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Abstract

In classical optics the Wolf function is the natural analogue of the quantum Wigner function and like
the latter it may be negative in some regions. We discuss the implications this negativity has on the
generalized ray interpretation of free-space paraxial wave evolution. Important examples include two
classes of beams carrying optical orbital angular momentum—Laguerre—Gaussian (LG) and Bessel
beams. We formulate their defining eigenfunction properties as phase—space symmetries of their Wolf
functions, whose analytical form is shown, and discuss their interpretation in the ray picture. By
moving to a more general picture of partly coherent fields, we find that new solutions displaying the
same symmetries appear. In particular, we find that mixtures of Gaussian beams (thus fully describable
using classical ray optics) can mimic the basic properties of LG beams without the need for negativity,
and are not restricted to quantized values of angular momentum. The quantization of both the land p
parameters and negativity of the Wolf function are both inevitable and, indeed, arise naturally when a
requirement on the purity of the solution is added. This work is supplemented by a set of computer
animations, graphically illustrating the interpretative aspects of the described model.

Introduction

We know that most phenomena of light can only be explained when its wave nature is taken into account.
Within the classical context, this has effectively eliminated attempts at a broader adoption of Newton’s
corpuscular description [1]. Nevertheless, geometric ray optics remains a good compromise between clarity and
exactness in many real-world situations. Historically, its domain had been restricted to the limit of short
wavelength, applicable to a good extent to many important fields including photography, microscopy, and
telescopy, but failing at scales where interference phenomena can no longer be neglected.

The concept of generalized ray description of light waves, providing an exact mathematical model of light
propagation and detection accounting even for interference phenomena, but keeping the intuitiveness of a
geometric picture, dates back to the 1970’s. First attempts can be identified in [2], after which the topic has been
broadly—and to a good extent independently—developed by Bastiaans [3—5] and Sudarshan [6—8]. Simon [9]
has noted that the ray picture becomes particularly plausible and well-behaved in the paraxial approximation,
which was an ad hoc initial assumption in [2].

In order to successfully extend the ray picture of light to describe interference phenomena, some
assumptions must be relaxed. Most notably, one must allow to consider rays carrying a negative intensity. These
form the basis for describing destructive interference phenomena without the notion of a phase.

In this work, we apply the above ideas to the case of paraxial beams carrying optical orbital angular
momentum (OAM) [10]. Laguerre—Gaussian (LG) beams, in particular, have been the target of a broad interest
lately in connection to their use in, for example, optical tweezers and optical wrenches [11], multimode optical
communication [12], or surface analysis [ 13], among many others, along with a recent development in the
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accessibility of computer-generated holograms as a primary means of their fully customizable generation

[14, 15]. Many important generalizations of practical applicability have been thoroughly studied, for example,
beams with optical vortices displaced from their centroid [16]. The topic in turn is a part of a much broader field,
extending also into the quantum optical domain where the spatial distributions are reflected in the sense of an
abstract harmonic oscillator representation, allowing for methods similar to those described here to be
employed[17, 18].

There certainly remains space for research in some of the theoretical aspects of OAM-carrying beams in their
different representations. For example, a picture of a LG beam as formed by a sheaf of co-rotating rays had been
repeatedly used in literature (see, for example, [19, 20], or in electron optics, [21]) inspired by the approximate
shape of the integral curves of the Poynting vector [22, 23], only reaching this behaviour asymptotically for both
azimuthal and radial indices simultaneously large [24]. This picture does not address the curvature of Poynting
vector lines nor the divergence of its axial component near beam axis [25], the latter leading to a theoretical
paradox [26]. By providing a complete generalized ray description of LG and Bessel beams, along with remarks
on their interpretation, we aim to strengthen the methods currently in use as well as to resolve the
aforementioned paradox and to provide new insights into the topic.

