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In this paper we provide the first model of drug elution from polymer-free arterial drug-eluting stents.
The generalised model is capable of predicting drug release from a number of polymer-free systems
including those that exhibit nanoporous, nanotubular and smooth surfaces. We derive analytical solu-
tions which allow us to easily determine the important parameters that control drug release. Drug release
profiles are provided, and we offer design recommendations so that the release profile may be tailored to
achieve the desired outcome. The models presented here are not specific to drug-eluting stents and may
also be applied to other biomedical implants that use nanoporous surfaces to release a drug.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Background

Drug-eluting stents (DES) have significantly improved the treat-
ment of coronary heart disease (CHD) and are the current gold
standard in percutaneous coronary interventions (PCIs). These
small drug-containing mesh-like devices are now routinely insert-
ed into arteries which have become dangerously narrowed due to a
condition known as atherosclerosis. Their role is to increase the
diameter of the diseased lumen, so that adequate blood flow can
be restored. Their predecessor, the so-called bare metal stents,
whilst revolutionary at the time, were soon found to be inadequate
due to the common occurrence of restenosis (the re-narrowing of
the lumen). Subsequent stent designs included an antiproliferative
drug designed to prevent smooth muscle cell proliferation and
migration which is thought to contribute to restenosis: these are
the drug-eluting stents [1]. The drug was typically contained with-
in a polymer coating on the surface of the metal stent. To date
there have been several generations of DES, each with design fea-
tures aimed at improving clinical results. These include multi-layer
polymer coatings to help control the release, thinner struts to
reduce damage to the arterial tissue and more biocompatible poly-
mer coatings and metal alloys [2]. However, several studies have
raised concerns that the permanent presence of a polymer may
trigger an allergic reaction and possibly a local vascular inflamma-
tory response in some patients [3,4]. Moreover, several early stud-
ies reported evidence of delayed healing of the endothelial cell
layer of the arterial wall following DES use, in comparison to bare
metal stents [5,6]. These unwanted effects have been associated
with the occurrence of late stent thrombosis and sudden cardiac
death. With this in mind, cardiologists have recommended that
anti-platelet therapy is continued for a full twelve months after
stent implantation [1]. Driven by a desire to improve clinical out-
comes, newer generation DES have focussed on biodegradable
polymers, where the polymer carries and controls the drug release
and then completely erodes, and also polymer-free coatings which
do not contain any polymer at all. Whilst modelling drug release
from stents which contain a non-erodible polymer (e.g. [7–11])
and a biodegradable polymer (e.g. [12–18]) has received much
attention in the literature, the modelling of polymer-free DES has
not. This is somewhat surprising, especially since a recent drug-e-
luting stent review [19] reports that ‘‘. . .polymer-free, controlled-
release stent designs may become the substrate of choice in the
longer-term, especially if they exhibit non-inferiority in terms of
restenosis reduction’’.

To date, several polymer-free stents have been designed and
some of them have reached the market. There have, however, been
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many challenges for the stent manufacturers. For example, they
have had to address how the drug release can be controlled with
no polymer, how the drug can be adequately adhered to the stent
surface and have had to consider carefully the stent platform mate-
rial to ensure that it is biocompatible. The stent manufacturers
have adopted different approaches in designing these stents, which
can be roughly separated into four categories [20]: macroporous,
microporous, nanoporous and smooth surface. Macroporous DES
utilise precise manufacturing processes to accurately inlay the
drug into holes or slits in the body of the stent. Some examples
include the Janus Flex (Sorin Group), Conor Stent (Conor Medsys-
tems), CoStar (Conor Medsystems), and Nevo (Cordis) [20,22].
Microporous polymer-free DES contain a modified surface of pits
and holes whose size is of the order of microns. The drug is then
coated directly on the rough surface, resulting in the micropores
being filled and a nominal layer of drug on top of the surface.
The purpose of the micropores is to act as a reservoir for the drug
and also to aid adhesion to the stent surface. The rough surface
may be created by, for example, a sandblasting technique (Yukon
stent, Translumina), or by a microabrasion process (BioFreedom
stent, Biosensors Inc.) [23,22]. The VESTAsync stent (MIV
Therapeutics) uses a hydroxyapatite surface coating [22]. Hydrox-
yapatite is an organic porous material that makes up bone mineral
and the matrix of teeth and is widely used as a bone substitute.
Fig. 1. Some of the polymer-free drug-eluting stent systems modelled in the current stud
drug-infused layer covering a steel strut acts as a reservoir for the prolonged release of dru
of part of a ceramic-coated tacrolimus-eluting stent. The pore diameters here are again of
the context of orthopaedic and dental drug releasing implants. (c) An image of the drug-c
semi-crystalline paclitaxel of thickness �5 lm covers the stent strut surface.
Nanoporous DES are distinguishable from microporous DES by
the nature and size of their pores. They exhibit a bulk porous layer
(cf. a surface porous layer) and the pores are of the order of
nanometres (cf. microns). This layer may be obtained electro-
chemically (Ceramic-coated TES, Jomed International) or through
sputter coating techniques (Setagon stent, Setagon Inc). These
stents have the advantage of allowing for a higher drug loading
capacity. The Optima stent (CID) contains nanopores too, but the
pores are arranged in a regular slotted tubular fashion [23].
Fig. 1(a) displays a nanoporous polymer-free stent whilst 1(b) dis-
plays a nanotubular polymer-free stent. Perhaps the most simple
polymer-free design is where the drug is coated directly onto the
unmodified (relatively) smooth surface of the metal stent. An
example of this type of polymer-free DES is the Amazonia Pax
(MINVASYS) [22] where a semi-crystalline paclitaxel coating is
applied directly to the chromium cobalt stent (see Fig. 1(c)). With
no polymer or pores to control the release, it appears that the
release rate is determined solely by the solubility and diffusion
coefficient of the drug in the release medium and by the thickness
of the coating.

Whilst the application of nanoporous drug-eluting coatings to
stents is relatively recent, the use of nanoporous surfaces in drug
delivery is not new. It is worth briefly mentioning here a few of
the other (that is, not stent-based) drug delivery systems that have
y. (a) A scanning electron microscope image of the Setagon stent [20]. A nanoporous
g. The pore diameters here are of the order of 10 nm. (b) A schematic representation
the order of 10 nm. Nanotubular systems of this kind have also been investigated in
oated surface of an Amazonia Pax stent [21]. In this polymer-free system, a layer of
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used nanoporous surfaces to release a drug because we believe the
model developed in the current study may be applicable to some of
these as well. Aw et al. [24] studied the release of drug from a tita-
nium wire into bovine trabecular bone ex vivo. The surface of the
wire contained nanotubular pits loaded with drug, and the dia-
meter and depth of the nanotubes was of the order of 100 nm
and 50 lm, respectively. They experimentally characterised the
drug release behaviour, and showed that the drug released into
the bone from the nanotubes on a time scale of the order of days.
In a similar study, Gulati et al. [25] also considered drug release
from nanotubular arrays on titanium wires. They carried out
release experiments in vitro and observed a two-phase release
behaviour, consisting of an initial burst release followed by a zer-
oth order release over a period of eleven days. Gong et al. [26] stud-
ied molecular release from nanoporous alumina capsules, and
demonstrated that the release rate could be tuned by varying the
diameter of the nanopores.

Although there are a good number of studies that experimental-
ly characterise drug release from nanoporous surfaces, we could
only find a few that contain substantive mathematical modelling
for drug release from porous metallic or metalloid surfaces. We
mention three of these here. Tzur-Balter et al. [27] used a linear
diffusion model to describe the release of an anti-cancer drug from
nanostructured porous silicon, and found good agreement between
their theory and experimental results. In Martin et al. [28], a diffu-
sion model for drug release from silicon nanoporous membranes is
verbally described. This model sets a saturation value for the diffu-
sive flux based on the molecular dimensions of the drug and the
diameter of the nanopores, and described their experimental
release data well. Gultepe et al. [29] took a different approach, opt-
ing to describe the release of the drug doxorubicin from nanopor-
ous titanium and aluminium templates using a surface desorption
model. In this model, the rate of drug desorption was assumed to
take an Arrhenius form and the activation energy was assumed
to quadratically depend on the surface coverage of drug.

