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Abstract
In classical optics theWolf function is the natural analogue of the quantumWigner function and like
the latter itmay be negative in some regions.We discuss the implications this negativity has on the
generalized ray interpretation of free-space paraxial wave evolution. Important examples include two
classes of beams carrying optical orbital angularmomentum—Laguerre–Gaussian (LG) andBessel
beams.We formulate their defining eigenfunction properties as phase–space symmetries of theirWolf
functions, whose analytical form is shown, and discuss their interpretation in the ray picture. By
moving to amore general picture of partly coherentfields, we find that new solutions displaying the
same symmetries appear. In particular, wefind thatmixtures ofGaussian beams (thus fully describable
using classical ray optics) canmimic the basic properties of LGbeamswithout the need for negativity,
and are not restricted to quantized values of angularmomentum. The quantization of both the l and p
parameters and negativity of theWolf function are both inevitable and, indeed, arise naturally when a
requirement on the purity of the solution is added. This work is supplemented by a set of computer
animations, graphically illustrating the interpretative aspects of the describedmodel.

Introduction

Weknow thatmost phenomena of light can only be explainedwhen its wave nature is taken into account.
Within the classical context, this has effectively eliminated attempts at a broader adoption ofNewton’s
corpuscular description [1]. Nevertheless, geometric ray optics remains a good compromise between clarity and
exactness inmany real-world situations. Historically, its domain had been restricted to the limit of short
wavelength, applicable to a good extent tomany important fields including photography,microscopy, and
telescopy, but failing at scales where interference phenomena can no longer be neglected.

The concept of generalized ray description of lightwaves, providing an exactmathematicalmodel of light
propagation and detection accounting even for interference phenomena, but keeping the intuitiveness of a
geometric picture, dates back to the 1970ʼs. First attempts can be identified in [2], after which the topic has been
broadly—and to a good extent independently—developed by Bastiaans [3–5] and Sudarshan [6–8]. Simon [9]
has noted that the ray picture becomes particularly plausible andwell-behaved in the paraxial approximation,
whichwas an ad hoc initial assumption in [2].

In order to successfully extend the ray picture of light to describe interference phenomena, some
assumptionsmust be relaxed.Most notably, onemust allow to consider rays carrying a negative intensity. These
form the basis for describing destructive interference phenomenawithout the notion of a phase.

In this work, we apply the above ideas to the case of paraxial beams carrying optical orbital angular
momentum (OAM) [10]. Laguerre–Gaussian (LG) beams, in particular, have been the target of a broad interest
lately in connection to their use in, for example, optical tweezers and optical wrenches [11], multimode optical
communication [12], or surface analysis [13], amongmany others, alongwith a recent development in the
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accessibility of computer-generated holograms as a primarymeans of their fully customizable generation
[14, 15].Many important generalizations of practical applicability have been thoroughly studied, for example,
beamswith optical vortices displaced from their centroid [16]. The topic in turn is a part of amuch broader field,
extending also into the quantumoptical domainwhere the spatial distributions are reflected in the sense of an
abstract harmonic oscillator representation, allowing formethods similar to those described here to be
employed [17, 18].

There certainly remains space for research in some of the theoretical aspects ofOAM-carrying beams in their
different representations. For example, a picture of a LGbeam as formed by a sheaf of co-rotating rays had been
repeatedly used in literature (see, for example, [19, 20], or in electron optics, [21]) inspired by the approximate
shape of the integral curves of the Poynting vector [22, 23], only reaching this behaviour asymptotically for both
azimuthal and radial indices simultaneously large [24]. This picture does not address the curvature of Poynting
vector lines nor the divergence of its axial component near beam axis [25], the latter leading to a theoretical
paradox [26]. By providing a complete generalized ray description of LG andBessel beams, alongwith remarks
on their interpretation, we aim to strengthen themethods currently in use aswell as to resolve the
aforementioned paradox and to provide new insights into the topic.