Paraxial wave equation and the Wolf function

Consider a weakly divergent monochromatic beam propagating along the +z axis such thatin its
decomposition into plane waves, most of the intensity is concentrated in a close neighbourhood of
k = (0, 0, k), k = 2w/ \. Let usignore its polarization (or select one fixed polarization direction) and let the
beam be described by a scalar function ¢ (x, y, z) obeying the Helmholtz equation
0? 0? 0?
—+ S+ +R[vE =0 ey
(3x2 9 | oz ]w »2)

Due to the paraxial structure of the beam, it can be assumed that most of the evolution along the z axis will be
constituted by a linear phase ramp of e, Extracting this factor, let us define

u(x, y, 2) = P (x, y, 2)e 7,
and represent the assumption of paraxiality by [27]
2

0
wu(x, V> 2)

< k Hiu(x, ¥, 2)
0z

‘ (@)

in the L* (supremal) norm.
On rewriting (1) in terms of u (x, y, z) and applying neglections conforming to (2), we obtain the paraxial
wave equation [27, 28, 30]:
0? 0? 0
—— 4+ —— + 2ik— |u(x, y, 2) = 0. 3
(8x 5+ ks, ) (5, 7> 2) 3)
In contrast with (1), this is a first-order evolution equation in zand thus only requires the specification of
u(x, y, z)atasingle plane z = z; as the initial condition.
There is an exact formal agreement between the form of (3) and the (2 + 1)-dimensional free particle
Schrodinger equation
0? 0?
1/i qS(x,y, ) = —(— ]¢(x,y, t).
Ox?

The agreement is complete if we identify the evolution parameter ¢ with zand k with the Compton wave number
m/ 7 (both usingc = 1).

Many quantum mechanical methods can then be directly translated into paraxial wave optical domain. One
of the notable concepts is the Wigner function [29],

qm(x>)’>px py\) 2ﬁzfdf"(wrx y+y50

X opx—x',y—y, t)eZI(x oty p}')//zdx’dy’, )
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the analogue of which, in wave optics, is the Wolf function [6]

1
W(x, Vs ks ky‘z) = ;fu*(x +x,y+y,2)
Xux—x,y— }’/> Z)CZi(x/kx+y/kV)dX/dy/. (5)

In the following, we shall assume both functions to be normalized in the L' norm (although it is more natural for
the latter to integrate to the full cross-sectional intensity). This is automatically satisfied if ¢ (x, y, t) or
u(x, y, z)are L2>-normalized, respectively. Further, we shall drop the reference to the evolution parameter zin
W (x, y, ki, k,|z) where its value has been fixed and no ambiguity can occur.

Equations (4) or (5) assign a real-valued phase—space function to any given wave function ¢ (x, y, t)ora
paraxial beam cross section u (x, y, z), respectively. In many respects these functions can be interpreted as a
probability (in the case of Wy,,) or intensity (for W) distribution in a restricted sense. Notably,

f W (%, 3, ks ky|2) dkedky = Ju(x, y, 2)P
[ W (5 7 ko by 2)dedy = [ (ke Ky 2)] ©)

where ii denotes the two-dimensional Fourier transform of the wave function 4, among many other properties.
Of particular interest in phase—space formulation of quantum mechanics is that expectation values of
observables can be computed averaging their phase—space representations using Wy, as the weight. This

representation, called the (Weyl’s) symbol f, of an operator A, is in this case obtained by

/ !/

fA(x»y>Px,Py)=f<x—%,y—y?/|A|x+x?y+%/>

x el(¥2+8)/hdxrdy.

Note in particular that Wy, is, up to a prefactor of (27/)~2, the symbol of the density matrix of the state. A
similar theorem holds also for the Wolf function with obvious interpretational differences, primarily expectation
values becoming ensemble averages. The mapping of the two formalisms is achieved by replacing 7 by unity,
time by the z coordinate, and components of momentum by those of wave vector perpendicular to the direction
of propagation. In this respect, we will also speak of density operator p (z) corresponding to a wavefront

u(x, y, z)
(% yl p@Ix, y") = u(x, y, 2)u*(x', y', 2),
=%y, 2)* ', Y, 2), (7)

representing the equal-time second-order cross-correlation function of the monochromatic field [30], and we
will carry the notation of a symbol of an operator to paraxial optical systems.
The evolution equation (3) can be rewritten for the Wolf function as follows:

0 1 0 0

—W=—=|ki— + k,—|W, 8

0z k( Ox y@y) ®
z). 9)

This result can be interpreted in a direct correspondence to the phase—space intensity density picture: the local
density is preserved along straight trajectories of the slope (ky, k,, k) inthe (x, y, z) space, keeping k. and k,
constant. Thus, in terms of measurable physical quantities, any solution to the paraxial wave equation (3) can be
decomposed into a set of ideal, non-interacting, linear rays going through every point of the cross section in
every direction and carrying a positive, zero, or negative contribution to local intensity.

The possibility of negative values is an inherent property of the Wolf function and the only solutions of (3)
with a completely non-negative Wolf function are Gaussian beams [31]. Itis important to emphasize at this
point that negative rays can never be directly observed. This is precluded by marginalization (6) in position or
transverse k detection, which always yields non-negative values, or in general by the positivity of measurement
operators when more intricate measurements are performed. In an intuitive understanding, positive rays are
always stronger in total intensity in any phase—space cell of AxAk, 2 1, AyAk, 2 1thannegative onesand
trying to separate the latter would inevitably overcome the diffraction limit, compromising the validity of the
equations and approximations used.

and explicitly solved as

W(x, Vs ky, k},‘z + Az) = W(x - %Az, y — %Az, ky, k,
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LG beams

A LG mode s a prototypical example of an optical beam carrying OAM. Its form is stable under free-space
propagation (only the scale of the intensity profile in a cross section changes) and each photon carries a constant
integer number of OAM quanta, L = I/z. Here and in the following, unless explicitly stated otherwise, we shall
always assume that coordinates are chosen such that z coincides with the beam axis and z = 0 is the point of the
narrowest cross section, the beam waist. An LG beam is then completely specified by I € Z, an integer ‘radial’
parameter p > 0, and the width at the waist wy, and often denoted LG ,. The mathematical form of its
wavefront in the scalar theoryis [10]

1] 2 2
r __rt T P2 .
u(r, ¢, z) x ( ) e 2@ X Ll”(—)e‘kzre(z)elloe“(2P+”"“)C(z).

w(z)\ w(2) ’ w?(2)

Here,
2
z
w(z) = wy,|1 + (—)
2R

denotes the beam width at z, reducing to the beam waist’ wyatz=0,
2
R(z) = z(l + (@) )
z

z
((z) = arctan —
ZR

the radius of curvature, and

the Gouy phase. In all the above formulae,
R = kWO2

is the Rayleigh range of the beam.
The mathematical form of the beam is the simplest in the beam waist, where

2 2\
u(r, ¢, 0) o< r'”e_lw(%Lll,”(r—z)e‘M’. (10)
o
This function can be found as a joint eigenfunction of the differential angular momentum operator
L=—i x2 - )/2 (11)
dy Ox
and an ‘energy’ operator
s 1 we( .0 oY
E=—(x*+ 2+—°(—i—)+ —i—1 | 12
2w§( Y ) 2 Ox dy (12

corresponding to eigenvalues [and 2p + |I| + 1, respectively.

Asboth operators are quadratic in position and momenta observables, their respective eigenvector
equations correspond to phase—space symmetries of the Wolf functions of the LG beams: in general, for any
operator A satisfying this condition, the Wolf function of the commutator Ap — pA corresponds, up toa
constant factor, to the Poisson bracket of the Wolf function assigned to p and the symbol of the operator A. For
u(x, y, z) satisfying the eigenvector equation

Au(x, ¥, 2) = Au(x, y, 2),
the density operator (7) commutes with A, and therefore the Wolf function (5) satisfies
0 0 0 0
{fA,W}fﬁa_WJrLa_W, fa OW an_W:()