1.2. Outline

In this paper, rather than focusing on one or more commercially
available stents, we provide a generalised model to describe the
elution of drug from a range of polymer-free DES. Since the major-
ity of macroporous stents and several microporous stents now
actually include a polymer-drug formulation within the pores,
we neglect these classes of DES in the analysis that follows. We
start by writing down a model for drug release from a nanoporous
system. By making some reasonable assumptions, we derive an
analytical solution to the model which allows for immediate calcu-
lation of the drug release profile. We then proceed to demonstrate
how slotted tubular nanoporous DES and smooth surface DES can
be shown to be special cases of the generalised model. We provide
a model for the two-stage release of the drug from a stent which
has a pure drug layer on the surface and a nanoporous drug layer
below the surface. Finally, we determine the important parameters
characterising the system that govern the drug release, and provide
design recommendations so that the release profile may be tailored
to achieve the desired outcome. We wish to stress that the models
presented here are for drug release in an in vitro environment.
Whilst the in vivo release profile will undoubtedly be different
(due to a multitude of factors including pulsatile flowing blood,
drug binding to proteins and tissue, and wound healing), we
believe that it is essential to try to understand the release of drug
in a controlled in vitro environment before embarking on the more
complex in vivo case. Furthermore, for many cases, in vitro drug
release profiles have been shown to be good predictors of in vivo
profiles. In addition to this, stent manufactures routinely test the
release of drug from their stents in an in vitro environment since
it allows them to compare the release profile between different
designs [30].
2. Mathematical methods

2.1. The general model for an unstirred release medium

We now formulate a mathematical model for a nanoporous DES
system, which includes smooth surface DES and slotted nanotubu-
lar DES as special cases. Fig. 2 schematically depicts the nanopor-
ous system, as well as the smooth surface and nanotubular
subcases. A two-stage system consisting of a pure drug layer over-
laying a drug-infused porous medium will also be considered, and
this system is schematically depicted in Fig. 3.

We suppose that the system is one-dimensional, and denote by
x the spatial variable as shown in Fig. 2. One-dimensional treat-
ment of drug release from drug-eluting stents has featured heavily
in the literature over the past decade (e.g. [9,30–32]). Whilst this
type of treatment is a mathematical idealisation of the underlying
three-dimensional geometry, it is justified mathematically since
the drug release predominantly takes place in the direction normal
to the stent surface, owing to the relatively small thickness of the
drug layer in comparison to the lateral dimensions. This type of
modelling approach has been justified by using a combination of
one-dimensional mathematical modelling and experimentation
(e.g. [8,31]). We denote by cpðx; tÞ and cwðx; tÞ the concentration
of drug in the liquid-filled pores and in the aqueous medium,
respectively, where t is time. The drug may become bound (or ‘‘s-
tuck’’) in a region close to the walls of the pores, and we denote by
cbðx; tÞ the concentration of immobile drug in this region. The vol-
ume fraction of this region is denoted by /b, and the volume frac-
tion of the pores (the porosity) is denoted by /.

The drug concentration in the pores is assumed to be governed
by

/
@cp

@t
¼ De

@2cp

@x2 � /kacp þ /bkdcb; sðtÞ < x < 0; t > 0; ð1Þ

where De is the effective diffusion coefficient for the drug in the por-
ous medium (see below), and ka; kd are the rate constants for drug
absorption (‘‘sticking’’) and desorption (‘‘unsticking’’), respectively.
The moving boundary x ¼ sðtÞ locates the interface between the
undissolved drug and the aqueous release medium, and will be
determined as part of the solution to an initial boundary value
problem; see Fig. 2. If Ld is the initial thickness of the drug layer
through the porous medium, then cpðx; tÞ ¼ c0 for �Ld < x <
sðtÞ; t > 0, where c0 is the (assumed) constant concentration of
the undissolved drug.

The effective diffusivity De in (1) incorporates a number of
effects that can arise for diffusion in porous media. If Dw is the free
aqueous diffusion coefficient for the drug, then

De ¼
/e

s Dw; ð2Þ

where /e is the effective porosity of the medium and s is its tortu-
osity [33]. Both of these parameters are dimensionless and their
ratio /e=s is one of the key microstructural parameters in the
system. The effective porosity /e refers to the porosity that can con-
tribute to solute transport through the medium, and this can be
smaller than the overall porosity /. For example, /e < / if the medi-
um contains small pores that the solute cannot access: in this case
we say that there is constrictivity. The tortuosity s takes account of
the fact that the particles may have to travel through an increased
path length due to the circuitous nature of the pores. Tortuosities
usually range in value between two and six, and have an average
value of about three [33]. Tortuosity provides another degree of



Fig. 2. (a) The stent drug delivery system. A drug-infused porous medium overlays the stent strut. In the liquid-filled pores, the drug has diffusivity De ¼ /eDw=s, where /e is
the effective porosity of the medium and s is its tortuosity. In the diagram, x ¼ 0 locates the interface between the porous medium and the release medium, and the boundary
x ¼ sðtÞ denotes the position of a moving dissolution front separating the undissolved and dissolved drug. (b) Taking the limiting case of the tortuosity tending to one (s! 1)
gives the case of a nanotubular system. (c) Taking the limiting case of s;/; /e ! 1 and /b ; 1=K ! 0 gives the case of a pure drug layer with no porous medium.

Fig. 3. The system discussed in Section 3.1.4. A pure layer of drug overlays a drug-
infused nanoporous medium. This system is capable of exhibiting a two stage
release behaviour since the drug release from the pure drug layer is more rapid than
that from the porous medium. The system is shown here at a time when the pure
drug layer is still dissolving.
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freedom to modulate the drug release rate. It is clear that the nan-
otubular system depicted in Fig. 2(b) will have a smaller tortuosity
than a system for which the pores are randomly oriented (see
Fig. 2(a)).

The concentration of bound drug in the region close to the pore
walls, cbðx; tÞ, satisfies

/b
@cb

@t
¼ /kacp � /bkdcb; sðtÞ < x < 0; t > 0: ð3Þ

Adding (1)–(3) gives the following evolution equation for the total
drug in the porous medium

@

@t
/cp þ /bcb

� �
¼ De

@2cp

@x2 : ð4Þ
Assuming that the desorption and absorption rates are fast com-
pared to the diffusion rate, we can replace (3) by the equilibrium
expression

/kacp ¼ /bkdcb so that cb ¼ /cp=ð/bKÞ; ð5Þ

where K ¼ kd=ka is the equilibrium ‘dissociation’ constant. In the
current study, all of the analytical results presented will be for this
case. Numerical solutions based on a front-tracking finite difference
scheme have been calculated for the non-equilibrium case, and
show excellent agreement with the analytical results for those cases
where diffusion is the slowest process. Substituting (5) into (4)
gives

@cp

@t
¼ Da

@2cp

@x2 ; ð6Þ

where

Da ¼
1

/ 1þ 1=Kð ÞDe ¼
1

s 1þ 1=Kð Þ
/e

/
Dw ð7Þ

is referred to as the apparent diffusion coefficient, to distinguish it
from the effective diffusion coefficient. This single parameter takes
account of the effects of porosity, absorption, desorption, tortuosity
and constrictivity.