Paraxial wave equation and theWolf function

Consider aweakly divergentmonochromatic beampropagating along the z+ axis such that in its
decomposition into planewaves,most of the intensity is concentrated in a close neighbourhood of

k k0, 0, ,( )=


k 2 .p l= Let us ignore its polarization (or select onefixed polarization direction) and let the
beambe described by a scalar function x y z, ,( )y obeying theHelmholtz equation
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Due to the paraxial structure of the beam, it can be assumed thatmost of the evolution along the z axis will be
constituted by a linear phase rampof e .kzi Extracting this factor, let us define

u x y z x y z, , , , e ,kzi( ) ≔ ( )y -

and represent the assumption of paraxiality by [27]
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in the L¥ (supremal)norm.
On rewriting (1) in terms of u x y z, ,( ) and applying neglections conforming to (2), we obtain the paraxial

wave equation [27, 28, 30]:
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In contrast with (1), this is afirst-order evolution equation in z and thus only requires the specification of
u x y z, ,( ) at a single plane z z0= as the initial condition.

There is an exact formal agreement between the formof (3) and the (2+ 1)-dimensional free particle
Schrödinger equation
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The agreement is complete if we identify the evolution parameter twith z and kwith theComptonwave number
m/ (both using c = 1).

Many quantummechanicalmethods can then be directly translated into paraxial wave optical domain.One
of the notable concepts is theWigner function [29],
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the analogue of which, inwave optics, is theWolf function [6]

W x y k k z u x x y y z
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In the following, we shall assume both functions to be normalized in the L1 norm (although it ismore natural for
the latter to integrate to the full cross-sectional intensity). This is automatically satisfied if x y t, ,( )f or
u x y z, ,( ) are L2-normalized, respectively. Further, we shall drop the reference to the evolution parameter z in
W x y k k z, , ,x y( ∣ )where its value has been fixed and no ambiguity can occur.

Equations (4) or (5) assign a real-valued phase–space function to any givenwave function x y t, ,( )f or a
paraxial beam cross section u x y z, , ,( ) respectively. Inmany respects these functions can be interpreted as a
probability (in the case ofWqm) or intensity (forW) distribution in a restricted sense. Notably,
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where ũ denotes the two-dimensional Fourier transformof thewave function u, amongmany other properties.
Of particular interest in phase–space formulation of quantummechanics is that expectation values of

observables can be computed averaging their phase–space representations usingWqm as theweight. This

representation, called the (Weyl’s) symbol fA of an operator A,ˆ is in this case obtained by
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Note in particular thatWqm is, up to a prefactor of 2 ,2( )p - the symbol of the densitymatrix of the state. A
similar theoremholds also for theWolf functionwith obvious interpretational differences, primarily expectation
values becoming ensemble averages. Themapping of the two formalisms is achieved by replacing ÿ by unity,
time by the z coordinate, and components ofmomentumby those of wave vector perpendicular to the direction
of propagation. In this respect, wewill also speak of density operator z( )r corresponding to awavefront
u x y z, ,( )

x y z x y u x y z u x y z
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representing the equal-time second-order cross-correlation function of themonochromatic field [30], andwe
will carry the notation of a symbol of an operator to paraxial optical systems.

The evolution equation (3) can be rewritten for theWolf function as follows:
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and explicitly solved as
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This result can be interpreted in a direct correspondence to the phase–space intensity density picture: the local
density is preserved along straight trajectories of the slope k k k, ,x y( ) in the x y z, ,( ) space, keeping kx and ky
constant. Thus, in terms ofmeasurable physical quantities, any solution to the paraxial wave equation (3) can be
decomposed into a set of ideal, non-interacting, linear rays going through every point of the cross section in
every direction and carrying a positive, zero, or negative contribution to local intensity.