~ Ox Ok, Oy Ok, Ok, dx Ok, Oy
The symbols of operators (11) and (12) are
£ (% 7 ko Ky ) =k, — yk, =2 A (13)

? Corresponding here to an intensity drop bya factor of 1 /e in the Gaussian case I = p = 0. The more usual 1/¢? half-width wy is related by

W(; = ﬁWO.
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and
ko k)= 1 2 2 Wo2 K24 k2) =
f}g(x;}la X5 y)— 2W02(x +)/)+ 2 ( x+ }')_' 6,

leading to a rotational symmetry of the Wolf function of any LG beam with respect to
X — xcoso — ysina,
y +— ycosa + xsinq,
ky — ky cos o — k, sin a,

k, — k, cos a + k, sin a, (14)
and a symmetry with respect to the fractional phase—space Fourier transform,

x +— x cos 8 + wiky sin 3,

y +— ycos 3 + wiky sin 3,
ky — ky cos 3 — wy *x sin 3,

k, — k, cos B — wy 2y sin 3, (15)

respectively.

The Wolf function of a LG beam in the beam waist can be computed using further properties of these
symmetries, as demonstrated very elegantly by Simon and Agarwal in [32], or using a set of ladder operators for
the land p numbers, an approach taken by Vanvalkenburgh [33]. The result can be written in a compact form,
manifestly symmetric with respect to (14) and (15),

B (71)u+v ) Ty
W(x, y, kx, ky) = 726 K Lu(zﬂ)Lv(zy) - W(p” V)’ (16)
T
where
1 1
= E(wo’lx + Woky)2 + E(W(;ly — Wokx)2 =€+ A,
1/, 4 2 1/ 2
V= E(WO x — woky) + E(WO y+ Wka) =e— A (17)
and

u, v) = (p+1Lp), ifl>0,
R (p, p — 1), otherwise.

The coordinates p and v, which both range from zero to infinity, can be supplemented by two angular
coordinates ¢, ¢, € (0, 27) to parametrize the full phase—space:

rx = %(x++x_), ]

= [Teoso
Yy = \/mSin (bp

y = %(y++y,),

< 1 > . (18)
ke = — — R x_. = — J2v cos ¢,,
2W0 ()’+ )L) . 2
) 1 ( ) ¥, = — 2vsin 9y
= —(xL —x_),
y 2W0 -

L J

Indeed, the conditions on constant y and v, or constant € and ), define a torus in the phase—space, which can
then be parametrized by ¢, and ¢,. The Jacobian of the coordinate transform |0 (x, y, k., k,)/0 (i, vs ¢y, ¢,)]
isa constant 1/4. Note that the symmetry transform (14) corresponds to displacingboth ¢, and ¢,
simultaneously by o while (15) corresponds to displacing (¢, ¢,)to (¢, + B, ¢, — B).

From (16) and the definitions (17) we deduce that rays too strong in either displacement or angle are
superexponentially suppressed. As mentioned earlier, the case | = p = 0 (Gaussian beam) is the only Wolf
function that is completely positive. As soon as # or v are non-zero, there will be a sign change when p or v cross
each root of the corresponding Laguerre polynomial. An example of the Wolf function of LGy is shown in
figure 1. A typical cross section in the ray decomposition provided by interpreting the Wolf function as a
generalized phase—space intensity is illustrated in figure 2.

The graphic representation displays several features of the Wolf function when interpreted as a phase—space
intensity density. As expected, a majority of the total positive intensity lies in the half-plane corresponding to the
sign of the A coordinate matching that of I (rays co-rotating with the beam), but the separation is not exclusive.
Also, one can clearly see that the function is regular and bounded over its entire domain. This is contrary to the

5
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Figure 1. The Wolf function of a Laguerre-Gaussian beam LG | in terms of ;¢ and v coordinates. Every pixel represents a value
constant over the surface of a torus parametrized by the coordinates ¢, ,. Blue shades represent positive and red shades negative
values, nodal lines (gray) are dashed. The color function scaling is arbitrary.

