ � l · Δk · sign�Δkfin − Δkini�: (A4)

Here Δkini and Δkfin are the wavevector mismatches at the
initial and the final boundaries of the χ�2� medium, and L is
the length of the nonlinear medium.

We have shown in Section 3 that the essential region of the
phase-locked evolution is located between (a) jαjξ � −1∕2
(phase-locking is achieved automatically by approaching this
point) and (b) jαjξ �

���
2

p
[where complete energy conversion

between the fundamental and the second harmonic wave
(B2

1 � 0, 2B2
2 � 1) may be obtained according to Eqs. (19)

and (20)]. Hence, designing the variation of the parameters
of the system to include the region −1∕2 < jαjξ <

���
2

p
(i.e.,

jαjξini ≤ −1∕2 and jαjξfin ≥
���
2

p
) will allow efficient energy con-

version. From Eq. (A4) we see that it is necessary to design the
system such that sign�Δkfin� ≠ sign�Δkini� and

jΔkinij >
1
2l
; jΔkfinj >

���
2

p

l
: (A5)

We see that the requirements on the boundary values of the
wavevector mismatch depend on the values of the length
scale, which by itself is a function of various physical param-
eters in the system [see Eq. (28)]. For instance, an increase of
the pump intensity I1;0 results in a decrease of l and conse-
quently in an enlargement of the necessary range of variation
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of Δk that is required for allowing considerable pump
depletion.

Note that the limit of a uniform medium, in which
Δkfin → Δkini, is equivalent to jαj � 0. In this case, jαjξ →
const [see Eqs. (A2)–(A4)], i.e., the integration domain does
not include the required interval for autoresonance
−1∕2 < jαjξ <

���
2

p
. Therefore, in this limit, the autoresonant

solution that is discussed in this paper is not applicable.
Stable phase-locked dynamics is preserved along the propa-

gation in the system for jαj < Ω2, i.e.,

jΔkfin − Δkinij
L

<
Ω2

l2
; (A6)

where Ω2 is the expression that is given by Eq. (25). Note that
Ω2 is a monotonic decreasing function of jαjξ that vanishes at
jαjξ �

���
2

p
; hence the stability criterion cannot be satisfied

everywhere. However, keeping the phase-locking until jαjξ �
5∕4 allows the conversion of about 90% of the initial pump
energy to the second harmonic, since according to Eq. (20)
at this point 2B2

2 � 8∕9. The value of Ω2 at jαjξ � 5∕4 is
11∕48 ≈ 0.23; therefore replacing Ω2 in Eq. (A6) by this value
gives a criterion for practically complete energy conversion.

Substituting the relation Δk�z�≡ 2k1 − k2 � �2n1ω1 −

n2ω2�∕c � 2ω1�n1 − n2�∕c into Eqs. (A5) and (A6) results in
an explicit criterion for efficient autoresonant conversion in
terms of the properties of the medium (refractive index
n�λ; z�, effective nonlinear susceptibility deff and length L)
and the incident electromagnetic field (wavelength λ1 and
intensity I1;0).

There are several possibilities to design the process of SHG
in a nonuniform medium to include the point of perfect wave-
vectors matching (Δk � 0). One option is to use birefringent
crystals in which the dispersion properties depend on the
polarization of the propagating wave. Under certain condi-
tions, it is possible to excite a second harmonic wave whose
polarization is different from the polarization of the funda-
mental wave in such a way that a perfect wavevectors match-
ing point will be found along their propagation direction.
Another option is to design the SHG process to take place in
a waveguide configuration to involve the interaction between
fundamental and second harmonic waves whose modes are
different from each other. Consequently, the wavevector mis-
match that appears in our model has to be replaced by the
mismatch between the spatially dependent propagation fac-
tors that could be designed to vanish at some point along
the propagation.
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