The concentration of drug in the release medium is assumed to
be governed by the diffusion equation

@cw

@t
¼ Dw

@2cw

@x2 ; 0 < x <1; t > 0: ð8Þ

Eq. (8) does not contain a convection term because we are consid-
ering the case of an unstirred fluid here. It is also noteworthy here
that the release medium has been taken to be infinite. This is a rea-



Table 1
Values for the parameters appearing in the mathematical model of nanoporous drug
release.

Parameter Range considered Default value References

Ld 10�6 � 10�4 m 10�4 m [11,36,7]

Dw 10�11 � 10�9 m2 s�1 10�10 m2 s�1 [37,38]

c0=cs 1:5� 100 10
K 0:01� 10 0.1
/ 0 < / < 1 0.6
/e 0 < /e 6 / < 1 0.6 [33]
/b 0 < /b < /e 6 / < 1 0.1
s 1� 6 3 [33]
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sonable assumption given that a typical lengthscale for the release
medium is in the centimetre range whilst a typical thickness for the
drug-infused porous layer is at least two orders of magnitude
smaller.

The case of a well-stirred release medium will also be consid-
ered and will be modelled by imposing an infinite sink boundary
condition for the drug at x ¼ 0; see Section 3.2. Whilst a consensus
panel of experts [34] recommend conducting release experiments
under infinite sink conditions, it has also been noted by Seidlitz
et al. [35] that sink conditions ‘‘do not necessarily exist at a par-
ticular in vivo site.’’ Consequently, we have chosen in the current
study to consider both the unstirred and infinite sink situations.
It may be argued that the consideration of both unstirred and infi-
nite sink conditions corresponds to a treatment of the worst- and
best-case scenarios, respectively, from the point of view of speed
of drug dissolution. In view of this, the consideration of the two
cases is a worthwhile exercise given the uncertainty associated
with the in vivo situation.

2.1.1. Boundary and initial conditions for an unstirred release medium
We now supplement the governing equations with appropriate

boundary and initial conditions. The initial conditions are chosen
to be

cwðx; t ¼ 0Þ ¼ 0 for x > 0; sðt ¼ 0Þ ¼ 0;
cpðx; t ¼ 0Þ ¼ c0; cbðx; t ¼ 0Þ ¼ /c0=ð/bKÞ for � Ld < x < 0:

ð9Þ

Since cp has been taken to measure the concentration of drug in the
fluid fraction of the porous medium, we impose continuity in drug
concentration at the interface between the porous medium and
the release medium, so that

cp ¼ cw on x ¼ 0; t > 0: ð10Þ

At the interface between the dissolved and undissolved drug,
x ¼ sðtÞ, we impose

cp ¼ cs on x ¼ sðtÞ; t > 0; ð11Þ

where cs is the solubility of the drug in aqueous medium. The solu-
bility gives the maximum concentration of drug that may be dis-
solved in the medium.

We also require conditions for the drug flux at x ¼ 0 and
x ¼ sðtÞ. These conditions are motivated using the assumption that
the total amount of drug in the system is conserved. If A is the pla-
nar surface area of the porous medium, then the total amount of
drug in the system at time t is

mðtÞ ¼ A
Z sðtÞ

�Ld

/c0 þ /bcbðx;0Þð Þdxþ
Z 0

sðtÞ
ð/cp þ /bcbÞdxþ

Z 1

0
cwdx

( )

¼ A
Z sðtÞ

�Ld

1þ 1=Kð Þ/c0dxþ
Z 0

sðtÞ
ð/cp þ /bcbÞdxþ

Z 1

0
cwdx

( )
:

Imposing dmðtÞ=dt ¼ 0 then leads to

/ 1þ 1=Kð Þðc0 � csÞ
ds
dt
þ
Z 0

sðtÞ

@

@t
ð/cp þ /bcbÞdxþ

Z 1

0

@cw

@t
dx ¼ 0;

which gives

/ 1þ 1=Kð Þðc0 � csÞ
ds
dt
þ De

@cp

@x

� �
x¼0�
� De

@cp

@x

� �
x¼sðtÞþ

� Dw
@cw

@x

� �
x¼0þ
¼ 0;

ð12Þ

where we have imposed @cw=@x! 0 as x!1. Inspecting this last
equation leads to the following choice for the boundary conditions

�De
@cp

@x
¼ �Dw

@cw

@x
on x ¼ 0; t > 0; ð13Þ
and

�Da
@cp

@x
¼ ds

dt
ðcs � c0Þ on x ¼ sðtÞ; t > 0: ð14Þ

This last equation gives a so-called Stefan condition to determine
the motion of the moving boundary. The final boundary condition is

cw ! 0 as x!1; t > 0: ð15Þ
2.2. Parameter values

Given that nanoporous DES are a relatively new technology
which have yet to be refined, we consider a range of parameter val-
ues (see Table 1) rather than trying to model an existing system. In
any case, a complete data set is not readily available for any of the
existing systems. We choose our range of values of Ld based on the
strut thickness of currently available stents and the thickness of
typical DES polymer coatings. The drug diffusion coefficients are
representative of the aqueous diffusivities of molecules of similar
size to those coated on DES. Since these molecules are known to
be poorly soluble we allow for high ratios of c0=cs. There would
appear to be no data in the literature for the equilibrium ‘disso-
ciation’ constant and so we consider a range of values for this para-
meter spanning four orders of magnitude. Finally we choose values
of /; /e and /b such that 0 < /b < /e 6 / < 1.
3. Results and discussion

3.1. General solution for the unstirred case

For convenience, we gather together here the equations consti-
tuting the initial boundary value problem for the unstirred case

@cw

@t
¼ Dw

@2cw

@x2 ; 0 < x <1; t > 0;

@cp

@t
¼ Da

@2cp

@x2 ; cb ¼ /cp=ð/bKÞ; sðtÞ < x < 0; t > 0;

cp ¼ cw; �De
@cp

@x
¼ �Dw

@cw

@x
on x ¼ 0; t > 0;

cp ¼ cs; �Da
@cp

@x
¼ ds

dt
ðcs � c0Þ on x ¼ sðtÞ; t > 0;

cw ! 0 as x! þ1; t > 0; cw ¼ 0 at t ¼ 0; x > 0;
cp ¼ c0 at t ¼ 0; �Ld < x < 0; sðt ¼ 0Þ ¼ 0:

ð16Þ

This problem is self-similar in the Boltzmann variable x=
ffiffi
t
p

, and we
may write

cw ¼ FðgÞ; cp ¼ GðgÞ; g ¼ x=
ffiffi
t
p
; sðtÞ ¼ �h

ffiffi
t
p
;
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where h is a constant, to obtain

F 00ðgÞ þ g
2Dw

F 0ðgÞ ¼ 0; 0 < g <1; G00ðgÞ þ g
2Da

G0ðgÞ ¼ 0; �h < g < 0;

Fð0Þ ¼ Gð0Þ; �DwF 0ð0Þ ¼ �DeG0ð0Þ;

Gð�hÞ ¼ cs; �DaG0ð�hÞ ¼ � h
2
ðcs � c0Þ; Fð1Þ ¼ 0:

ð17Þ

We note that if the Boltzmann reduction g ¼ x=
ffiffi
t
p

is to be valid,
then the moving boundary x ¼ sðtÞ must be expressible as
g ¼ const: or x ¼ const:

ffiffi
t
p

, explaining the decision to write
sðtÞ ¼ �h

ffiffi
t
p

above. It is clear from (17) that the attempted similar-
ity reduction has in fact led to a consistent two point boundary val-
ue problem for a system of ordinary differential equations. Some
discussion of the analytical solution of moving boundary problems
arising in diffusive systems can be found in Crank [39].