>

» . A %
7 i) —
Q &'z"\
7y 4
\ ~
\ P 3 .
i Ve ¢
Y \‘,“ ‘ ‘ / ';
W,
' W ¢ \ <
\y o L»
LY
Sy

(—2w; Y, 2wy 1) in each momentum coordinate.

Figure 2. The cross section of a Laguerre—Gaussian beam LG at beam waist. Individual arrows represent samples from the phase—
space distribution given by the Wolf function (16). The position and direction are proportional to (x,y) and (k, k,) coordinates,
respectively. Blue shades represent positive and red shades negative values of the Wolf function, with opacity proportional to its value
(anonlinear correction has been applied to make the features better pronounced). 5000 random samples were taken from an uniform
distribution over the interval of (—2w, 2w ) in each spatial coordinate (corresponding to the area covered by the plot) and

behaviour of Poynting vector near the origin, leading to a famous problem of anomalous momentum kick
discrepancy [26]. This problem has been solved by an exact treatment of a test particle’s uncertainty relation but
the generalized ray picture shows that its very occurence can be attributed to the limitation to Euclidean space.

The problem is not observed when full phase—space is considered.

6
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The separate occurrences of the ;+ and v coordinates in (16) make it easy to integrate to obtain the mean
values

() += jﬂé W (% 9, ke Ky )dxdydkydk,,

:ij;ood,ufoocdyj:ﬂd(b]j;zwd(bqu(u,v):Zu—&—l

and similarly
() = fR oW (%, 3, ke, ky )drdydkedk, = 2v + 1.

It follows that the weighted average of A = (v — v)/2and e = (u + v)/2areu — v = l and
u+ v+ 1=2p+ |l| + 1, matching the respective eigenvalues in the wavefunction picture. This example,
albeit being a simple demonstration of the more general theorem mentioned above, underlines the plausibility
but also practicality of treating the Wolf function (16) as a phase-space quasi-density of intensity.

The Supplementary Material to this work presents several cases of LG beams as computer animations of
figure 2 in evolution along the z-axis.

Bessel beams

Bessel beams are rotationally symmetric, non-diffusive solutions to the Helmholtz equation (1)
U(r, ¢, z) o Ji(kr)eildeitz,
where | € Z and k? = k% 4 k2. The reduced function
u(r, ¢, z) ]z(m)e”‘/’ei(kfk)z (19)

is also a solution to the paraxial wave equation (3) but with k, = k — x2/(2k) instead of v k? — k2.
Like the LG beams, they satisfy

Lu(x, ¥, 2) = —i%u(r, ¢, 2) = lu(r, ¢, 2). (20)

The eigenvalue property of (12) is replaced by

2 2
((ai) " (57) ]”(x» ¥, 2) = Ku(r, 6, 2), (21)

which grants the stability of the solution with respect to (3).

Bessel beams are non-normalizable as a beam with a wavefront of the form (19) with any non-zero
amplitude would carry an infinite amount of energy. The Wolf function can still be introduced but some of its
properties will be modified in connection to its own unnormalizability. In order to compute it, we rewrite
u(r, ¢, 0) as a generalized superposition of two-dimensional plane waves:

]l(lﬂ’)eild) — L fZW efilxeixﬂ; sin x+iyk cos XdX-
2w Jo
From here it only takes a direct application of (5) to reach the Wolf function

W (x, y, k cos a cos 3, Kk cos a sin 3)
1

27m%K? sin o cos o

cos(2kx sin a sin 3 — 2Ky sin a cos § — 2 lav). (22)

Note that the latter two arguments of the left-hand side are expressed indirectly and only values for which
kZ+ ky2 < k?arereachable. For all other phase—space points the value is zero. The assignment of aand 3to a
given k, and k, within the supporting domain is not unique but any choice leads to the same value of the right-
hand side of (22).

