Pressure-induced cation-cation bonding in V₂O₃

Ligang Bai,^{1,2,*} Quan Li,² Serena A. Corr,³ Michael Pravica,² Changfeng Chen,² Yusheng Zhao,² Stanislav V. Sinogeikin,¹ Yue Meng,¹ Changyong Park,¹ and Guoyin Shen^{1,†}

 High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institute of Washington, Argonne, IL 60439, USA
Department of Physics and Astronomy, University of Nevada Las Vegas and High Pressure Science and Engineering Center (HiPSEC), Las Vegas, NV 89154-4002 USA
School of Chemistry, University of Glasgow, Glasgow, United Kingdom (Dated: September 25, 2015)

A pressure-induced phase transition, associated with formation of the cation-cation bonding, is observed in V_2O_3 by combining synchrotron x-ray diffraction in a diamond anvil cell and ab initio evolutionary calculations. The high pressure phase has a monoclinic structure with C2/c space group and is both energetically and dynamically stable at pressures above 47 GPa to at least 105 GPa. This phase transition can be viewed as a two-dimensional Peierls-like distortion, where the cation-cation dimer chains are connected along the c-axis of the monoclinic cell. This finding provides insights into the interplay of electron correlation and lattice distortion in V_2O_3 , and it may also help understand novel properties of other early transition-metal oxides.

PACS numbers: 81.40.Vw, 62.50.-p, 61.50.Ks, 64.70.K-

I. INTRODUCTION

Properties of early transition metal (Ti, V, Cr) oxides are strongly influenced by two well-known competing mechanisms. One is the strong electron-electron correlation (Mott-Hubbard) mediated by a weak cation-cation interaction, with the other being the cation-cation bonding (Peierls distortion) through strong cation interactions when these cations locate in edge- or face-sharing octahedra. 1-4 The cooperation and competition of these two effects are sensitive to conditions such as doping, temperature and pressure.⁵⁻¹⁵ Understanding the roles of each condition parameter and the mechanisms governing the rich and interesting properties is of fundamental significance. Pressure as an external parameter can suppress the strong electron-electron correlation effect by broadening the bandwidth, 16,17 and may activate or enhance dimerization by reducing atomic distances. 18,19 Indeed, the dimerization between two cations has been observed in TiOCl and MnS₂ under high pressures.^{3,4,20}

Vanadium sesquioxide (V_2O_3) is the only transitionmetal sesquioxide that displays metallic nature at ambient condition among others (e.g., Cr₂O₃, Fe₂O₃, Ti₂O₃, etc), and is often referred as a typical Mott-Hubbard material, where electron-electron correlation plays an important role.^{5,21,22} It crystallizes in the hexagonal corundumtype structure, with V-ions $(V^{3+}, 3d^2)$ occupying in facesharing octahedra along the c-axis and edge-sharing octahedra in the basal plane. At ambient condition, V₂O₃ is a paramagnetic metal. Upon cooling down to 150 K, V₂O₃ undergoes a first-order metal-insulator transition (MIT) accompanied by a monoclinic structural distortion and a transition to antiferromagnetic phase due to strong electron-electron correlation. ^{23–27} On the other hand, the dimerization was proposed in V₂O₃ based on the Heisenberg model decades ago,²⁸ where pairwise bonding and antiferromagnetism were viewed as two possibilities on

the basal honeycomb plane of V_2O_3 . Recently dimerization between V-ions has been observed in the basal plane of single crystal (0001) thin films.²⁹

By applying pressure, the MIT in V₂O₃ was found to be gradually diminished and eventually disappear at 2.6 GPa.⁵ Recently a new high pressure phase of V₂O₃ has been reported by several groups. Ovsyannikov et al.³⁰ proposed an orthorhombic Rh₂O₃(II) structure for the high pressure phase. Zhang et al. 31 reported a monoclinic distortion above 31 GPa. Ding et al.³² suggested that this high pressure monoclinic phase is similar to the low-temperature monoclinic phase. In this letter, we report results from synchrotron x-ray powder diffraction experiments and ab initio swarm intelligence calculations. These results lead to the determination of a highpressure phase of V₂O₃ that contains zigzag chains of vanadium dimers, and is different from the structure at low temperature. This structural characterization provides insights into understanding the interplay of electron correlation and lattice distortion in V₂O₃, and it may also help understand novel properties of other early transition-metal oxides in general.

