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Abstract The present work is a numerical study of the deterministic spin dynamics
of two interacting anisotropic magnetic particles in the presence of a time-dependent
external magnetic field using the Landau-Lifshitz equation. Particles are coupled
through the dipole-dipole interaction. The applied magnetic field is made of a con-
stant longitudinal amplitude component and a time dependent transversal amplitude
component. Dynamical states obtained are represented by their Lyapunov exponents
and bifurcation diagrams. The dependence on the largest and the second largest Lya-
punov exponents, as a function of the magnitude and frequency of the applied mag-
netic field, and the relative distance between particles, is studied. The system presents
multiple transitions between regular and chaotic behaviour depending on the control
parameters. In particular, the system presents consistent hyper-chaotic states.
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1 Introduction

The combination of energy injection and dissipation maintains macroscopic systems
out of the equilibrium [1]. This can generate complex dynamical states, such us noise-
periodicity, intermittency or chaos [2,3,4]. Several experiments of chaotic behaviours
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in magnetic systems have been reported [5,6,7,8,9,10]. Typical magnetic samples
are yttrium iron garnet spheres [5]. It is worth mentioning that, using the ferromag-
netic resonance technique, different types of routes to chaos have been found, such
as period-doubling cascades, quasi-periodic routes to chaos or intermittent routes to
chaos. Therefore, a detailed characterisation of chaotic states is relevant and in order.
The standard approach to study the magnetisation dynamics is based on the Landau-
Lifshitz system, which was derived 80 years ago [11]. Using this model (or its gen-
eralisations), theoretical descriptions and phase diagrams of the chaotic regions have
been given and explored[12,13,14,15,16,17,18,19,20,21,22]. Some of these mod-
els show new possible roots and ranges of physical parameters in chaotic domains
that could motivate new experiments in this area. In addition, a deep exploration of
the parameter space may help with chaos control [23,24] in experimental setups.

On the other hand, applications on two particle systems under constant magnetic
fields can be found in Refs. [25,26,27,28]. For conservative systems, when the in-
teraction between the particles is based on energy exchange, it is possible to obtain
analytical expressions for the magnetisations [25]. However, if the anisotropy en-
ergy is included, the system becomes non-linear and the analytical solutions are non-
tractable. Furthermore, the system can exhibit chaotic states in the conservative case
[28]. Two interacting dipoles in the presence of an external homogeneous magnetic
field were studied in Ref. [29]. The authors found that the total magnetisation is not
conserved; furthermore, for the non-dissipative case it is a fluctuating function of
time with a strong dependence on the strength of the dipolar term. In the dissipative
case there is a transient time before the total magnetisation reaches its constant value.
However, no permanent chaotic states were found. The inherent interest of this dipo-
lar system resides in the rich variety of dynamical states it presents. Furthermore, it
can be useful to understand some features of new complex materials such as artificial
spin ice where the dipolar interaction plays an important role [30,31].

The aim of this paper is to analyse the influence of a time dependent external
magnetic field on a system of two interacting anisotropic magnetic particles. The par-
ticles have dipole-dipole interaction. In particular, we study a periodic driving in the
direction perpendicular to the main anisotropy direction, which is called the easy axis.
The paper also focuses on the effect of the relative distance between particles. The
dynamical behaviour studied, calculating numerically the Lyapunov exponents and
other dynamical indicators, was characterised. The paper is organised in the follow-
ing way. In Sec. 2, the theoretical model is briefly described. In Sec. 3, the numerical
results are provided and discussed. Finally, some conclusions are presented in Sec. 4.

2 Theoretical Model

Let us consider two anisotropic magnetic particles in the presence of an external
magnetic field, Hext . We assume that each particle can be represented by a mag-
netic mono-domain of magnetisation Mi with i = (1,2). This approximation is called
macrospin approximation. The temporal evolution of the system can be modelled by
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the Landau-Lifshitz equation [11]

dMi

dt
=−|γ|Mi×Hi−

η |γ|
MiS

Mi× (Mi×Hi) , (1)

where, γ is the gyromagnetic factor, which is associated with the electron spin and is
approximately given by |γ|= |γe|µ0 ≈ 2.21×105 mA−1 s−1. In the above equation, η

denotes the dimensionless phenomenological damping coefficient that is characteris-
tic of the material and has a typical value ranging from 10−4 to 10−3 in garnets and
10−2 or larger in cobalt or permalloy [32].

Fig. 1 (Color online) Schematic view of the two particle system. The setup of the system consists on
the unit vector along the direction between the two particles is r̂ = x̂, the anisotropy axes of particles are
n1 = n2 = ẑ, and the external field Hext , having multiple components.