Bessel beams do not feature a naturally defined beam width so they do not have a particularly simple form in
the coordinates (u, v, ¢;, ¢,),defined above, for any w,. They can be thought of as having an infinite value
thereof, and thus an infinite Rayleigh range, in agreement with their zero diffraction. This is further supported
by the fact that a Bessel beam can be obtained as a limit of LG beams as p — oo and wy = 2,/p /k [34, equation
(22.15.2)], as also noted in [24]; also the eigenvalue equation

Eu=(Qp+ Il + Hu
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becomes (21) under the same limiting conditions. Bessel beams are symmetric with respect to canonical
transforms generated by angular momentum (13) and by

fH(x’ s ks ky) = ki + ky2 =:1),

which is the symbol of the differential operator on the left-hand side of (21), conveniently denoted A
The value 7, interpreted as a coordinate in phase—space, can be thought of as twice the limit of the above
introduced € in the infinite beam waist limit, rescaled by an appropriate power of wy:
. 2 .
n = lim —62 = lim ’quzy.
Wo— 00 WO Wy— 00 WO

(23)

The coordinate A = (u — v)/2 issstill natural to the system due to (20). We perform an analogous transform on
the angular coordinates, replacing them by their average

0 := lim St e = arg(ky — ikx)

Wo— 00 2

and arenormalized limit of half of their difference,

. ¢; — ¢, kex + kyy
= lim w? = . 24
X Woms 00 0 2 k}% + k}% ( )

Clearly the Jacobian of the transform

a(/ﬂ—u pw—v ¢+ o, Wz¢1¢z)
1

> > >

we 2 2 )
(1 v, 61 ) 2

forall wy and thus also |O(x, y, ks, k,)/0(n, A, 0, x)| = 1/2.The Cartesian phase—space coordinates can be
expressed using the new four-tuple as

A
x =——=cos 0 — x /7 sin 0,
NGl

A
y =——=sinf + x./n cos 0,
J1

ky =— /7 sin 0,
k, = /m cos 6.
In the new coordinates the Wolf function (22) is expressible solely in terms of  and A as
2 _
;cos 2 il nA—Zlarccosﬂ for n < K2,
W, A 0, X) =9 212 ,77(’?2 _ 77) n K (25)
0 otherwise

(for a graph, see figure 3) and thus exhibits a symmetry with respect to translations in both # and . The former is
the same rotational symmetry as in (14). The latter generates the transform group

x — x + Cky,

y =y + Ckys

ke = ks,

ky — ky, (26)

as x — X + ¢, which canbeseenasalimitof (15)as wy — ocoand § — 0 simultaneously, maintaining

Bw¢ = C.The orbits of this group are straight lines of the slope (k. k,, 0, 0) in the phase—space, along which the
Wolf function is constant. This is at the base of the stability of the solution in terms of phase—space representation
and the evolution equation (9). The same argument, however, immediately shows that any solution featuring
this symmetry is inevitably unnormalizable because the integral of the Wigner function over the full phase—space
involves an integral of a constant over R. For Wolf functions constant in x we can thus introduce a restricted
normalization condition

4 Up to a factor of 2 this is the effective Hamiltonian of the paraxial wave equation (3).

8
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Figure 3. The Wolf function of a Bessel beam with / = 1 as a function of yand \. Each point represents a constant value over a cylinder
in phase —space parametrized by 6 and . The parameter  only affects the scale of the naxis. There is a discontinuity at = k% the
Wolf function diverges as O (r77!/2) from the left but is a constant zero for > 2.

’l

Figure 4. The Wolf function of LG 3 as an approximant to a Bessel beam of /= 1 (see figure 3). The horizontal axis was rescaled
accordingly to the limit procedure (23). As p further rises, the apparent horizontal ripples get denser but do not decrease in amplitude.

j:odnf_O:Od)\j;thW(n,)\,a,o)zl

instead of the full L' norm. Note that the prefactors in (22) and (25) were chosen so as to satisfy this condition.
One might naturally expect that the Wolf function (25) could be obtained from (16) using the limit
procedure outlined above. We note that this is possible but is analytically challenging as the convergence takes
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place in a weak sense only; the latter converges to the former as a distribution but neither pointwise nor in any L-
norm. The character of the convergence is illustrated in figure 4.