Integrating Eqs. (17)1 for F and G twice gives

FðgÞ ¼ a1erf
g

2
ffiffiffiffiffiffiffi
Dw
p

� �
þ a2; GðgÞ ¼ a3erf

g
2
ffiffiffiffiffiffi
Da
p

� �
þ a4;

where a1; a2; a3; a4 are constants whose values are fixed using the
boundary conditions in (17). A straightforward calculation shows
that

FðgÞ ¼
cserfc g

2
ffiffiffiffiffi
Dw

p
� �

1�
ffiffiffiffiffiffiffiffiffi
DaDw

p
De

erf � h

2
ffiffiffiffi
Da

p
� � ; 0 < g <1;

GðgÞ ¼
cs 1�

ffiffiffiffiffiffiffiffiffi
DaDw

p
De

erf g
2
ffiffiffiffi
Da

p
� �� �

1�
ffiffiffiffiffiffiffiffiffi
DaDw

p
De

erf � h

2
ffiffiffiffi
Da

p
� � ; �h < g < 0; ð18Þ

where h is determined by solving

h

2
ffiffiffiffiffiffi
Da
p exp

h2

4Da

 !
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
DaDw
p

De
erf � h

2
ffiffiffiffiffiffi
Da
p

� �� �
¼ 1ffiffiffiffi

p
p

ffiffiffiffiffiffiffiffiffiffiffiffi
DaDw
p

De

cs

c0�cs
:

ð19Þ

We investigated the real solutions of (19) using elementary
techniques and with the aid of the mathematical package MAPLE.
We found that for positive parameter values and c0 > cs, two cases
arise. For

ffiffiffiffiffiffiffiffiffiffiffiffi
DaDw
p

< De, there is one positive real root for h, and of
course, this is the required solution. However, for

ffiffiffiffiffiffiffiffiffiffiffiffi
DaDw
p

> De,
there is one positive real root and one negative real root, with
the positive choice being the physically relevant one in the current
context.
Fig. 4. Normalised concentration profiles of drug in liquid-filled pores, cp=cs (x < 0), and
simply a magnification of the release medium drug concentration profiles that are display
displayed in Table 1.
In the original variables, this solution is given by

cwðx; tÞ ¼
cserfc x

2
ffiffiffiffiffiffi
Dwt
p

� �
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ð20Þ

Fig. 4 displays normalised concentration profiles of drug within
the pores and in the release medium at four different times within
the first day of elution, as calculated from Eqs. (20). Whilst the
release medium is taken to be infinite as explained in Section 2.1,
for the purposes of this plot we display the release medium nor-
malised drug concentration over a region tenfold greater than that
of the thickness of the pores. The profiles are in line with our
expectations: to the left of x ¼ 0 we observe the moving boundary
retreating towards the base of the pores as drug is dissolved and
released into the release medium to the right of x ¼ 0.

We denote by td the time it takes for the moving boundary to
reach the bottom of the porous layer, so that sðtdÞ ¼ �Ld, and

td ¼ L2
d=h

2: ð21Þ

This quantity gives a sensible measure for the drug release lifetime
of the device. From (19), it is clear that sðtÞ has the functional form

sðtÞ ¼
ffiffiffiffiffiffiffiffi
Dat

p
H

cs

c0
;
DaDw

D2
e

 !
¼

ffiffiffiffiffiffiffiffi
Dat

p
H

cs

c0
;

s
//eð1þ 1=KÞ

� �
;

for some function H, and then it follows that td has the structure

td ¼
L2

d

Da
P

cs

c0
;
DaDw

D2
e

 !
¼ L2

d

Da
P

cs

c0
;

s
//eð1þ 1=KÞ

� �
:

where P � 1=H2. We denote by MðtÞ the amount of drug that has
dissolved in the drug-filled pores by time t. This is simply the vol-
ume of the liquid-filled pores multiplied by c0, so that

MðtÞ ¼ �/AsðtÞc0 ¼ h/Ac0

ffiffi
t
p
;

and MðtdÞ ¼ Mð1Þ ¼ /ALdc0. The fraction MðtÞ=Mð1Þ gives the ratio
of the drug that was originally in the pores that has dissolved by
time t, and is given by

MðtÞ
Mð1Þ ¼

h
ffiffi
t
p
=Ld for 0 6 t 6 L2

d=h
2;

1 for t > L2
d=h

2:

(
ð22Þ
in the release medium, cw=cs (x > 0) at four different times. The plot on the right is
ed in the plot on the left. The parameter values used in the generation of this plot are
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In the current study, plots of M%ð¼ 100�MðtÞ=Mð1ÞÞ versus t will
be referred to as release profiles. Technically, td is the time to disso-
lution and thus at time td some drug will still be contained within
the pores (both bound and unbound). Thus M% is likely to underes-
timate what we usually mean by release profile: the percentage of
drug that has left the device and has entered the release medium.
The drug release rate is defined to be the rate of change of
MðtÞ=Mð1Þ, and is given here by

d
dt

MðtÞ
Mð1Þ

� �
¼

h=ð2
ffiffi
t
p

LdÞ for 0 6 t 6 L2
d=h

2;

0 for t > L2
d=h

2:

(
ð23Þ

We now highlight some notable special cases and extensions of the
above solution.

3.1.1. A nanotubular system
The nanotubular system depicted in Fig. 1(b) is modelled by

simply letting s! 1 in the preceding results, so that De ! /eDw

and Da ! 1
1þ1=Kð Þ

/e
/ Dw.

3.1.2. A smooth surface system
Here we consider the case depicted in Fig. 2(c), in which a layer

of pure drug of thickness Ld overlays a stent strut with a smooth
surface. The solution for this case can be extracted from the solu-
tion displayed in Section 3.1 by letting /;/e ! 1; 1=K ! 0, to
obtain (cp becomes cw here)

sðtÞ¼�h
ffiffi
t
p
;cwðx;tÞ¼ cs

erfc x
2
ffiffiffiffiffiffi
Dwt
p

� �

erfc � h

2
ffiffiffiffiffi
Dw

p
� � ; �h

ffiffi
t
p

< x<1; t>0;

ð24Þ

where h is determined by solving

h

2
ffiffiffiffiffiffiffi
Dw
p exp
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4Dw

 !
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2
ffiffiffiffiffiffiffi
Dw
p

� �
¼ 1ffiffiffiffi

p
p cs

c0 � cs
: ð25Þ

Fig. 5 displays a comparison between the release profiles of
nanoporous, nanotubular and smooth surface systems. We observe
that a nanotubular system results in quicker release of drug than a
nanoporous system due to less tortuous pores. The smooth surface
system results in a dramatic increase in the rate of drug release,
Fig. 5. A comparison between the cumulative percentage of drug released (M%) for a na
system results in quicker release of drug than a nanoporous system due to less tortuous
release, since there are no pores to hinder the release of drug. Two additional cases have b
achieve quicker release profiles. Nanoporous* and Nanoporous** have the reduced porosit
the generation of this plot are displayed in Table 1.
since there are no pores to hinder the release of drug. By reducing
the porosities alone, we demonstrate that the nanoporous system
can be tuned to achieve quicker release profiles.