We assume that the coupling between the particles is the dipole-dipole interaction,
hence the effective magnetic field for each particle, Hi, is given by

Hi = Hext +βi (Mi · n̂i) n̂i +d−3 [3(Mk · r̂)r̂−Mk] , (2)

being (i,k) = 1,2 such that i 6= k. Here βi measures the anisotropy along the ni axis, d
is the fixed distance between the two magnetic moments, and r̂ is a unit vector along
the direction between the two particles. Notice that this special type of anisotropy is
called uniaxial anisotropy and the constants βi can be positive or negative depending
on the specific substance and sample shape [33] in use. Let us assume that the parti-
cles have the same magnitude M1S = M2S = Ms and the same anisotropy β1 = β2 = β

and n1 = n2 = ẑ. We apply an external magnetic field Hext that comprises both, a con-
stant longitudinal and a periodic transverse part with a fixed amplitude and frequency

Hext = H0 +HT sin(Ω t) , (3)

where both H0 (‖ẑ) and HT (⊥ẑ) are time independent. The axis r̂ is chosen per-
pendicular to the anisotropy axis, in particular r̂ = x̂. Figure 1 shows a schematic
view of the two particle system. Let us remark that the deterministic LL equation is
only valid for very low temperatures [11,34]. In order to take the temperature effect
into account, random magnetic field must be added [34,35]. Besides, we note that
for zero damping, i.e. η = 0, and without parametric forcing, i.e. HT = 0, Eq. (1)
is conservative. Hence, the dissipation and the oscillatory injection of energy move
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the magnetic particles in and out of the equilibrium. In such a circumstance the mag-
netisation of the particles may exhibit complex behaviour as. e.g., quasi-periodicity,
and chaos [12,18,19,20]. The next section provides an exhaustive characterisation of
the chaotic regime including its dependence on the longitudinal field |H0|, the fre-
quency Ω and the distance between particles d. This will reveal a rather complicated
topology in the parameter space. The dynamical behaviour of both magnetisations is
analysed using different methods.

3 Simulations

This Section is divided two parts. The first part briefly discusses the quantities used
to characterise temporal regimes. The second part covers some numerical results and
the corresponding analysis.

3.1 Dynamical Indicators

First, the dynamics of Eqs. (5) – (7) are characterised by evaluating the Lyapunov
exponents (LEs). This method consists of quantifying the divergence between two
initially close trajectories of a vector field [36,37]. In general, for an effective N-
dimensional dynamical system described by a set of equations, dX i

/
dτ = F i (X,τ),

the ith-Lyapunov exponent is given by

λi = lim
τ→∞

(
1
τ

ln

(∥∥δX i
τ

∥∥∥∥δX i
0

∥∥
))

, (4)

where ‖δX i
ξ
‖ is the distance between the trajectories of the ith-component of the

vector field at time ξ . They can be ordered by decreasing amplitude: λ1 ≥ λ2 ≥
.... ≥ λN . The first two exponents are the largest Lyapunov exponent (LLE) and the
second largest Lyapunov exponent (SLLE). Due to the fact that the LLG equation
conserves the modulus of each particle |mi| and that the applied magnetic field is
time dependent, the effective dimension of the phase space is five. From a dynamical
system point of view, more than one exponent may become positive for a system of
dimension five. Therefore, by exploring the dependence of the LLE on the different
parameters of the system, one can identify areas in control parameter space, where
the dynamics is chaotic (LLE positive), and those showing non-chaotic dynamics
(LLE vanishing or negative). In addition, when both the LLE and the SLLE have
positive values the system is at a hyper-chaotic regime. Nevertheless, since this is a
one-frequency forced system, at least one of its Lyapunov exponents will always be
zero; hence the simplest attractor is a periodic orbit. Another possibility is to have two
or three Lyapunov exponents equal to zero. In these cases the system exhibits a two
or three-frequency quasi-periodic behaviour. The Lyapunov exponents are presented
in the form of 2-D maps as a function of the relevant parameters of the system [37,
38]. Also, a zooming technique to explore in more detail the different regimes will be
used [39,40,41].
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Apart from the Lyapunov spectrum analysis, there are other methods of quanti-
fying the dynamical behaviour of a system, such as the Fourier spectrum, Poincaré
sections, or correlation functions, just to mention few [10,12,17,41]. The classical
technique to understand the time series of each component of mi is to take the Fast
Fourier Transform (FFT) which gives a complex discrete signal, S (ϖ), in the fre-
quency space ϖ = (ϖ1, ...,ϖn), producing a set of pairs {ϖk,S (ϖk)}. For this signal
we calculate its power spectrum |S (ϖ)|. In general, when |S (ϖ)| has a finite number
of discrete peaks, the time series are regular, whereas if there is a continuum of peaks,
the series may be chaotic. Let us mention that the bifurcation diagrams using Poincaré
sections of the magnetisation angles, given by mi = (cosφi sinθi,sinφi sinθi,cosθi),
were employed in Ref. [12]. The local maximum of a specific component of mi was
used in Ref. [18]. In these diagrams, a continuum of points implies quasi-periodic or
chaotic behaviour.