The possibility of negative values is an inherent property of theWolf function and the only solutions of (3)
with a completely non-negativeWolf function areGaussian beams [31]. It is important to emphasize at this
point that negative rays can never be directly observed. This is precluded bymarginalization (6) in position or
transverse k detection, which always yields non-negative values, or in general by the positivity ofmeasurement
operators whenmore intricatemeasurements are performed. In an intuitive understanding, positive rays are
always stronger in total intensity in any phase–space cell of x k y k1, 1x y D D D D than negative ones and
trying to separate the latter would inevitably overcome the diffraction limit, compromising the validity of the
equations and approximations used.
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LGbeams

ALGmode is a prototypical example of an optical beam carryingOAM. Its form is stable under free-space
propagation (only the scale of the intensity profile in a cross section changes) and each photon carries a constant
integer number ofOAMquanta, L l .= Here and in the following, unless explicitly stated otherwise, we shall
always assume that coordinates are chosen such that z coincides with the beamaxis and z= 0 is the point of the
narrowest cross section, the beamwaist. An LGbeam is then completely specified by l ,Î an integer ‘radial’
parameter p 0 , and thewidth at thewaistw0, and often denoted LG .l p, Themathematical formof its
wavefront in the scalar theory is [10]

u r z
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denotes the beamwidth at z, reducing to the beamwaist3w0 at z= 0,
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the radius of curvature, and
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z
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theGouy phase. In all the above formulae,

z kwR 0
2=

is the Rayleigh range of the beam.
Themathematical formof the beam is the simplest in the beamwaist, where
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This function can be found as a joint eigenfunction of the differential angularmomentumoperator
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corresponding to eigenvalues l and p l2 1,∣ ∣+ + respectively.
As both operators are quadratic in position andmomenta observables, their respective eigenvector

equations correspond to phase–space symmetries of theWolf functions of the LGbeams: in general, for any
operator Â satisfying this condition, theWolf function of the commutator A Aˆ ˆr r- corresponds, up to a
constant factor, to the Poisson bracket of theWolf function assigned to ρ and the symbol of the operator A.ˆ For
u x y z, ,( ) satisfying the eigenvector equation

Au x y z u x y z, , , , ,ˆ ( ) ( )l=

the density operator (7) commutes with A,ˆ and therefore theWolf function (5) satisfies
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The symbols of operators (11) and (12) are

f x y k k xk yk, , , 13L x y y x( ) ≕ ( )l= -

3
Corresponding here to an intensity drop by a factor of e1 in theGaussian case l p 0.= = Themore usual e1 2 half-width w0¢ is related by

w w2 .0 0¢ =
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and
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leading to a rotational symmetry of theWolf function of any LG beamwith respect to
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and a symmetrywith respect to the fractional phase–space Fourier transform,
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respectively.
TheWolf function of a LGbeam in the beamwaist can be computed using further properties of these

symmetries, as demonstrated very elegantly by Simon andAgarwal in [32], or using a set of ladder operators for
the l and pnumbers, an approach taken byVanvalkenburgh [33]. The result can bewritten in a compact form,
manifestly symmetric with respect to (14) and (15),
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The coordinatesμ and ν, which both range from zero to infinity, can be supplemented by two angular
coordinates , 0, 21 2 ( )f f pÎ to parametrize the full phase–space:
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Indeed, the conditions on constantμ and ν, or constant ò andλ, define a torus in the phase–space, which can
then be parametrized by 1f and .2f The Jacobian of the coordinate transform x y k k, , , , , ,x y 1 2∣ ( ) ( )∣m n f f¶ ¶
is a constant 1 4.Note that the symmetry transform (14) corresponds to displacing both 1f and 2f
simultaneously byαwhile (15) corresponds to displacing ,1 2( )f f to , .1 2( )f b f b+ -

From (16) and the definitions (17)wededuce that rays too strong in either displacement or angle are
superexponentially suppressed. Asmentioned earlier, the case l p 0= = (Gaussian beam) is the onlyWolf
function that is completely positive. As soon as u or v are non-zero, therewill be a sign changewhenμ or ν cross
each root of the corresponding Laguerre polynomial. An example of theWolf function of LG11 is shown in
figure 1. A typical cross section in the ray decomposition provided by interpreting theWolf function as a
generalized phase–space intensity is illustrated infigure 2.

The graphic representation displays several features of theWolf functionwhen interpreted as a phase–space
intensity density. As expected, amajority of the total positive intensity lies in the half-plane corresponding to the
sign of theλ coordinatematching that of l (rays co-rotatingwith the beam), but the separation is not exclusive.
Also, one can clearly see that the function is regular and bounded over its entire domain. This is contrary to the

5
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behaviour of Poynting vector near the origin, leading to a famous problemof anomalousmomentumkick
discrepancy [26]. This problemhas been solved by an exact treatment of a test particle’s uncertainty relation but
the generalized ray picture shows that its very occurence can be attributed to the limitation to Euclidean space.
The problem is not observedwhen full phase–space is considered.