3.1.3. The low solubility limit, cs=c0 � 1
We now consider the behaviour of the solution displayed in

Section 3.1 in the limit of low drug solubility in the aqueous medi-
um, cs=c0 � 1. This case is important because two of the most com-
mon drugs that have been used on DES, paclitaxel and sirolimus,
are known to be very poorly soluble in water [40]. For cs=c0 � 1,
it follows from (19) that h=

ffiffiffiffiffiffi
Da
p

� 1, and

h � 2ffiffiffiffi
p
p Da

De

cs

c0

ffiffiffiffiffiffiffi
Dw

p
;

so that

sðtÞ � � 2ffiffiffiffi
p
p 1

/ð1þ 1=KÞ
cs
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ffiffiffiffiffiffiffiffi
Dwt

p
for cs=c0 � 1;

making explicit the dependence of the dissolution rate on the por-
osity, binding properties, and drug solubility. It follows that

cwðx; tÞ � cserfc
x

2
ffiffiffiffiffiffiffiffiffi
Dwt
p

� �
for 0 < x <1; t > 0; ð26Þ

cpðx; tÞ � cs for � h
ffiffi
t
p

< x < 0; td �
p
4

/2ð1þ 1=KÞ2 c0

cs

� �2 L2
d

Dw
;

for cs=c0 � 1. It is noteworthy here that the time it takes for the dis-
solution front to reach the bottom of the drug layer, td, is propor-
tional to the square of the large parameter c0=cs, so that the
behaviour is strongly dependent on the solubility. This is clearly
seen by the large variation in drug release profiles when c0=cs is
increased from 2 to 20 in Fig. 6. We observe that c0=cs has a dramat-
ic influence on the rate of release of the drug. The implication is that
if release is to be maintained over a sufficiently long period then
drugs that exhibit a low solubility in the release medium are to
be preferred. This is supported by clinical data, which shows that
DES (almost) exclusively use lipophilic compounds (limited water
solubility).

3.1.4. Two stage release
In this section we consider the case of drug release from a sys-

tem where the release is in two distinct stages. The initial phase is
release from a pure drug layer on the surface of the stent, as
noporous, nanotubular and smooth surface system. We observe that a nanotubular
pores. The smooth surface system results in a dramatic increase in the rate of drug
een added to demonstrate one way in which the nanoporous system can be tuned to
ies / ¼ /e ¼ 0:3 and / ¼ /e ¼ 0:1, respectively. The default parameter values used in



Fig. 6. In this plot we investigate the effect on the cumulative percentage of drug released (M%) with increasing ratio of initial drug concentration to drug solubility, c0=cs , for
the nanoporous system. We observe that this parameter has a dramatic influence on the rate of release of drug. Increasing this parameter (by either increasing the initial drug
concentration or reducing the solubility of the drug in the release medium) can result in a prolonged duration of release. The implication is that if release is to be maintained
then drugs that exhibit a low solubility in the release medium are to be preferred. The default parameter values used in the generation of this plot are displayed in Table 1.
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described by the equations presented in Section 3.1.2. When all of
the surface coated drug has dissolved, drug stored within the nano-
pores is then released. Here we denote by Lp the initial thickness of
the pure drug layer and by Ld the total thickness of the drug layer
and the porous medium (see Fig. 3).

This system does not correspond to a special case of the solution
(20) because the similarity structure is destroyed by the non-uni-
form distribution of drug in the release medium when the pure
layer has dissolved, and so it must be considered separately. The
time for the pure drug layer to dissolve is given by tp, where

tp ¼ L2
p=h

2 and h is determined by solving (25). For 0 < t < tp, the
pure drug dissolution phase, the solution is as described in Sec-
tion 3.1.2. For t > tp, when the drug is released from the nanopores,
the governing equations are

@cw

@t
¼ Dw

@2cw

@x2 ; �Lp < x <1; t > tp;
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@t
¼ Da

@2cp

@x2 ; cb ¼ /cp=ð/bKÞ; sðtÞ < x < �Lp; t > tp;

cp ¼ cw; �De
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@x
¼ �Dw

@cw

@x
on x ¼ �Lp; t > tp;

cp ¼ cs; �Da
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@x
¼ ds

dt
ðcs � c0Þ on x ¼ sðtÞ; t > tp;

cw ! 0 as x! þ1; t > tp; cw ¼ cs

erfc x
2
ffiffiffiffiffiffiffiffi
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erfc � h

2
ffiffiffiffiffi
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at t ¼ tp; x > �Lp;

cp ¼ c0 at t ¼ tp; �Ld < x < �Lp; sðt ¼ tpÞ ¼ �Lp:

ð27Þ

This problem does not admit a similarity reduction, and is not
solved here analytically. However, analytical progress can be made
by considering the asymptotic limit Da=Dw ! 0, with 1=K and all of
the other dimensionless parameters being held Oð1Þ; see Holmes
[41] for a discussion of relevant asymptotic methods. This corre-
sponds to the case of slow drug diffusion in the porous medium
compared to that in the release medium. We omit almost all of
the asymptotic details here, confining ourselves instead to quoting
the result that is of most interest from the point of view of applica-
tions. Writing e ¼ Da=Dw and taking the limit e! 0, it is found that
the total amount of drug released by time t is given by

MðtÞ �
h
ffiffi
t
p

Ac0 for 0 6 t 6 tp; t ¼ OðL2
d=DwÞ;

ðLp þ q/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eDwðt � tpÞ

p
ÞAc0 for tp < t < td; t ¼ tp þ OðL2

d=feDwgÞ;
ðLp þ /ðLd � LpÞÞAc0 for t P td;

8><
>:

ð28Þ

where td is the dissolution time, h is found from (25), and q satisfies

q
2

exp
q2

4

� �
erf �q

2

	 

¼ � 1ffiffiffiffi

p
p cs

c0 � cs
:

As would be expected, Eq. (28) predicts a two stage release rate
with relatively rapid release for t < tp when the pure drug is dis-
solving, and a slow release for tp < t < td when the drug is releasing
from the porous medium. At leading order, the solution for t > tp

has the same form as the solution for release into a well-stirred
medium, and this case is considered in the next section.

The problem (27) has also been solved numerically using a
front-tracking method, and a description of the numerical method
used can be found in the Supplementary Material. This method is
based on a front-tracking scheme described in Crank [39]. In
Fig. 7, we display the cumulative fraction of drug released from a
two-stage release system for various values of Da corresponding
to varying the value of K. We observe two distinct phases of
release. In the first phase a large amount of surface layer drug is
dissolved rapidly, whilst in the second phase release of drug from
the nanopores proceeds at a considerably slower rate. The effect of
reducing the parameter K is to prolong the duration of the second
phase of release.

3.2. General solution for the well-stirred case

For a well-stirred release medium, we assume a very low con-
centration for the drug in the medium, and replace Eq. (10) by

cp ¼ 0 on x ¼ 0; t > 0; ð29Þ

so that x ¼ 0 acts as a perfect sink for dissolved drug in the liquid-
filled pores. The boundary and initial conditions (11) and (9) remain
unchanged. It should be emphasised here that the well-stirred case
is of particular importance because many release experiments are
conducted under well-stirred conditions. Perfect sink boundary



Fig. 7. Plot of the cumulative fraction of drug released from a two-stage release system for various Da=Dw corresponding to varying K. Here we plot the numerical solution for
the default parameter values in Table 1 except that Lp ¼ 5� 10�5 m and Ld ¼ 10�4 m.
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conditions can also be appropriate if the release medium is regular-
ly replaced in the experiments. We need only solve for cpðx; tÞ and
sðtÞ. The solution has the similarity structure cp ¼ cpðx=

ffiffi
t
p
Þ; sðtÞ ¼

�h
ffiffi
t
p

, and we find that
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For the case of poorly soluble drugs, cs=c0 � 1, (31) gives that
h �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Daðcs=c0Þ

p
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for cs=c0 � 1: ð32Þ

It is instructive to compare this result with the corresponding
expression in (26) for the unstirred case. Note that td in (26)
depends on the square of the large parameter c0=cs, whilst (32)
depends only on its first power. Hence, for poorly soluble drugs, dis-
Fig. 8. A comparison between the cumulative percentage of drug released (M%) from the
the approximate solutions for the case of poorly soluble drugs. In each case we have cs=c
release medium, as one would expect. Furthermore, the respective approximate solutions
for cs=c0 ¼ 0:1. The agreement improves as cs=c0 is reduced further. The default parame
solution is an order of magnitude faster in a well-stirred medium
than for an unstirred medium. Of course, faster drug dissolution
in the well-stirred medium conforms to our intuitive expectations.
In Fig. 8 we display a comparison between the release profiles of
drug released from a nanoporous system into unstirred and well-
stirred release media. We observe that drug release is significantly
sped up in the well-stirred release medium, as one would expect.
Also on display are the approximate solutions for poorly soluble
drugs, and these show good agreement with the full solution for
both the unstirred and well-stirred cases when cs=c0 ¼ 0:1.
3.2.1. A pure drug layer in a well-stirred release medium
The solution (30), (31) cannot be used to describe the dissolu-

