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 9 
ABSTRACT 10 

The identification of tephra within varved deposits of a former ice-dammed lake that 11 

existed in Scotland during the Younger Dryas provides an opportunity to calibrate 12 
10Be production rates using previously published 10Be concentrations from the lake 13 

shoreline and independently derived ages for the tephra’s derived from the Greenland 14 

Ice Core records. The best-estimate ages of the tephras yield indistinguishable 10Be 15 

production rate values for spallation with an average value of 4.26 ± 0.21 atoms g-1  a-1 16 

using the ‘Lm’ scaling scheme. These values are in best agreement with the most 17 

proximal reference 10Be production rate from Norway. 18 

 19 

Keywords: 10Be; Production rate; Scotland; British-Irish Ice Sheet; Glen Roy 20 

 21 

INTRODUCTION 22 

Surface exposure dating using in situ produced terrestrial cosmogenic nuclides (TCN) 23 

has greatly aided our understanding of the timing and rates of Earth processes, 24 

particularly the dynamics of ice sheets past and existing (Balco, 2011). Obtaining 25 

precise dating constraints on features related to glaciation using TCN is 26 
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fundamentally controlled by the accuracy and precision of the known rate at which 27 

TCN’s are produced in rocks exposed at the Earth’s surface. 28 

 The CRONUS calculator provides an accessible means for workers to 29 

calculate 10Be surface exposure ages through an online interface (Balco et al., 2008). 30 

Originally 10Be ages were calculated using a globally averaged production rate with 31 

uncertainties of 9-12% compiled mainly from sites in the Northern Hemisphere mid-32 

latitudes. Recent studies in the higher latitudes of both hemispheres (Balco et al., 33 

2009; Fenton et al., 2011; Goehring et al., 2012a,b; Kaplan et al., 2011; Putnam et al., 34 

2010; Young et al., 2013) have reported standardized local production rates 5-15% 35 

lower than the global production rate. In addition these local production rates result in 36 

improved precision (2-5%) and better agreement between different geochronological 37 

techniques (Putnam et al., 2010). 38 

 Independently constrained local production rates have been published for 39 

many of the extant and former Northern Hemisphere ice sheets with the former 40 

British and Irish Ice Sheet (BIIS) a notable exception. Ballantyne and Stone (2012) 41 

present a local production rate range (3.95 ± 0.13 – 4.16 ± 0.14 atoms g-1 a-1) based on 42 

assumed ages of Younger Dryas glaciers in the Scottish Highlands. These mirror the 43 

established trend of being lower than the global production rate but lack independent 44 

age control making them vulnerable to circular reasoning. This rapid communication 45 

presents the first independently constrained local production rate from a site within 46 

the limits of the former BIIS. 47 

 48 

SITE DESCRIPTION 49 

 Glen Roy, in the Scottish Highlands, is the site of former ice-dammed lakes 50 

(Figure 1) that produced a series of shorelines, the ‘Parallel Roads of Glen Roy’ 51 
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(Sissons, 1978). The altitude of the three main shorelines (260, 325, 350 m) was 52 

controlled by the height of cols that acted as successive spillways when ice advanced 53 

and cut off the previously available drainage route. The resulting sequence of lake 54 

level changes is well established (Sissons, 1978) and remains accepted to this day. 55 

Recent years have seen a renewal of work in Glen Roy that has produced an annually 56 

resolved varve chronology (Palmer et al., 2010) and the first independent age 57 

constraints on the ‘Parallel Roads’ (Fabel et al., 2010) 58 

 The varve chronology was constructed from three sites within the former ice 59 

dammed lakes (Palmer et al., 2010). The sampled sites are at different altitudes and 60 

thus there is an altitudinal control on when lake sedimentation was able to occur. This 61 

control, along with the occurrence of common marker horizons and the patterns of 62 

changes in mean varve thickness allowed Palmer et al. (2010) to elucidate the 63 

durations of the various lake levels. They concluded that the 260 m lake persisted for 64 

192 a before ice advance cut off the associated col and the lake level in Glen Roy rose 65 

to 325 m. This lake level lasted for 112 a before further ice advance shut off the 325 66 

m col raising the lake level to 350 m. The 350 m lake level persisted for 116 a before 67 

ice retreat led to a re-opening of the 325 m col and a return to the 325 m lake level. 68 