Figure 1.TheWolf function of a Laguerre–Gaussian beamLG11 in terms ofμ and ν coordinates. Every pixel represents a value
constant over the surface of a torus parametrized by the coordinates .1,2f Blue shades represent positive and red shades negative
values, nodal lines (gray) are dashed. The color function scaling is arbitrary.

Figure 2.The cross section of a Laguerre–Gaussian beamLG10 at beamwaist. Individual arrows represent samples from the phase–
space distribution given by theWolf function (16). The position and direction are proportional to (x,y) and k k,x y( ) coordinates,
respectively. Blue shades represent positive and red shades negative values of theWolf function, with opacity proportional to its value
(a nonlinear correction has been applied tomake the features better pronounced). 5000 random sampleswere taken from an uniform
distribution over the interval of w w2 , 20 0( )- in each spatial coordinate (corresponding to the area covered by the plot) and

w w2 , 20
1

0
1( )- - - in eachmomentum coordinate.
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The separate occurrences of theμ and ν coordinates in (16)make it easy to integrate to obtain themean
values
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It follows that theweighted average of 2( )l m n= - and 2( ) m n= + are u v l- = and
u v p l1 2 1,∣ ∣+ + = + + matching the respective eigenvalues in thewavefunction picture. This example,
albeit being a simple demonstration of themore general theoremmentioned above, underlines the plausibility
but also practicality of treating theWolf function (16) as a phase-space quasi-density of intensity.

The SupplementaryMaterial to this work presents several cases of LGbeams as computer animations of
figure 2 in evolution along the z-axis.

Bessel beams

Bessel beams are rotationally symmetric, non-diffusive solutions to theHelmholtz equation (1)
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is also a solution to the paraxial wave equation (3) butwith k k k2z
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Like the LGbeams, they satisfy
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which grants the stability of the solutionwith respect to (3).
Bessel beams are non-normalizable as a beamwith awavefront of the form (19)with any non-zero

amplitudewould carry an infinite amount of energy. TheWolf function can still be introduced but some of its
properties will bemodified in connection to its ownunnormalizability. In order to compute it, we rewrite
u r, , 0( )f as a generalized superposition of two-dimensional planewaves:
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Fromhere it only takes a direct application of (5) to reach theWolf function
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, , cos cos , cos sin

1

2 sin cos
cos 2 sin sin 2 sin cos 2 . 22

2 2

( )

( ) ( )

k a b k a b

p k a a
k a b k a b a= - -

Note that the latter two arguments of the left-hand side are expressed indirectly and only values for which
k kx y

2 2 2 k+ are reachable. For all other phase–space points the value is zero. The assignment ofα andβ to a
given kx and kywithin the supporting domain is not unique but any choice leads to the same value of the right-
hand side of (22).

Bessel beams do not feature a naturally defined beamwidth so they do not have a particularly simple form in
the coordinates , , , ,1 2( )m n f f defined above, for anyw0. They can be thought of as having an infinite value
thereof, and thus an infinite Rayleigh range, in agreement with their zero diffraction. This is further supported
by the fact that a Bessel beam can be obtained as a limit of LGbeams as p  ¥ and w p20 k= [34, equation
(22.15.2)], as also noted in [24]; also the eigenvalue equation