tion of a pure drug layer in a well-stirred release medium since
the boundary condition cp ¼ 0 on x ¼ 0 is not appropriate for this
case – there is now no porous medium to maintain the validity
of the perfect sink boundary condition at x ¼ 0. Drug dissolution
in a well-stirred release medium has been the subject of numerous
previous studies, and was recently reviewed by Siepmann & Siep-
mann [42]. We now use these well-established ideas to model this
case. The system is as depicted in Fig. 2(c). The moving boundary
x ¼ sðtÞ, initially located at x ¼ 0, separates the release medium
from the pure drug layer, and the initial thickness of the drug layer
nanoporous system in unstirred and well-stirred release media. Also on display are
0 ¼ 0:1 < 1. We observe that drug release is significantly sped up in the well-stirred

for poorly soluble drugs are providing good agreement with the full solutions, even
ter values used in the generation of this plot are displayed in Table 1.



Fig. 9. The special case of a pure drug layer in a well-stirred release medium. This case cannot be described by the solution (30), (31) and must be considered separately. A
narrow boundary layer of poorly stirred fluid forms near the surface of the solid drug, and it is assumed that the flux of drug from the dissolving surface is proportional to the
difference between the drug concentration at the surface and the drug concentration in the well-stirred release medium.
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is Ld. For this case, we shall take the release medium to be finite in
extent, and to initially occupy 0 < x < Lw. When the medium is
well-stirred, a boundary layer of poorly stirred fluid forms close
to the surface of the dissolving drug layer. This layer is taken to
be of thickness h, with the size of h depending on the degree of
agitation in the fluid bulk. This is admittedly a somewhat crude
characterisation of the behaviour, but it is commonly used, and
does lead to a useable theory that gives satisfactory agreement
with experimental results [42]. In the current analysis, we take
h� Ld � Lw, and denote by cTðtÞ the uniform drug concentration
in the well-stirred medium at time t. In Fig. 9, we schematically
depict the various regions and drug concentrations arising.

The key assumption of the Noyes–Whitney and the Nernst–
Brunner dissolution models [43,44] is that the flux of drug from
the surface of the dissolving drug layer is proportional to the differ-
ence between the concentration of drug in the release medium and
the concentration of drug at the surface. Denoting by jjx¼sðtÞ, the flux
of drug from x ¼ sðtÞ, we write

jjx¼sðtÞ ¼ �Dw
ðcTðtÞ � csÞ

h
; ð33Þ

where cs is the drug concentration on x ¼ sðtÞ. Eq. (33) is a state-
ment of Fick’s first law, with the right hand side of (33) playing
the role of �Dw@c=@x in the more familiar statement of the law. In
view of (14), the appropriate equation for the speed of the front is
now

�Dw
ðcTðtÞ � csÞ

h
¼ ds

dt
ðcs � c0Þ on x ¼ sðtÞ; t > 0: ð34Þ

Equating the amount of drug that has dissolved with the amount in
the release medium, and using the fact that h� Ld � Lw, we have

�sðtÞc0 � LwcTðtÞ: ð35Þ

Combining (34) and (35) leads to

dsðtÞ
dt
þ Dw

hLw

c0

c0 � cs
sðtÞ � �Dw

h
cs

c0 � cs
; t > 0;

which is solved subject to sð0Þ ¼ 0 to give

sðtÞ � � cs

c0
Lw 1� exp �t=t0ð Þð Þ;

where t0 ¼ hLwDw 1� cs=c0ð Þ=Dw determines the time scale for disso-
lution. It follows that

cTðtÞ � csð1� expð�t=t0ÞÞ:

For t � t0, we have sðtÞ � �csLwt=ðc0t0Þ, which clearly distinguishes
this case from the t1=2 behaviour of the unstirred case.
The time for the drug to dissolve, td, is determined from
sðtdÞ ¼ �Ld, which gives

td � �t0 ln 1� Ldc0

Lwcs

� �
;

and this quantity is clearly only defined for Ldc0 < Lwcs. This is as
expected since for Ldc0 > Lwcs there is sufficient drug to completely
saturate the release medium, and the drug cannot then fully dis-
solve. For Ldc0 < Lwcs, the release profile is given by

MðtÞ
Mð1Þ �

Lwcs
Ldc0

1� exp �t=t0ð Þð Þ for 0 6 t 6 td;

1 for t > td:

(

3.2.2. Sensitivity analysis of the design parameters
The models we have presented include several parameters

which may in principle be altered during the manufacturing of
the device. It is therefore of interest to consider the sensitivity of
the release profiles to changes in these parameters. Nanoporous
systems appear to have the best potential for controlling the drug
release since they exhibit the highest number of tunable para-
meters: porosity, absorption, desorption, tortuosity, constrictivity,
thickness of the porous layer, drug diffusivity in the release medi-
um and the ratio of drug solubility to initial drug concentration.
Nanotubular systems have tortuosity set to 1 and therefore provide
faster drug release. Smooth surface systems result in significantly
quicker drug release with the rate of release being controlled pure-
ly by the thickness of the drug layer, the ratio of drug solubility to
initial drug concentration and the diffusivity of the drug in the
release medium. In all of these systems, the thickness of the drug
layer Ld is an important parameter since from (21) it is clear that
the release time varies as the square of Ld. Thus, in all cases,
increasing the value of Ld will result in an increase in the duration
of the drug release. Taking the example of the nanoporous one-lay-
er system, if we reduce Ld from 10�4 m to 5� 10�5 m and then
10�5 m (using the default parameter values in Table 1), the release
time decreases significantly from 3.6 days to 21.4 h to 51.5 min,
respectively. Of course, there will undoubtedly be constraints on
the value that Ld can take, both from the manufacturing side and
also from the physiological viewpoint.

From Eq. (7) we observe that the single parameter Da takes
account of the effects of porosity, absorption, desorption, tortuosity
and constrictivity and thus it is of key importance in determining
the speed of drug release. Depending on the values of /e=s;K ,
and /, the parameter Da can vary by several orders of magnitude
and as a consequence the release time can be significantly delayed.
In Table 2 we present calculated release times when these para-



Table 2
Parameter values used in the sensitivity analysis.