This lake level persisted for a maximum of 95 a before final drainage is indicated by 69 

the end of varve sedimentation. The 260 m of the falling sequence is not represented 70 

in the varve chronology (Palmer et al., 2010). 71 

Fabel et al. (2010) dated the 325 m shoreline to 11.5 ± 1.2 ka (Table 1; n=4, 72 

χ2
R=0.03) using the global production rate (Balco et al., 2008). This shoreline formed 73 

during the 112 a of the rising sequence, the 95 a of the falling sequence or, a 74 

combination of both. When the lake level was 350 m the sample sites were 75 

completely shielded by overlying water. In terms of accumulation of TCN the final 76 
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abandonment of the 325 m shoreline would best mark the time when 10Be would 77 

begin to accumulate. However, to take account of any uncertainties in linking varve 78 

properties to changes in lake levels we adopt a more cautious approach and use the  79 

median value of the derived calendar age for the entirety of the time when the 325 m 80 

lake existed up until final abandonment. This comprises varve years 192-515. 81 

The varve record was originally a floating chronology. The recent 82 

identification of tephra (MacLeod et al., 2015) allows for potential correlation to a 83 

regional stratotype such as the NGRIP δ18O record (Lowe et al., 2008) and derivation 84 

of a calendar age. With an independently constrained calendar age the varve 85 

chronology can be used to derive a calendar age for the 325 m shoreline (Table 2) that 86 

can be used to calibrate a production rate using the concentrations of samples 87 

presented by Fabel et al., (2010). 88 

 89 

TOWARDS A LOCAL PRODUCTION RATE 90 

MacLeod et al. (2015) identify two tephras, evidencing two eruptive events, 91 

separated by 320 ± 15 varve years. The lower tephra (LMVC-T120), recorded at Loch 92 

Laggan East (Figure 1), occurs at varve year 120, while the upper tephra (LMVC-93 

T424), recorded at Glen Turret (Figure 1), occurs between varve years 425-455, the 94 

diffuse nature of this tephra peak being attributed to post-depositional varve 95 

deformation (MacLeod et al., 2015). Based on geochemical analyses and stratigraphic 96 

position the upper tephra was correlated to the Abernethy tephra found in the 97 

Abernethy Forest sequence that has been assigned a preliminary age of 11,475 ± 245 98 

cal a BP (2σ range) (MacLeod et al., 2015). However, the occurrence of two tephra 99 

layers within the NGRIP ice core record dated to 11,681 ± 106 and 11,926 ± 106 a. 100 

b2k provide alternative potential correlations for the upper tephra (MacLeod et al., 101 
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2015; Mortensen et al., 2005). The lower tephra is tentatively correlated with the well-102 

documented Vedde Ash (12, 171 ±114 a b2k; (Rasmussen et al., 2006). These varying 103 

correlations provide a range of options for placing calendar age constraints on the 104 

varve chronology and consequently the sequence of events in Glen Roy (Tables 2 and 105 

3). MacLeod et al. (2015) suggest an age of 11.48 ± 0.25 cal ka BP for the upper 106 

tephra making it ~700 a younger than the Vedde Ash. The relative age difference 107 

between the upper and lower tephras is 320 ± 20 a suggesting correlation with the 108 

11.93 ka tephra is more likely (Mortensen et al., 2005). Considering this, correlating 109 

the lower tephra to the Vedde Ash and the upper tephra to the 11.93 ka tephra is 110 

considered the best-estimate, although it is noted a scenario where one or other tephra 111 

does not have an equivalent within the NGRIP record is possible but this possibility 112 

cannot be assessed. As a result we present production calibrations for all realistic 113 

correlations with emphasis on the best-estimate scenario outlined above. 114 

 115 

RESULTS AND DISCUSSION 116 

The CRONUS calculator provides a means to calculate a reference LPR using 117 

a χ2 minimization to select the best-fitting 10Be
 
production rate that minimizes the 118 

misfit between the measured 10Be concentration and the calculated 10Be concentration 119 

based on independent age control (Balco et al., 2008, 2009). Because muonogenic 120 
10Be production is calculated independently within the CRONUS calculator (Balco et 121 

al., 2008) following Heisinger et al. (2002a, b) the rates presented and discussed 122 

below are for spallation only. The resulting reference 10Be production rates, scaled to 123 

sea-level and high-latitude (SLHL), from each of the commonly used scaling schemes 124 

are presented in Table 1. The SLHL production rates are 4.24 ± 0.21 - 4.41 ± 0.25 125 

atoms g-1 a-1 using the Lm scaling scheme and 4.71 ± 0.24 – 4.90 ± 0.28 atoms g-1  a-1 126 
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using the Li scaling scheme. Further discussion is limited to the Lm Scaling scheme. 127 
10Be production rates were calibrated using four possible tephra correlations 128 

(Tables 2 and 3); three scenarios for the upper tephra, one scenario for the lower 129 

tephra. Regardless of which correlation is chosen all of the derived local production 130 

rates agree within uncertainties. The major factor hindering selection of a single local 131 

production rate results from uncertainty in the correlation of the undated tephras in 132 