II. EXPERIMENTAL DETAILS

High purity V_2O_3 sample (see synthesis details in³³) was loaded into a 100 μ m hole of 35 μ m thick preindented rhenium gasket. Pressure was generated by a symmetric diamond anvil cell (DAC) with a diamond culet diameter of 300 μ m. The pressure was determined by the ruby fluorescence method.³⁴ Helium and neon were used as pressure-transmitting media, and samples were loaded at room temperature by using a high-pressure gas-loading system.³⁵ Angle-dispersive x-ray diffraction (XRD) data were collected at beam-lines of 16-ID-B and 16-BM-D of the High Pressure Collab-

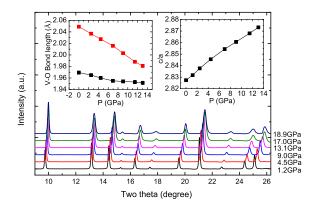


FIG. 1. (Color online)Pressure evolution of diffraction profile in a helium medium. Left insert, compression of the V-O bonds up to 13 GPa. The standard deviations of bond lengths and c/a are less than the size of symbols. Right insert, pressure evolution of the axial ratio.

orative Access Team (HPCAT) at the Advance Photon Source, Argonne National Laboratory. The x-ray beam size was about $5(v) \times 7(h) \ \mu m^2$ at FWHM, with a wavelength of 0.4066 Å.³⁶ Diffraction patterns were recorded using MAR-CCD or Pilatus detectors with exposure times between 10 and 60 s. The structural refinements were performed using the Rietveld refinement program FULLPROF³⁷ and GSAS³⁸.

III. RESULTS AND DISCUSSIONS

In the first experimental run up to 18.9 GPa, helium was used as the pressure transmitting medium providing a hydrostatic condition up to 20 GPa³⁹ and quasihydrostatic condition at higher pressures. No phase transition is observed up to 18.9 GPa as shown in Fig. 1. Below 13.1 GPa the quality of diffraction patterns is well suited for Rietveld refinements, yielding the lattice parameters and atomic positions. At pressures above 13.1 GPa, determining atomic positions becomes difficult; and only lattice parameters are extracted from the diffraction patterns. Fitting the pressure dependence of the volume below 18.9 GPa to the Birch-Murnaghan equation gives a bulk modulus B=197(1) GPa, in general agreement with previous reports. 40-42 The compression is anisotropic with the c/a ratio increasing with increasing pressure, which is unique for V₂O₃ among the isotructural sesquioxides, but is consistent with the results of previous studies. 32,41-43

In this phase of V_2O_3 at low pressures, the V-ions in the corundum structure locate in VO_6 octahedra with a small trigonal distortion which causes the splitting of the t_{2g} -shell into a_{1g} orbital oriented along the c-axis and two degenerated e_g -orbitals on the ab-plane. This trigonal distortion splits the six V-O distances into two distinct groups. As shown in Fig. 1, the difference between these two groups decreases sharply with increas-

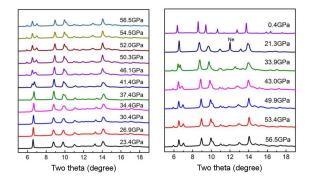


FIG. 2. (Color online) X-ray diffraction patterns of V_2O_3 as a function of pressure at room temperature (left panel - compression, right panel - decompression).

ing pressure, which means that the V^{3+} ion moves closer to the center of the VO_6 octahedra, thereby reducing trigonal distortion with increasing pressure. The reduction of the trigonal distortion will reduce the splitting of the e_g and a_{1g} orbitals and hence increase the hybridization between them, thus weakening the electron correlation energy (U). Furthermore, the bandwidth (W) will be broadened with increasing pressure associated with reduced interatomic distances. Therefore, the effective correlation effect (U/W) will be largely reduced by pressure, consistent with the progressively diminishing MIT observed under pressure.