Parameter
varied

Value of
parameter

Value of Da

(m2 s�1)
Release time, td

(days)

K 10 3:03� 10�11 0.0552

K 1 1:67� 10�11 0.165

K 0.1 3:03� 10�12 3.56

K 0.01 3:30� 10�13 274

/e=s 0.6 9:09� 10�12 3.33

/e=s 0.25 3:79� 10�12 3.49

/e=s 0.05 7:58� 10�13 4.54

/e=s 0.01 1:52� 10�13 8.96

/ 0.9 2:02� 10�12 7.75

/ 0.8 2:27� 10�12 6.18

/ 0.7 2:60� 10�12 4.78
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meters are varied. The parameter K not only has the largest impact
on the value of Da (spanning two orders of magnitude for the val-
ues considered), but also has the greatest influence on the release
times which increase from 79 min to 274 days when K is decreased
from 10 to 0.01. The microstructural parameter /e=s has a maxi-
mum value of 1, corresponding to the case where the porous region
is completely void: in this case, De ¼ Dw ¼ Da (1=K ! 0 since there
are no pore walls for the drug to stick to). Since this case corre-
sponds to the smooth surface system, we focus on intermediate
values of /e=s. We observe that this parameter has less of an effect
on release times, with the release time increasing by less than 4 h
when /e=s is reduced by more than half from 0.6 to 0.25. However,
as we reduce this parameter further we can prolong the release
time: when /e=s is reduced to 0.01, the release time is extended
to almost 9 days. However, this would correspond to an extremely
low effective porosity or extremely tortuous pores. The effect of
increasing / (whilst keeping /e < / fixed) is to increase the release
time since we are effectively increasing the initial mass of drug in
the porous layer and so it takes longer to dissolve. In reality, it is
likely that the drug coating process will result in a thin layer of
drug on the surface of the stent in addition to the drug that is con-
tained within the porous region. If this layer is sufficiently thin
then it will have little effect on the release time since the surface
layer will be dissolved rapidly. But if the layer is of a non-negligible
thickness then two distinct phases of release are observed. The first
is a fast phase corresponding to pure drug dissolving on the surface
and the second is a slow phase corresponding to drug contained
Fig. 10. Plot of the cumulative fraction of drug released from a two-stage release syste
values in Table 1.
within the nanopores being eluted. By varying the surface layer
thickness we can therefore add another degree of tunability. For
example, if a large burst of drug is desired initially followed by a
slow zero-order release then this can be achieved by tweaking
the value of Lp. Thus by varying the parameter values of the system,
a stent may in principle be designed to deliver a given amount of
drug rapidly, over a defined time period, and then the remainder
of the drug slowly, over a longer defined period of time. In
Fig. 10, the cumulative fraction of drug released from a two-stage
release system is plotted for various values of Lp.

When we analyse the case of nanoporous (or nanotubular) drug
release into a well-stirred release medium, we see that the drug
release depends purely on the value of Da and the ratio cs=c0. Thus,
by varying these parameters as above we can also tailor the release
profile for the well-stirred case. As described in Section 3.2, drug
dissolution is significantly faster in a well-stirred release medium.
This is evidenced in Fig. 8 which compares the release profiles from
the nanoporous system in unstirred and well-stirred release media.
4. Conclusions

In this paper we have presented the first model of drug elution
from polymer-free drug-eluting stents. Our generalised model is
capable of predicting the drug release from a number of systems
including nanoporous, nanotubular and smooth surface systems.
We have identified the key parameters of the system which may
be tuned at the manufacturing stage to achieve the desired drug
release profile. In particular, we observed that the duration of
release is particularly sensitive to the thickness of the drug layer,
the ratio of drug absorption to desorption and ratio of drug solubi-
lity to initial drug concentration. Whilst the first two of these may
be manipulated during the manufacture of the stent material, the
latter will depend on the properties of the particular drug consid-
ered (for example whether it is in an amorphous or crystalline
phase). Other parameters such as the porosity and tortuosity can
be utilised to fine tune a particular release profile. We have also
demonstrated that a two-layer system (comprising a pure drug
layer on the surface above a porous drug layer) can provide addi-
tional flexibility in tuning the release profile. Two distinct phases
of release can be obtained, with the duration of each phase and
the amount of drug delivered during each phase able to be varied
by adjusting the model parameters accordingly.
m for various Lp=Ld . Here we plot the numerical solution for the default parameter
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One of the main advantages of the models presented in this
work is the ability to achieve analytical solutions. These solutions
not only allow for release profiles to be rapidly calculated, but they
also clearly show the dependence of the various parameters of the
system on the release profiles. This is of great benefit when consid-
ering the required design parameters to achieve a particular
release profile. We would like to emphasise that the models pre-
sented in this paper are for drug release in an in vitro environment
since we believe that it is essential to understand the drug release
dynamics in a controlled environment before embarking on the
in vivo environment. We acknowledge that whilst our work may
suggest that a system designed with certain parameter values will
give rise to a particular in vitro release profile, the in vivo release
profile may be quite different. We have considered in vitro release
into both unstirred and well-stirred release media, corresponding
to a treatment of the worst- and best-case scenarios, respectively,
from the point of view of speed of drug dissolution. We acknowl-
edge that since a stent upon implantation is exposed to tissue at
its outer surface and to blood flow at its inner surface, in reality
(in vivo) a combination of these two extreme approaches would
likely be more appropriate. Furthermore, there may be biological
and mechanical constraints on the design of the device which are
not considered here.
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Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1–10, are diffi-
cult to interpret in black and white. The full colour images can
be found in the on-line version, at http://dx.doi.org/10.1016/j.act-
bio.2015.02.006.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.actbio.2015.02.
006.

References

[1] Stefanini GG, Holmes DR. Drug-eluting coronary artery stents. N Engl J Med
2013;368:254–65.

[2] Khan W, Farah S, Domb AJ. Drug eluting stents: developments and current
status. J Control Release 2012;161:703–12.

[3] Nebeker JR, Virmani R, Bennett CL, Hoffman JM, Samore MH, Alvarez J, et al.
Hypersensitivity cases associated with drug-eluting coronary stents: a review
of available cases from the research on adverse drug events and reports (radar)
project. J Am Coll Cardiol 2006;47(1):175–81.

[4] van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HMM, Serruys
PW, Holmes DR, et al. Marked inflammatory sequelae to implantation of
biodegradable and nonbiodegradable polymers in porcine coronary arteries.
Circulation 1996;94(7):1690–7.
[5] Joner M, Finn A, Farb A, Mont E, Kolodgie F, Ladich E, et al. Pathology of drug-
eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll
Cardiol 2006;48(1):193–202.

[6] Kotani J, Awata M, Nanto S, Uematsu M, Oshima F, Minamiguchi H, et al.
Incomplete neointimal coverage of sirolimus-eluting stents. angioscopic
findings. J Am Coll Cardiol 2006;47(10):2108–11.

[7] McGinty S, McKee S, Wadsworth RM, McCormick C. Modelling drug-eluting
stents. Math Med Biol 2011;28:1–29.

[8] McGinty S, McKee S, Wadsworth RM, McCormick C. Modeling arterial wall
drug concentrations following the insertion of a drug-eluting stent. SIAM J
Appl Math 2014;73(6):2004–28.

[9] Pontrelli G, de Monte F. Mass diffusion through two-layer porous media: an
application to the drug-eluting stent. Int J Heat Mass Trans 2007;50:3658–69.

[10] Zunino P. Multidimensional pharmacokinetic models applied to the design of
drug-eluting stents. Cardiov Eng Int J 2004;4(2):181–91.

[11] Bozsak F, Chomaz J, Barakat AI. Modeling transport of drugs eluted from
stents: physical phenomena driving drug distribution in the arterial wall.
Biomech Model Mechanobiol 2014;13(2):327–47.

[12] Siepmann J, Siepmann F. Mathematical modelling of drug delivery. Int J
Pharmaceut. 2008;364:328–43.

[13] Fredenberg S, Reslow MWM, Axelsson A. The mechanisms of drug release in
poly(lactic-co-glycolic acid)-based drug delivery systems – a review. Int J
Pharmaceut 2011;415:34–52.

[14] Prabhu S, Hossainy S. Modeling of degradation and drug release from a
biodegradable stent coating. J Biomed Mater Res A 2007;80A(3):732–41.

[15] Siepmann J, Gopferich A. Mathematical modeling of bioerodible, polymeric
drug delivery systems. Adv Drug Deliv Rev 2001;48(2–3):229–47.

[16] Rothstein SN, Federspiel WJ, Little SR. A unified mathematical model for the
prediction of controlled release from surface and bulk eroding polymer
matrices. Biomaterials 2009;30(8):1657–64.

[17] Soares JS, Zunino P. A mixture model for water uptake, degradation, erosion
and drug release from polydisperse polymeric networks. Biomaterials
2010;31(11):3032–42.