Glen Roy. Despite this limitation the relative age difference between the tephra 133 

favours the correlations outlined above allowing derivation of a best-estimate 134 

production rate (Table 3). These correlations (upper tephra = 11.93 ka NGRIP tephra; 135 

lower tephra = Vedde Ash) yield indistinguishable SLHL production rates of 4.24 ± 136 

0.21 and 4.27 ± 0.22 atoms g-1 a-1 respectively, giving an average value of 4.26 ± 0.21 137 

atoms g-1 a-1. These values do not include a correction for isostatic uplift which is 138 

limited to c.10 m since the Younger Dryas (Firth et al., 1993) and thus would make 139 

<1% difference to the calculated production rates. The best estimate production rate 140 

of 4.26 ± 0.21 atoms g-1 a-1 is 2.5% lower than the global production rate. When 141 

uncertainties are fully considered the datasets are in agreement, most likely as a result 142 

of scatter within and between calibration sites used in the global dataset (Goehring et 143 

al., 2012a).  144 

Although the Glen Roy production rate agrees within uncertainties with other 145 

independent local production rates from high latitudes it is higher than the majority of 146 

recently published production rate calibrations from high latitudes and represents the 147 

highest updated production rate. The Glen Roy production rate is, however, in best 148 

agreement with a production rate calibrated from sites in western Norway (Goehring 149 

et al., 2012a, b) which is the closest site both geographically and latitudinally. As 150 

discussed by Goehring et al. (2012a) the difference between the Scottish/Norwegian 151 
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production rates and the lower locally calibrated production rates such as that from 152 

New Zealand (Putnam et al., 2010) may be due to unaccounted for changes in air 153 

pressure over the late glacial period, which are not an issue for the New Zealand site 154 

that is early Holocene in age. The Glen Roy production rate also agrees within 155 

uncertainties to the range of local production rates presented by Ballantyne and Stone 156 

(2011) with the closest match being to their LPR11.6 (4.16 ± 0.14 atoms g-1 a-1). The 157 

overall similarities mean the consequences of recalculating ages using the Glen Roy 158 

production rate are the same as have been discussed previously elsewhere (Ballantyne 159 

and Stone, 2011; Ballantyne, 2012).  160 

 161 

CONCLUSIONS 162 

 The Glen Roy production rate follows the established pattern of being lower 163 

than the global production rate (Balco et al., 2008), however in this case it is only by 164 

2.5% and within uncertainties the production rates are the same. The Glen Roy 165 

production rate is in best agreement with the most proximal locally calibrated 166 

production rate from western Norway (Goehring et al., 2012a,b). This highlights the 167 

potential for production rates to vary both spatially and temporally. The extent of this 168 

variation remains poorly constrained and improving our understanding of it is 169 

essential to maximize the potential resolution of TCN surface exposure dating. 170 

 171 
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FIGURE CAPTIONS 285 
Figure 1. Location map of Glen Roy showing configuration of ice when the Glen Roy 286 
lake was at 325 m level corresponding to the sampled shoreline (dots). Spillways 287 
shown with arrows. Inset A shows the Younger Dryas ice limits in mainland Scotland. 288 
 289 
Figure 2. The Lochaber Master Varve Chronology (Palmer et al., 2010) showing the 290 
stratigraphic positions of tephra described in MacLeod et al., (2015). The sand-bed is 291 
a stratigraphic tie-point between the various sites used to construct the varve 292 
chronology. The sequence and duration of lake level changes is based on Palmer et 293 
al., (2010). The onset of varve deposition at Glen Turret at varve year 192 marks the 294 
rise in lake level to 325 m as the  260 m lake was too shallow for varves to form prior 295 
to this. A distinct increase in varve thickness at varve year 304 is interpreted as 296 
representing the rise 350 m.  A return to thinner varves at varve year 420 is inferred as 297 
indicating the return to 325 m. 298 
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Sample 
Elevation 

(m) 
Latitude 

(°N) 
Longtitude 

(°W) 
Shielding 
Factor Density Thickness (cm) 10Be/9Be (x 10-15)a 

10Be 
Concentration 

GR0602 325 56.98 4.68 0.9811 2.7 3 96.9 ± 3.55 77978 ± 3610 
GR0603 325 56.99 4.68 0.9269 2.7 3 95.1 ± 3.38 72368 ± 3305 
GR0604 325 56.99 4.68 0.9543 2.7 3 95.1 ± 3.33 75509 ± 3402 
GR0605 325 56.99 4.68 0.6841b 2.7 5 63.1 ± 5.58 53588 ± 5237 
a Relative to NIST SRM 4325 with 10Be/9Be taken as 3.06 x 10-11. Blank correction < 3% for all samples     
b Includes correction for cover by 50 cm of wet peat (density 1.12 g cm-3)         