Fig. 2 (Color online) (left) Phase diagram displaying the LLE color coded as a function of the field am-
plitude hx and the distance d with ϕ = 0.5, η = 0.05, β = 1, hy = 1 and hz = 0.1. (right) Magnification of
the black box in (left). The black box in (left) is shown in Fig. 5. The specific dynamics (a)-(e) along the
diagonal of (left) are shown in Fig. 4.

3.2 Numerical Results

In order to simplify and speed-up the integration of the equations of motion, dimen-
sionless units are used. This recasts Eq. (1) in terms of the magnetisation mi =Mi/Ms
and time τ = t|γ|Ms [32]. This normalisation leads to |mi| = 1. The dimensionless
field is h̃i = Hi/Ms with h̃x,y ≡ hx,y sin(ϕτ), and h̃z ≡ hz where ϕ = Ω/(|γ|Ms) is the
dimensionless frequency. In order to avoid numerical artefacts [12], it is suitable to
solve Eq. (1) in the Cartesian representation, namely,

dmx,i

dτ
= −(my,i +η mx,imz,i)hz +

{
(mz,i−η mx,imy,i)hy +η (m2

y,i +m2
z,i)hx

}
sin(ϕτ)

+ d−3(mz,k +η my,kmx,i)my,i−
{

β my,i +d−3(my,k−η mz,kmx,i)
}

mz,i

+ 2η d−3mx,km2
y,i−η (β mx,i−2d−3mx,k)m2

z,i , (5)
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dmy,i

dτ
= (mx,i−η my,imz,i)hz−

{
(mz,i +η mx,imy,i)hx−η (m2

z,i +m2
x,i)hy

}
sin(ϕτ)

−
{

β my,i +d−3my,k
}

η m2
z,i−d−3(mz,k +2η mx,kmy,i)mx,i−η d−3my,km2

x,i

+
{

β mx,i−d−3(2mx,k−η mz,kmy,i)
}

mz,i , (6)

dmz,i

dτ
=
{
(my,i−η mx,imz,i)hx− (mx,i +η my,imz,i)hy

}
sin(ϕτ)

+ d−3{(mx,imy,k +2mx,kmy,i)+η (my,kmy,i−2mx,kmx,i)mz,i
}

+ η (m2
x,i +m2

y,i)
{

hz +β mz,i−d−3mz,k
}
. (7)

Eqs. (5) – (7) have been integrated by using a fifth order Runge-Kutta integration
scheme with a variable step [49] that ensures a relative error of 10−7 on the mag-
netisation fields. The LEs are calculated for a time span of τ = 80000 after an initial
transient time of τ = 4000 has been discarded. The Gram-Schmidt orthogonalisa-
tion process is performed after every δτ = 3.91. The error has been estimated to be
E = 0.1%, which is sufficiently small for the purpose of the present analysis.

In order to get a better physical insight into the problem, let us evaluate the scales
introduced here. Typical experimental values of Ms are, e.g. Ms [Co] ≈ 1.42×106 A/m
for cobalt materials, and Ms [Ni] ≈ 4.8×105 A/m for nickel materials [32]. Hence, the
time scale (τ = 1) is in the picosecond range, ts [Co] = 1/(|γ|Ms [Co]) ≈ 3.2 ps and
ts [Ni] = 1/(|γ|Ms [Ni])≈ 6 ps. Let us mention that in these materials the macrospin ap-
proximation (mono-domain particles) is valid for particles with sizes of 10 - 20 nm,
because for smaller sizes surface anisotropy effects are relevant [42] and for larger
sizes non-uniform magnetic states appear, such as vortices in cobalt nanodots. In
addition, the shape of the nanoparticle plays an important role in the macrospin ap-
proximation [43]. The distance between particles ranges typically from 50 nm to 600
nm [31,32,33,44]. Although the external field can be large, if it is of order of Ms,
the present technology allows the generation of such magnitudes [45,46,47]. Fur-
thermore, interesting dynamical behaviour like the magnetic analog of the inverted
driven pendulum can appear [48]. Due to the large number of parameters involved in
the system, β = 1, η = 0.05 and hy = 1 will be fixed throughout the paper. Parameters
{hx,hz,ϕ,d} will vary depending on the simulation presented.