[18] Rossi F, Casalini T, Masi ERM, Perale G. Bioresorbable polymer coated drug
eluting stent: a model study. Mol Pharm 2012;9(7):1898–910.

[19] Huang Y, Ng H, Ng X, Subbu V. Drug-eluting biostable and erodible stents. J
Control Release 2014. http://dx.doi.org/10.1016/j.jconrel.2014.05.011.

[20] Tsujino I, Ako J, Honda Y, Fitzgerald PJ. Drug delivery via nano-, micro and
macroporous conronary stent surfaces. Expert Opin Drug Deliv
2007;4(3):287–95.

[21] Minivasys, http://heartbeat.co.in/wp-content/uploads/amazonia-pax-2010.
pdf, 2010

[22] Abizaid A, Ribamar-Costa J. New drug-eluting stents: an overview on
biodegradable and polymer-free next-generation stent systems. Circ
Cardiovasc Interv 2010;3:384–93.

[23] Ma X, Wu T, Robich MP. Drug-eluting stent coatings. Interv Cardiol
2012;4(1):73–83.

[24] Aw M, Khalid K, Gulati K, Atkins G, Pivonka P, Findlay D, Losic D.
Characterization of drug-release kinetics in trabecular bone from titania
nanotube implants. Int J Nanomed 2012;7:4883–92.

[25] Gulati K, Aw M, Losic D. Drug-eluting Ti wires with titania nanotube arrays for
bone fixation and reduced bone infection. Nanoscale Res Lett 2011;571(6).
http://dx.doi.org/10.1186/1556-276X-6-571.

[26] Gong D, Yadavalli V, Paulose M, Pishko M, Grimes C. Controlled molecular
release using nanoporous alumina capsules. Biomed Microdevices
2003;5(1):75–80.

[27] Tzur-Balter A, Young J, Bonanno-Young L, Segal E. Mathematical modeling of
drug release from nanostructured porous Si: combining carrier erosion and
hindered drug diffusion for predicting release kinetics. Acta Biomater
2013;9:8346–53.

[28] Martin F, Walczak R, Boiarski A, Cohen M, West T, Cosentino C, Ferrari M.
Tailoring width of microfabricated nanochannels to solute size can be used to
control diffusion kinetics. J Control Release 2005;102:123–33.

[29] Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or
coatings for sustained drug delivery in implantable devices. Adv Drug Deliv
Rev 2010;62:305–15.

[30] McGinty S, McKee S, McCormick C, Wheel M. Release mechanism and
parameter estimation in drug-eluting stent systems: analytical solutions of
drug release and tissue transport. Math Med Biol 2014. http://dx.doi.org/
10.1093/imammb/dqt025.

[31] Zhao H, Jayasinghe D, Hossainy S, Schwartz L. A theoretical model to
characterize the drug release behavior of drug-eluting stents with durable
polymer matrix coating. J Biomed Mater Res A 2012;100A(1):120–4.

[32] Hossainy S, Prabhu S. A mathematical model for predicting drug release from a
biodurable drug-eluting stent coating. J Biomed Mater Res A
2008;87A:487–93.

[33] Cussler E. Diffusion: mass transfer in fluid systems. third ed. New
York: Cambridge University Press; 2009.

[34] Schwartz RS, Edelman E, Virmani R, Carter A, Granada JF, Kaluza GL, et al.
Drug-eluting stents in preclinical studies updated consensus
recommendations for preclinical evaluation. Circ Cardiovasc Interv
2008;1(7):143–53.

[35] Seidlitz A, Nagel S, Semmling B, Sternberg K, Kroemer HK, Weitschies W. In
vitro dissolution testing of drug-eluting stents. Curr Pharm Biotechnol
2013;14:67–75.

http://dx.doi.org/10.1016/j.actbio.2015.02.006
http://dx.doi.org/10.1016/j.actbio.2015.02.006
http://dx.doi.org/10.1016/j.actbio.2015.02.006
http://dx.doi.org/10.1016/j.actbio.2015.02.006
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0005
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0005
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0010
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0010
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0015
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0015
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0015
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0015
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0020
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0020
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0020
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0020
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0025
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0025
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0025
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0030
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0030
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0030
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0035
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0035
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0040
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0040
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0040
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0045
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0045
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0050
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0050
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0055
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0055
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0055
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0060
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0060
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0065
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0065
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0065
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0070
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0070
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0075
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0075
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0080
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0080
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0080
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0085
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0085
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0085
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0090
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0090
http://dx.doi.org/10.1016/j.jconrel.2014.05.011
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0100
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0100
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0100
http://heartbeat.co.in/wp-content/uploads/amazonia-pax-2010.pdf
http://heartbeat.co.in/wp-content/uploads/amazonia-pax-2010.pdf
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0110
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0110
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0110
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0115
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0115
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0120
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0120
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0120
http://dx.doi.org/10.1186/1556-276X-6-571
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0130
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0130
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0130
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0135
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0135
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0135
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0135
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0140
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0140
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0140
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0145
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0145
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0145
http://dx.doi.org/10.1093/imammb/dqt025
http://dx.doi.org/10.1093/imammb/dqt025
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0155
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0155
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0155
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0160
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0160
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0160
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0165
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0165
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0170
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0170
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0170
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0170
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0175
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0175
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0175


S. McGinty et al. / Acta Biomaterialia 18 (2015) 213–225 225
[36] Capodanno D, Dipasqua F, Tamburino C. Novel drug-eluting stents in the
treatment of de novo coronary lesions. Vasc Health Risk Manage
2011;7:103–18.

[37] Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines
drug deposition and receptor-mediated effects. J Control Release
2012;161:918–26.

[38] Zhu X, Pack DW, Braatz RD. Modelling intravascular delivery from drug-
eluting stents with biodurable coating: investigation of anisotropic vascular
drug diffusivity and arterial drug distribution. Comput Methods Biomech
Biomed Eng 2012;17(3):1–12.

[39] Crank J. Free and moving boundary problems. third ed. New York: Oxford
University Press Inc.; 1984.
[40] Simamora P, Alvarez J, Yalkowsky S. Solubilization of rapamycin. Int J Pharm
2001;213:25–9.

[41] Holmes M. Introduction to perturbation methods. second ed. New
York: Springer; 2012.

[42] Siepmann J, Siepmann F. Mathematical modeling of dissolution. Int J Pharm
2013;453:12–24.

[43] Noyes A, Whitney W. The rate of solution of solid substances in their own
solutions. J Am Chem Soc 1897;19:930–4.

[44] Brunner E. Reaktionsgeschwindigkeit in heterogenen systemen. Z Phys Chem
1904;47:56–102.

http://refhub.elsevier.com/S1742-7061(15)00069-0/h0180
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0180
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0180
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0185
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0185
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0185
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0190
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0190
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0190
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0190
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0195
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0195
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0200
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0200
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0205
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0205
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0210
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0210
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0215
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0215
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0220
http://refhub.elsevier.com/S1742-7061(15)00069-0/h0220

	Some design considerations for polymer-free drug-eluting stents: A mathematical approach
	1 Introduction
	1.1 Background
	1.2 Outline

	2 Mathematical methods
	2.1 The general model for an unstirred release medium
	2.1.1 Boundary and initial conditions for an unstirred release medium

	2.2 Parameter values

	3 Results and discussion
	3.1 General solution for the unstirred case
	3.1.1 A nanotubular system
	3.1.2 A smooth surface system
	3.1.3 The low solubility limit, ? 
	3.1.4 Two stage release

	3.2 General solution for the well-stirred case
	3.2.1 A pure drug layer in a well-stirred release medium
	3.2.2 Sensitivity analysis of the design parameters


	4 Conclusions
	Acknowledgements
	Appendix A Figures with essential colour discrimination
	Appendix B Supplementary data
	References