 299 
Table 1.  Sample information and AMS data for original samples from 325 m shoreline from Fabel et al. (2010). 300 
  301 
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Sequence of events Varve 
year 

Calendar 
min agea 

Calendar 
max 
agea 

325m 
Shoreline 
existence 

a Assumes age of 11,475±245 for the upper tephra at varve year 440±15     
260m lake forms 1 12174 11654     
325m lake forms 192 11983 11463     
350m lake forms 304 11871 11351 11562±422 

325m lake reforms 420 11755 11235     
End of varve sedimentation 515 11660 11140     

a Assumes age of 11,681±106 for the upper tephra at varve year 440±15   
260m lake forms 1 12226 12014   
325m lake forms 192 12035 11823   
350m lake forms 304 11924 11712 11768±267 

325m lake reforms 420 11808 11596   
End of varve sedimentation 515 11713 11501   

a Assumes age of 11,926±106 for the upper tephra at varve year 440±15         
260m lake forms 1 12471 12259     
325m lake forms 192 12280 12068   
350m lake forms 304 12169 11957 12013±267 

325m lake reforms 420 12053 11841   
End of varve sedimentation 515 11958 11746   

a Assumes age of 12,171±114 for the lower tephra at varve year 120   
260m lake forms 1 12404 12176     
325m lake forms 192 12213 11985     
350m lake forms 304 12102 11874 11938±275 

325m lake reforms 420 11986 11758     
End of varve sedimentation 515 11891 11663     

 302 
Table 2. Age models for all four potential tephra correlations used to derive reference 10Be production rates. Calendar ages include all counting 303 
errors and uncertainties in tephra age. 304 
 305 

Page 13 of 16

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 306 

Glen Roy tephra Tephra correlation Corresponding 325 m 
shoreline agea 

Reference 10Be production rate [spallation] (atoms g

St Scaling Lm Scaling Du Scaling De Scaling

Upper tephra (LMVC-T424) 

Abernethy Tephra (11475 ± 245 cal. a. BP.) 11,561 ± 422 cal. a. BP. 
4.42 ± 
0.25 4.41 ± 0.25 

4.63 ± 
0.26 

4.60 ± 
0.26

11.68 ka tephra (11,681 ± 106  b2k) 11,768 ± 267  b2k 
4.33 ± 
0.22 4.33 ± 0.21 

4.54 ± 
0.23 

4.52 ± 
0.23

11.93 ka tephra (11,926 ± 106  b2k) 12,013 ± 267  b2k 
4.24 ± 
0.21 4.24 ± 0.21 

4.45 ± 
0.23 

4.42 ± 
0.22

Lower tephra (LMVC-T120) Vedde Ash (12,171 ± 114  b2k) 11,938 ± 275  b2k 4.27 ± 
0.22 4.27 ± 0.22 4.48 ± 

0.23 
4.46 ± 
0.23

a Based on a total time for formation of 323 ± 8 a. Includes max counting error from NGRIP.         
b Calculated using the CRONUS online calculator available at http://hess.ess.washington.edu/math/al_be_v22/al_be_calibrate_v22.php   

 307 
Table 3. Potential tephra correlations, corresponding age of 325 m shoreline and resulting SLHL reference production rates for all the commonly 308 
used scaling schemes.  (St: Lal, 1991/Stone, 2000; Lm: Lal 1991/Stone, 2000/Nishiizumi et al., 1989; Du: Dunai, 2001; De: Desilets et al., 2006; 309 
Li: Lifton et al., 2008).  The favoured tephra correlations are in bold. 310 
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Figure 1. Location map of Glen Roy showing configuration of ice when the Glen Roy lake was at 325 m level 
corresponding to the sampled shoreline (dots). Spillways shown with arrows. Inset A shows the Younger 

Dryas ice limits in mainland Scotland.  
98x55mm (300 x 300 DPI)  
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Figure 2. The Lochaber Master Varve Chronology (Palmer et al., 2010) showing the stratigraphic positions of 
tephra described in MacLeod et al., (2015). The sand-bed is a stratigraphic tie-point between the various 

sites used to construct the varve chronology. The sequence and duration of lake level changes is based on 
Palmer et al., (2010). The onset of varve deposition at Glen Turret at varve year 192 marks the rise in lake 

level to 325 m as the  260 m lake was too shallow for varves to form prior to this. A distinct increase in 
varve thickness at varve year 304 is interpreted as representing the rise 350 m.  A return to thinner varves 

at varve year 420 is inferred as indicating the return to 325 m.  
60x42mm (300 x 300 DPI)  
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