Eu p l u2 1ˆ ( ∣ ∣ )= + +
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becomes (21) under the same limiting conditions. Bessel beams are symmetric with respect to canonical
transforms generated by angularmomentum (13) and by

f x y k k k k, , , ,H x y x y
2 2( ) ≕ h= +

which is the symbol of the differential operator on the left-hand side of (21), conveniently denoted Ĥ 4.
The value η, interpreted as a coordinate in phase–space, can be thought of as twice the limit of the above

introduced ò in the infinite beamwaist limit, rescaled by an appropriate power ofw0:

w w
lim

2
lim . 23

w w0
2

0
2

0 0

( )
h

m n
= =

+
¥ ¥

The coordinate 2( )l m n= - is still natural to the systemdue to (20).We perform an analogous transformon
the angular coordinates, replacing themby their average

k klim
2

arg i
w

y x
1 2

0
( )≔q

f f+
= -

¥

and a renormalized limit of half of their difference,

w
k x k y

k k
lim

2
. 24

w

x y

x y
0
2 1 2

2 2
0

≔ ( )c
f f-

=
+

+¥

Clearly the Jacobian of the transform

w
w,

2
,

2
,

2

, , ,

1

2
0
2

1 2
0
2 1 2

1 2( )

⎛
⎝⎜

⎞
⎠⎟

m n m n f f f f

m n f f

¶
+ - + -

¶
=

for allw0 and thus also x y k k, , , , , , 1 2.x y∣ ( ) ( )∣h l q c¶ ¶ = TheCartesian phase–space coordinates can be
expressed using the new four-tuple as

x

y

k

k

cos sin ,

sin cos ,

sin ,

cos .
x

y

l
h

q c h q

l
h

q c h q

h q
h q

= -

= +

=-
=

In the new coordinates theWolf function (22) is expressible solely in terms of η andλ as

W
l

, , ,

1

2
cos 2 2 arccos for ,

0 otherwise

252 2

2
2

( )( ) ( )

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

h l q c p h k h

k h
h

l
h
k

h k
= -

-
- <

(for a graph, seefigure 3) and thus exhibits a symmetry with respect to translations in both θ andχ. The former is
the same rotational symmetry as in (14). The latter generates the transform group

x x k

y y k

k k
k k

,

,

,
, 26

x

y

x x

y y ( )

z
z

+
+






as ,c c z+ which can be seen as a limit of (15) as w0  ¥ and 0b  simultaneously,maintaining
w .0

2b z= The orbits of this group are straight lines of the slope k k, , 0, 0x y( ) in the phase–space, alongwhich the
Wolf function is constant. This is at the base of the stability of the solution in terms of phase–space representation
and the evolution equation (9). The same argument, however, immediately shows that any solution featuring
this symmetry is inevitably unnormalizable because the integral of theWigner function over the full phase–space
involves an integral of a constant over . ForWolf functions constant inχwe can thus introduce a restricted
normalization condition

4
Up to a factor of 2 this is the effectiveHamiltonian of the paraxial wave equation (3).
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Wd d d , , , 0 1
0 0

2
( )ò ò òh l q h l q =

p¥

-¥

¥

instead of the full L1 norm.Note that the prefactors in (22) and (25)were chosen so as to satisfy this condition.
Onemight naturally expect that theWolf function (25) could be obtained from (16) using the limit

procedure outlined above.We note that this is possible but is analytically challenging as the convergence takes

Figure 3.TheWolf function of a Bessel beamwith l= 1 as a function of η andλ. Each point represents a constant value over a cylinder
in phase –space parametrized by θ andχ. The parameterκ only affects the scale of the η axis. There is a discontinuity at :2h k= the
Wolf function diverges as O 1 2( )h- from the left but is a constant zero for .2h k>

Figure 4.TheWolf function of LG1,30 as an approximant to a Bessel beamof l= 1 (seefigure 3). The horizontal axis was rescaled
accordingly to the limit procedure (23). As p further rises, the apparent horizontal ripples get denser but do not decrease in amplitude.
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place in aweak sense only; the latter converges to the former as a distribution but neither pointwise nor in any L-
norm. The character of the convergence is illustrated infigure 4.

It follows from the symmetry with respect to (26) that the ray decomposition of a Bessel beam, as described
by itsWolf function interpreted as an intensity distribution, will comprise parallel rays of constant intensity
arranged in planes defined by thewave vector and the propagation direction. In a cross section, wewould
observe this as lines of constant flow along their transverse k-vector. Thewhole space is thus covered by positive
and negative rays, non-decreasing in intensity even at high radii but rather asymptotically cancelling each other
perfectly. In areas near the beam axis positive rays aremore abundant due to the detailed properties of (22),
resulting in the characteristic concentric ring intensity profile. All of these aspects can be fully appreciated only at
extremely high sample rates, or inmotion, as provided by two examples in the SupplementaryMaterial.