In the second run, we used neon as pressuretransmitting medium for experiments at higher pressures and observed a new high-pressure phase, as shown in Fig. 2. Typical x-ray diffraction image of the high pressure phase is shown in Fig. S1. The phase transition is rather sluggish, spanning a pressure range from 30.4 GPa to 50.3 GPa. Upon pressure release from 56.5 GPa, a hysteresis of 10 GPa is observed. As shown in Fig. 2, the diffraction lines of the new phase are relatively broad due to possible uniaxial stress in the pressure range even with neon medium.³⁹ We attempted to use the laser-heating technique to anneal the samples. However, for laser heated samples at temperatures below 1200 K, no clear change was found in diffraction peak width. At temperatures above 1200 K, the V₂O₃ sample transformed into a new high temperature phase.

The diffraction pattern at 50.3 GPa can be indexed into a monolic nic cell. The overall quality of the diffraction pattern is not sufficient to solve the atomic positions. To refine the structure of this new phase, we used a monoclnic cell (space group ${\rm I2}/a$, No. 15) similar to the low-temperature phase of ${\rm V_2O_3}$ as an initial model for Rietveld refinements. The refinement procedures were performed by using FULL PROF and GSAS. It is found that Rietveld results display uncertainties, with the atomic positions of vanadium and oxygen varying with the choices of software packages or the refinement procedures (see Note-1 Supplemental Materials 44), possibly due to the preferred orientation caused by tex-

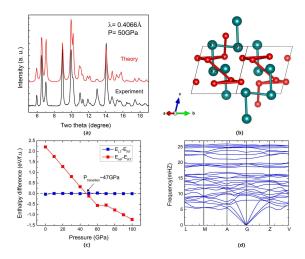


FIG. 3. (Color online)(a) Comparison of theoretical and experimental X-ray powder diffraction patterns of the high pressure phase V_2O_3 . (b) The V-V bond structure in high pressure monoclinic V_2O_3 . The teal and red balls represent the vanadium and oxygen atoms, respectively. (c) The pressure evolution in the relative enthalpies of high pressure and low temperature monoclinic structures from static calculations. The dashed line indicates zero enthalpy difference. (d) Phonon dispersion curves for the high pressure monoclinic structure at 50 GPa.

tures under uniaxial stress and peak broadening effect caused by microscopic deviatoric stress field. Because the Rietveld refinement alone cannot unambigeously determine the structure of the new phase, we performed variable-cell structure prediction simulations using the CALYPSO^{45–48} methodology containing one, two and four formula units (f.u.) in the pressure range of 40-100 GPa. Analysis of the predicted and experimental x-ray diffraction patterns (see Fig. S2 in⁴⁴) reveals an intriguing monoclinic structure with 2 f.u. (10 atoms/cell) per unit cell and a space group of C2/c (another setting of space group 15) with the V-ions located on the sites 8f (x, y, z) sites, the O-anions on the 8f (x, y, z) and 4e (0, y, 0.75). Results in Fig. 3(a) show that simulated XRD pattern, considering the preferred orientation effect, of the predicted high-pressure V_2O_3 is in good agreement with the experimental XRD pattern (see Note-2 in Supplemental Materials⁴⁴). The small difference in intensity could be due to the preferred orientation arising from uniaxial stress. Although our theoretical simulations and Rietveld refinements give slightly different atomic positions (see Table S2 in⁴⁴), we note that both results lead to a framework of a monoclinic structure (Fig. 3(b) and Table S3 in⁴⁴) that contains two shortest V-V distances, namely the V1-V2 pairs in the basal plane with edgesharing octahedra and the V1-V3 pairs along the c-axis with face-sharing octahedra. In this way, vanadium pairs are connected in a zig-zag pattern forming V-V dimer chains running along the c-axis of the monoclinic cell.

To account for the energetic and dynamic stability of this new monoclinic structure, we performed calcula-

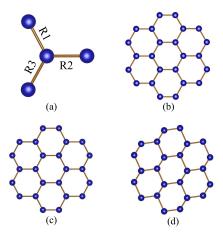


FIG. 4. (Color online) (a)Each vanadium atom in V_2O_3 has three nearest neighbors with three bond lengths (R1, R2 and R3), with blue spheres representing the vanadium atom. The puckered honeycomb lattices in the basal plane for (b) the room temperature phase with R1=R2=R3, (c) the low temperature phase with R2>R1≈R3 below 150K, and (d) the high pressure phase with R3<R2<R1 above 47 GPa.For simplicity, oxygen atoms are not shown.