Figure 2 shows a phase diagram displaying the LLE color coded as a function of
the distance d and the field amplitude hx. It reveals that a whole region of periodicity
in d . 0.7, within the ranges exhibited. In this region the field is not strong enough to
break the consistent interaction between the dipoles. It can perturb the set as a whole,
but it cannot disassociate the dipoles in independent orbits. For d & 3 the dynamics
for each fixed hx becomes very consistent, regardless of how much the distance is in-
creased. This can therefore be considered the region where field dynamics dominates
dipolar interaction. The region has interlaced chaotic and periodic dynamics as hx is
increased. It is between these two regions, in the transition between field domination
and dipole domination, i.e. 0.7 . d . 3, where a rich variety of chaotic regions is
found. Hence, a zoom on this region is performed and shown in Figure 2 (right). In
this frame, the region that agrees with hx . 2.0(1−d) has localised patterns of rather
characteristic shapes. These shapes rapidly fade away for higher fields. The value of



Hyper-chaotic magnetisation dynamics of two interacting dipoles 7

Fig. 3 (Color online) LLE and SLLE along the black line in Figure 2 (right), with the corresponding
bifurcation diagrams for φ1 and θ1.

the LLE decreases and the size of the patterns decreases. The chaotic areas are not
compact, but inside they contain zones with regular behaviours. A very similar fading
pattern is found in [20], thus making it expectable when studying magnetic particle
systems.

The LLE, the SLLE, and the maxima-based bifurcation diagram along the black
line of Figure 2 (right), are presented in Figure 3. The bifurcation diagram shows no
apparent change in density or distribution when the system transits from chaos into
hyper-chaos. The intermittent regimes present their maxima on bifurcated values that
correspond to what was obtained in Figure 2 (right): first the chaotic characteristic
shapes previously mentioned, then the larger hyper-chaotic regime, and finally an
iteration of chaotic, hyper-chaotic, and periodic regimes.

The particular cases specified in Figure 2 (right) are studied in more detail in
Figure 4. The first column shows the trajectory of dipole 1, so it can be compared
with the trajectory of dipole 2, on the second column. The third column shows the
corresponding Fourier spectrum of such trajectories. Row (a) shows the periodic state
found for d = 0.550 and hx = 0.412. It is a simple example of a synchronised peri-
odic 3-mode state, as the Fourier plot shows. The range covered in the {mx,my,mz}
is very limited, indicating what would be expected for low field amplitudes and short
distances: dipolar interaction dominates, allowing only a very restricted oscillation
of the dipoles. For d = 0.800 and hx = 2.034 (row (b)) the system enters unsynchro-
nised chaos. Although the trajectories are not equal for both dipoles, a rotation around
the mx axis is predominant in these dynamics. Both dipoles near the mx, j = {−1,1}
poles, and shift to the opposite poles only to continue the spinning. The peak-spread
Fourier spectrum is consistent with the positive Lyapunov exponent found for these
parameters in Figure 2 (right). The system returns to periodicity when d = 0.824 and
hx = 2.162 (row (c)). The increase in both field and distance allows for a greater
range of {mx,my,mz} to be covered by the trajectory. However, just like in the trajec-
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(a)

(b)

(c)

(d)

(e)

Fig. 4 Dipole trajectories (columns 1 and 2) and Fourier spectra (column 3) of the instances indicated in
Figure 2 (right). The two first LLEs are: λ1 ≈ (−0.572× 10−5,0.203,1.6×10−4,0.245,6.9×10−4) and
λ2 ≈ (−5.71×10−5,−1.3×10−5,−3.47×10−5,0.11,5.7×10−5), respectively.
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Fig. 5 (Color online) Phase diagram displaying the LLE and the SLLE color coded as a function of the
field amplitude hx and the distance d. The range corresponds to the black box in Fig. 2 (right).

tories of row (a), the dynamics is confined to the neighbourhood of either mx =−1 or
mx = 1, depending on the initial conditions. A greater number of modes of oscillation
is found in this synchronised periodic state, with a relatively short excursion towards
the mx equator. Row (d) (d = 0.935 and hx = 2.709) shows hyper-chaotic trajecto-
ries for the dipoles. Although there seems to be a prevalence of rotations around the
mx axis (as in the chaotic regime of row (b)), such instability allows for no apparent
attractor. The trajectories are isotropic, and the Fourier peaks are found on a broad
range of frequencies. Row (e) shows what Sparrow [3] described as noisy periodicity.
The Fourier spectrum shows a number of well defined peaks in the lower frequencies,
accompanied by some low-amplitude high-frequency peaks. These broaden the pos-
sible trajectories without blurring the general structure of the main periodic attractor.
The result is a periodic orbit in a deterministic system that seems to be under some
form of noise [3].