Mixtures ofGaussian beams

The preceding examples dealt with individual, perfectly coherent or ‘pure’wavefronts. The conditions on purity
alongwith those on rotational symmetry and symmetrywith respect to fractional Fourier transform, or to free-
space propagation, translate to eigenfunction equations of (11) and (12) or (21) and leave LGor Bessel beams as
the only solutions, respectively.

AWolf function, however, can also be calculated for a statisticalmixture of different beams, opening new
possibilities for constructingmixed beams exhibiting rotational symmetry and propagational stability. In a
sense, the full characterization is trivial: rotational symmetry of aWolf function alone implies that the field is
represented by a single wave function u x y,( )which is an eigenfunction of (11) or a statisticalmixture thereof;
similarly, the symmetry with respect to (15) constrains the individual wave functions composing the field to
eigenfunctions of (12) (not necessarily corresponding to the same eigenvalues). If these two conditions are put
together, the field is restricted to be a statisticalmixture of LG beamswith various l and p but of the same beam
waistw0. However, wemight still seek forWolf functionswhich are special in certainways.

An interesting class of paraxial field solutions are thosewhich can bewritten as a statisticalmixture of
Gaussian beams only. As theWolf function is linear in the second-order correlation function (represented by the
density operator), statisticallymixing different components results in an affine combination of their respective
Wolf functions, in turn theWolf functions of anymixture ofGaussian beams is positive in all points. The axial
Gaussian beam shows both the required symmetries, as shown above by being a special case of LG ,00 andwe can
use it to constructmore complicatedfields whilemaintaining both symmetries by forming equal-weight
mixtures of its displacements to phase–space points along their phase–space orbits.

The principal case is obtained by displacing theGaussianWolf function

W x y k k, , ,
1

ex y
x y w k k w

0 2
x y

2 2
0
2 2 2

0
2( ) ( ) ( )

p
= - + - +

along all points x y k k, , ,x y( ˜ ˜ ˜ ˜ ) of constant ,˜ ˜ m n Î and integratingwith respect to 1 2 d d :2
1 2( ) ˜ ˜p f f

W x y k k x x y y w x k

k k w

, , ,
1

4
exp

d d ,

x y k x

y y

4 0

2 2 2
0
2 2

2
0
2

1 2

(
)
( ) (

)
( ) ( ) ( ) ( )

( )
∬ ˜ ˜ ˜

˜ ˜ ˜
p

f f

= - - + - - -

+ -

p

where (see (18))

x
w

y
w

k
w

k
w

2
cos cos ,

2
sin sin ,

1

2
sin sin ,

1

2
cos cos .

x

y

0
1 2

0
1 2

0
1 2

0
1 2

( )
( )

( )
( )

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜

m f n f

m f n f

m f n f

m f n f

= -

= -

= - -

= +

Carrying out the integration and rewriting the results in the coordinates (17), theWolf function of themixture is

W I I, , ,
1

e 2 2 . 271 2 2 0 0( ) ( ) ( )( ) ˜ ˜ ( )˜ ˜m n f f
p

mm nn= m n m n- + + +
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This corresponds to amean value of

l
2

28
˜ ˜ ( )m n

=
-

and

p
min ,

2
. 29

{ }˜ ˜
( )

m n
=

Clearly, any combination of real l and real non-negative p can be reached. (It is important that this is not
confusedwith the concept of fractional l values created on spiral waveplates with a non-integer phase step, as
described by Beijersbergen et al [35] and studied inmany later works [36, 37], which are observed in coherent
superpositions of integer lwavefronts and break the axial symmetry.)An examplewhere l and p are fractional is
depicted infigure 5 and a typical cross section of this kind offield infigure 6.