It follows from the symmetry with respect to (26) that the ray decomposition of a Bessel beam, as described
by its Wolf function interpreted as an intensity distribution, will comprise parallel rays of constant intensity
arranged in planes defined by the wave vector and the propagation direction. In a cross section, we would
observe this as lines of constant flow along their transverse k-vector. The whole space is thus covered by positive
and negative rays, non-decreasing in intensity even at high radii but rather asymptotically cancelling each other
perfectly. In areas near the beam axis positive rays are more abundant due to the detailed properties of (22),
resulting in the characteristic concentric ring intensity profile. All of these aspects can be fully appreciated only at
extremely high sample rates, or in motion, as provided by two examples in the Supplementary Material.

Mixtures of Gaussian beams

The preceding examples dealt with individual, perfectly coherent or ‘pure’ wavefronts. The conditions on purity
along with those on rotational symmetry and symmetry with respect to fractional Fourier transform, or to free-
space propagation, translate to eigenfunction equations of (11) and (12) or (21) and leave LG or Bessel beams as
the only solutions, respectively.

A Wolf function, however, can also be calculated for a statistical mixture of different beams, opening new
possibilities for constructing mixed beams exhibiting rotational symmetry and propagational stability. Ina
sense, the full characterization is trivial: rotational symmetry of a Wolf function alone implies that the field is
represented by a single wave function u (x, y) which is an eigenfunction of (11) or a statistical mixture thereof;
similarly, the symmetry with respect to (15) constrains the individual wave functions composing the field to
eigenfunctions of (12) (not necessarily corresponding to the same eigenvalues). If these two conditions are put
together, the field is restricted to be a statistical mixture of LG beams with various /and p but of the same beam
waist wy. However, we might still seek for Wolf functions which are special in certain ways.

An interesting class of paraxial field solutions are those which can be written as a statistical mixture of
Gaussian beams only. As the Wolf function is linear in the second-order correlation function (represented by the
density operator), statistically mixing different components results in an affine combination of their respective
Wolf functions, in turn the Wolf functions of any mixture of Gaussian beams is positive in all points. The axial
Gaussian beam shows both the required symmetries, as shown above by being a special case of LGqg, and we can
use it to construct more complicated fields while maintaining both symmetries by forming equal-weight
mixtures of its displacements to phase—space points along their phase—space orbits.

The principal case is obtained by displacing the Gaussian Wolf function

Wo(x, s ke ky) = %e—(x2+y2)/woz—(kf+ky2)wg

alongall points (%, 7, ki, Ey) of constant fi, 7 € R and integrating with respect to (1,/27)2d¢,dé,:

W(x, ¥, ks ky) = 4L7r4//027r exp(—((x - 3?)2 + (y - 7)2)/%2 - ((xk — Ex)z

+ (ky - I;y)z)W§)d551d<z52’

where (see (18))
%= 2 (VHeos &) — Veos §y),
7= %(\/ﬁsin 3, — VTsind,),
£ = (= Tsin G, — VFsin ),
P = lewo (Ficos &, + VTcos 3,).

Carrying out the integration and rewriting the results in the coordinates (17), the Wolf function of the mixture is

W (1112 6 6) = —ze (400 (2 o (2470 ). 27)
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y-

Figure 5. The Wolf function of a statistical mixture of Gaussian beams symmetrized with respect to (14) and (15) in the notation
defined in figure 1. The effective = 1.5and p=0.5 (i = 4, ¥ = 1). Note that this Wolf function is never negative.

This corresponds to a mean value of

] = p—v 28
5 (28)
and
min fi, ¥
p= % (29)

Clearly, any combination of real I and real non-negative p can be reached. (It is important that this is not
confused with the concept of fractional ] values created on spiral waveplates with a non-integer phase step, as
described by Beijersbergen et al [35] and studied in many later works [36, 37], which are observed in coherent
superpositions of integer / wavefronts and break the axial symmetry.) An example where land p are fractional is
depicted in figure 5 and a typical cross section of this kind of field in figure 6.