Fig. 6 (Color online) Phase diagram displaying the SLLE color coded as a function of the driven frequency
ϕ and the field amplitude hx at hz = 0.1 (left) and hz = 1.0 (right). The fixed parameters are: d = 1, β = 1,
hy = 1 and η = 0.05.

Figure 5 shows a phase diagram displaying the LLE (left panel) and the SLLE
(right panel) color coded as a function of the distance d and the field amplitude hx
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for the black box in Fig. 2 (right). We can observe that a band of periodicity with
granulated chaotic regimes is found and the hyper-chaotic domains are in reduced
areas of the parameter space. Hyper-chaos is, as expected, a subset of the regions
with chaos. Most of the periodic-chaotic granular regions have vanished in the case
of hyper-chaos, thus implying that scattered hyper-chaotic regimes in the midst of
periodicity is rare, yet not inexistent. The SLLE is on average around one order of
magnitude below the LLE, thus requiring a more solid refinement in the measure of
the Lyapunov spectrum.

Let us explore the dependence of driven frequency in the dynamical behaviour.
Figure 6 shows two phase diagrams displaying the SLLE color coded as a function
of the frequency ϕ and the field amplitude hx for two different values of the ho-
mogeneous external field hz. The left frame shows how periodicity is mainly found
in {ϕ . hx− 2}, in {ϕ . 0.2}, and in the rectangle defined by {ϕ & 0.75,hx & 4}
and the edges of the frame. The rest of the frame is dominated by hyper-chaotic
regimes. The larger chaotic region has a shape similar to an Arnold’s tongue [50]
in parametric instabilities. The right frame of Fig. 6 shows a higher value of the
homogeneous field, hz = 1.0. This increment in the hz expands the regions with
hyper-chaos. Thus, it becomes apparent that no hx field is needed in order to find
(hyper-)chaos, when ϕ & 0.75. In other words, a high enough frequency and az-
imuthal field suffice for unstable dynamics to occur. Periodicity dominates the re-
gions {ϕ . 0.75(2.5hx−1),ϕ > 0,hx > 0} and {ϕ . 0.05hx,ϕ > 0,hx < 6}. Chaos
and hyper-chaos are found in most of the remaining region represented, with scat-
tered islands of periodicity. The chaos-periodicity boundaries of these islands also
gave granulated hyper-chaotic regimes.

4 Final Remaks

The magnetisation dynamics of two anisotropic magnetic particles interacting via
dipolar interaction in the presence of a periodic transverse and a constant longitudinal
external magnetic field has been studied using the Landau-Lifshitz equation. We have
determined the regions of parameters that lead either to chaotic or to regular regimes
using the Lyapunov exponent method. Extensive numerical calculations have been
performed by varying two parameters simultaneously. The second largest Lyapunov
exponent was computed to identify hyper chaos. This leads to phase diagrams of the
second largest Lyapunov exponent, and thus of the hyper-chaotic regimes, as a func-
tion of these parameters. Generally, one finds rather intricately intermingled chaotic
and regular regions separated by diffuse boundaries. The regular regions consist of
either periodic or quasi-periodic solutions.

A descriptive analysis has been provided, justifying when dipole interaction dom-
inated the field and vice-versa. Although complex and rich, the patterns presented in
the parameter space have sometimes resembled structures already known from the
literature [37]. An account of such coincidences has been included whenever possi-
ble. The present characterisation of the parameter space determines when the chaos is
absent, and therefore it can be used as a tool to control chaos in posible experimental
settings.
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Finally, an assortment of representative phase-space trajectories has been pre-
sented in this work, accounting for different kinds of periodicity, as well as chaos
and hyper-chaos. The corresponding Fourier plots provide additional support to the
Lyapunov spectra obtained for those particular states.

Cases of dipole synchronisation and anti-synchronisation were found in periodic,
chaotic and even the hyper-chaotic regimes. Future work will present a complete
study of the synchronisation phenomena.
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