tions with the PBE-GGA potential as implemented in the VASP code. 49 The electron-ion interaction was described by means of a projector augmented wave with 3p⁶3d⁴4s¹ and 2s²2p⁴ electrons as valence for V and O atoms, respectively. We used an energy cutoff of 1000 eV for all cases, a Monkhorst-Pack k-point meshes with a grid of $6\times6\times6$ for Brillouin zone sampling for the stuctural optimization and a denser 13×13×13 mesh for the electronic calculations. The lattice parameters and atomic positions of the low temperature (LT), room temperature (RT) and high pressure (HP) phases were optimized to minimize the forces in the pressure range of 0-100 GPa. Fig. 3(c) shows the relative enthalpies of these phases, and in the entire pressure range the trigonal RT and monoclinic LT structure are very close in enthalpy because they differ by only a small distortion. The new HP phase is energetically favorable at pressures higher than 47 GPa, which is in agreement with our experimental results. We also calculated phonon dispersion curves at 50 GPa using the supercell $(2\times2\times2)$ method. Fig. 3(d) shows no imaginary frequency in the entire Brillouin zone, indicating that HP phase is dynamically stable.

The HP monoclinic phase is similar to the LT monoclinic phase in that they both display the same space group and Wyckoff positions. In fact, the stacking patterns of $\rm VO_6$ octahedra, i.e. edge-sharing with three others in the basal plane and face-sharing along the c-axis, are identical for the RT, HP and LT phases. The main structural difference lies in the degree of the distortion which can be viewed by the bonding formation in the basal plane in a pseudo triangular lattice. As shown in Fig. 4, within the basal plane of the corundum structure, the cations are packed into the two-dimensional lattice of

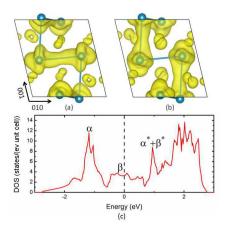


FIG. 5. (Color online) The partial charge densities and density of states (DOS) of high pressure phase V₂O₃ at 50 GPa. The isosurfaces of the partial charge densities in the HP phase V₂O₃ are shown for (a) the energy range of -2.8 to -0.7 eV at the isosurface level of 0.03 e/Å³, (b) the energy range of -0.7 to 0 eV at the isosurface level of 0.007 e/Å³. Only the V atom are shown (blue spheres). For simplicity, oxygen atoms are not shown. (c) The total DOS of the HP phase V₂O₃ at 50 GPa. α , β and α^* , β^* represent bonding and antibonding orbitals.

the honeycomb structure. The basal plane has three-fold rotation symmetry in the RT phase with the three V-V bonds having the same length. The LT phase displays a modest distortion caused by a Jahn-Teller-like lattice instability through the electron-lattice coupling, with one of three bonds slightly elongated and the other two bonds slightly contracted (Fig. 4(c)). In contrast, the HP phase has a strong distortion with one of three bonds contracted and the other two elongated (Fig. 4(d)). As discussed above, the compression effect in V₂O₃ is first reflected by a decrease in the trigonal distortion, reducing the effective correlation effect (U/W) and progressively diminishing the MIT. At higher pressures, the large reduction of the V-V distances via a phase transition eventually leads to the formation of the V-V dimer chains. These dimers are periodically distributed in the basal plane and connected along the c-axis of the monoclinic cell. The above discussion can also be understood in the model proposed by Nebenzahl based on the Heisenberg model,²⁸ where a competition mechanism between antiferromagnetism against V-V bonding was proposed for V₂O₃. We calculated the electronic density of states (DOS) for the HP phase (see Note-3 in Supplemental Materials⁴⁴), and defined the orbitals α (-2.8 eV to -0.7 eV) and β (-0.7 eV to 0 eV) from the partial charge density distributions as shown in Figs. 5(a) and 5(b). The two α and β states can be interpreted as bonding in the hexagonal a-bplane (edge-sharing) and along the c-axis (face-sharing), respectively. Two sets of bonding-antibonding orbitals