The spatial intensity distribution can be found by integrating W (x, y, k., k,) with respect to k. and k, and
can be expressed using polar coordinates as an infinite sum of modified Bessel functions,

. 1 o +o00

w(r cos @, 1 sin p) = —ze”z/Wéf( +7)/2 Z Ik(1/2ﬂ L)Ik(\/ﬁ/ L)Ik ( —,/ﬂﬂ). (30)
™0 k=—00 Wo Wo

This form does not seem to allow for further analytic simplification. The only exceptions are the cases where

i = 0or & = 0.Note that in these cases the beams are mixed only along a circle in phase—space as opposed to a

torus for two non-zero variables. If for instance & = 0, (30) collapses to

w(r cos ¢, r sin ¢) = Lze"z/woz‘ﬂ/zlo(\/ﬁL),
™, Wo
the corresponding I value is fi/2 and p is zero. The case i = 0 is done analogously and describes mixtures with a
negative effective angular momentum. Both values at zero correspond to a pure Gaussian beam.

The fields described by (27) can be further statistically mixed, maintaining the non-negativity and symmetry
properties but potentially increasing incoherence. In this sense they form the envelope of the convex set of all
solutions satisfying the three conditions. For example, upon integration with respect to ji and & with weight
factors given by exponential distributions in both parameters, we obtain the Wolf function of the ‘twisted
Gaussian Schell-model beams’ studied earlier by Simon and Mukunda [38], which can be generally expressed in
our formalism as

11
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Figure 6. A cross section of a symmetrized mixture of Gaussian beams with ji = 3 and ¥ = 0, correspondingto [ = 1.5, p=0. All
other parameters and colour encoding scheme are the same as in figure 2. A similar rotational pattern is clearly visible and no negative
rays are necessary in this case.

« g
W(u, v, &) gbz) = W—fe*‘w*ﬂ", 0<a,f<1 (31)

and which also features non-trivial effective l and p numbers, readily obtained as

I ol — ﬁ—l) e min{ofl, 5*1} -1
2 2

by either a direct computation using (31) or by averaging (28) and (29) with the same weight distribution.

The mixtures of Gaussian beams described in this section are capable of exerting a torque in a manner
similar to LG beams without the presence of helical wave fronts or optical vortices. However, proposed
information encoding capabilities of LG beams [10, 12] are hindered by the mutual non-orthogonality of the
solutions for different /, p.

The Supplementary Material visualizes the propagation of a generic case of a mixture of Gaussian beams
correspondingto i = 2and 7 = 0(I = 1,p = 0) for a comparison with the corresponding LG mode.

Conclusions

LG and Bessel beams are two important classes of scalar optical beams carrying OAM. They are characterized by
rotational symmetry along with preservation of spatial structure under propagation (LG beams) or a full
symmetry under free-space propagation (Bessel beams). We presented their respective Wolf functions and how
these two symmetries naturally manifest themselves in phase—space. We discussed the role of negativity in the
induced generalized ray decomposition and compared our approach to introducing rays as vector lines of the
Poynting field.

Furthermore we introduced a simple class of statistical mixtures of Gaussian beams which exhibit similar
properties as LG beams: they are rotationally symmetric and preserve the shape of their intensity profile as they
propagate along the beam axis. They can be assigned an effective value of non-negative l and p parameters, which
are not restricted to integers. More solutions can be obtained by further mixing of these fields.

We know that negativity of the Wigner function is an inevitable effect if non-Gaussian wave functions in
quantum mechanics are studied [31], and correspondingly one needs to introduce negative ray pencils in order
to describe LG and Bessel beams in terms of generalized ray optics. However our last studied case shows that the
negativity of the Wolf function is not a prerequisite for a non-zero I (or p). It only becomes inevitable, along with
quantization of the beam parameters, as a consequence of the restriction on ‘pure’ wavefronts.
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