The spatial intensity distribution can be found by integrating W x y k k, , ,x y( )with respect to kx and ky and
can be expressed using polar coordinates as an infinite sumofmodified Bessel functions,

w r r
w

I
r

w
I

r

w
Icos , sin

1
e 2 2 . 30r w

k
k k k

0
2

2

0 0

2
0
2 ( )( )( ) ˜ ˜ ˜ ˜ ( )˜ ˜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟åf f

p
m n mn= -m n- - +

=-¥

+¥

This formdoes not seem to allow for further analytic simplification. The only exceptions are the cases where
0m̃ = or 0.ñ = Note that in these cases the beams aremixed only along a circle in phase–space as opposed to a

torus for two non-zero variables. If for instance 0,ñ = (30) collapses to

w r r
w

I
r

w
cos , sin

1
e 2 ,r w

0
2

2
0

0

2
0
2( ) ˜˜

⎛
⎝⎜

⎞
⎠⎟f f

p
m= m- -

the corresponding l value is 2m̃ and p is zero. The case 0m̃ = is done analogously and describesmixtures with a
negative effective angularmomentum. Both values at zero correspond to a pureGaussian beam.

Thefields described by (27) can be further statisticallymixed,maintaining the non-negativity and symmetry
properties but potentially increasing incoherence. In this sense they form the envelope of the convex set of all
solutions satisfying the three conditions. For example, upon integrationwith respect to m̃ and ñ withweight
factors given by exponential distributions in both parameters, we obtain theWolf function of the ‘twisted
Gaussian Schell-model beams’ studied earlier by Simon andMukunda [38], which can be generally expressed in
our formalism as

Figure 5.TheWolf function of a statisticalmixture ofGaussian beams symmetrizedwith respect to (14) and (15) in the notation
defined infigure 1. The effective l= 1.5 and p= 0.5 ( 4, 1˜ ˜m n= = ). Note that thisWolf function is never negative.
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W , , , e , 0 , 1 311 2 2( ) ( )m n f f
ab
p

a b= <am bn- -

andwhich also features non-trivial effective l and pnumbers, readily obtained as

l p
2

,
min , 1

2

1 1 1 1{ }a b a b
=

-
=

-- - - -

by either a direct computation using (31) or by averaging (28) and (29)with the sameweight distribution.
Themixtures of Gaussian beams described in this section are capable of exerting a torque in amanner

similar to LGbeamswithout the presence of helical wave fronts or optical vortices. However, proposed
information encoding capabilities of LG beams [10, 12] are hindered by themutual non-orthogonality of the
solutions for different l p, .

The SupplementaryMaterial visualizes the propagation of a generic case of amixture ofGaussian beams
corresponding to 2m̃ = and 0ñ = (l = 1, p = 0) for a comparisonwith the corresponding LGmode.

Conclusions

LG andBessel beams are two important classes of scalar optical beams carryingOAM. They are characterized by
rotational symmetry alongwith preservation of spatial structure under propagation (LGbeams) or a full
symmetry under free-space propagation (Bessel beams).We presented their respectiveWolf functions and how
these two symmetries naturallymanifest themselves in phase–space.We discussed the role of negativity in the
induced generalized ray decomposition and compared our approach to introducing rays as vector lines of the
Poyntingfield.

Furthermore we introduced a simple class of statisticalmixtures of Gaussian beamswhich exhibit similar
properties as LGbeams: they are rotationally symmetric and preserve the shape of their intensity profile as they
propagate along the beam axis. They can be assigned an effective value of non-negative l and p parameters, which
are not restricted to integers.More solutions can be obtained by furthermixing of thesefields.

We know that negativity of theWigner function is an inevitable effect if non-Gaussianwave functions in
quantummechanics are studied [31], and correspondingly one needs to introduce negative ray pencils in order
to describe LG andBessel beams in terms of generalized ray optics. However our last studied case shows that the
negativity of theWolf function is not a prerequisite for a non-zero l (or p). It only becomes inevitable, alongwith
quantization of the beamparameters, as a consequence of the restriction on ‘pure’wavefronts.

Figure 6.A cross section of a symmetrizedmixture ofGaussian beamswith 3m̃ = and 0,ñ = corresponding to l 1.5,= p= 0. All
other parameters and colour encoding scheme are the same as infigure 2. A similar rotational pattern is clearly visible and nonegative
rays are necessary in this case.
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