 $(\alpha \text{ and } \alpha^*; \beta \text{ and } \beta^*)$ are clearly visible. The bonding states are separated in the valence band, while the antibonding states are hybridized in the conduction band. The DOS at the Fermi level (D_f) is only contributed by the electrons along the c-axis. The partial DOS also shows similar results (see Fig. S5 in⁴⁴), indicating that electrons forming the face-sharing V-V bonding along the c-axis are itinerant, while those in the edge-sharing V-V bonding in the a-b plane are pinned below the Fermi level. It should be noted that the D_f in the HP phase is lower than in the corundum phase (see Fig. S6 in⁴⁴), which could result in a reduction of the electrical conductivity in the HP phase. This is consistent with the recent report by Ding et al., 32 where an increase in resistance was observed at high pressures. Recently, Guo et al. showed that certain hybrid functionals can describe very well the ambient phases of V₂O₃.^{50,51} For comparison, we also performed band structure calculations using GGA, GGA+U, and HSE functionals, which produced similar results (see Fig. S7 in⁴⁴).

IV. CONCLUSIONS

In summary, we have performed a combined experimental and theoretical study to understand the interplay between electron correlations and Peierls distortions in V₂O₃ under high pressure. While the metalinsulator transition of V_2O_3 at low temperature (150 K) may be largely related to strong electron correlation interactions and orbital ordering, the compression causes band broadening and reducing trigonal distortion that suppresses the correlation effect and orbital ordering. At higher pressures, a phase transition is observed, with the high pressure phase characterized by the formation of the V-V dimers that can be viewed as a twodimensional Peierls-like distortion. The high-pressure monoclinic V₂O₃ structure identified here has not been seen in any other transition-metal sesquioxides. This finding provides important insights for understanding the interplay between electron correlations and Peierls distortions, and may also help explore other early transitionmetal oxides, such as Cr_2O_3 .

We thank Yand Ding for helpful discussions. This work used the gas loading setup at GSECARS and the beamline at HPCAT (Sector 16), both located at Advanced Photon Source, Argonne National Laboratory . HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. Use of the Advanced Photo Source is supported by the DOE Office of Science, Office of Basic Energy Sciencs, under Contract No. DE-AC02-06CH11357. Work at UNLV is supported by DOE-NNSA under Award No. DE-NA001982.

- * lbai@ciw.edu
- † gshen@ciw.edu
- N. F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor & Francis, London, 1990).
- ² J. B. Goodenough, Physical Review **117**, 1442 (1960).
- ³ Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Physical Review Letters 101, 136406 (2008).
- ⁴ S. Blanco-Canosa, F. Rivadulla, A. Piñeiro, V. Pardo, D. Baldomir, D. I. Khomskii, M. M. Abd-Elmeguid, M. A. López-Quintela, and J. Rivas, Physical Review Letters 102, 056406 (2009).
- D. B. McWhan, T. M. Rice, and J. P. Remeika, Physical Review Letters 23, 1384 (1969).
- ⁶ R. M. Moon, Journal of Applied Physics **41** (1970).
- ⁷ A. Menth and J. P. Remeika, Physical Review B 2, 3756 (1970).
- ⁸ D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, Physical Review B 7, 1920 (1973).
- ⁹ M. Marezio, D. B. McWhan, J. P. Remeika, and P. D. Dernier, Physical Review B 5, 2541 (1972).
- A. Jayaraman, D. B. McWhan, J. P. Remeika, and P. D. Dernier, Physical Review B 2, 3751 (1970).
- ¹¹ D. B. McWhan and T. M. Rice, Physical Review Letters 22, 887 (1969).
- ¹² S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, Physical Review Letters **105**, 056404 (2010).
- ¹³ P. Pfalzer, G. Obermeier, M. Klemm, S. Horn, and M. L. denBoer, Phys. Rev. B **73**, 144106 (2006).
- ¹⁴ L. Bai, Q. Li, S. A. Corr, Y. Meng, C. Park, S. V. Sinogeikin, C. Ko, J. Wu, and G. Shen, Physical Review B **91**, 104110 (2015).
- ¹⁵ A. Zylbersztejn, Physical Review B **11**, 4383 (1975).
- ¹⁶ F. Nakamura, T. Goko, M. Ito, T. Fujita, S. Nakatsuji, H. Fukazawa, Y. Maeno, P. Alireza, D. Forsythe, and S. R. Julian, Physical Review B 65, 220402 (2002).
- ¹⁷ J. R. Patterson, C. M. Aracne, D. D. Jackson, V. Malba, S. T. Weir, P. A. Baker, and Y. K. Vohra, Physical Review B 69, 220101 (2004).
- ¹⁸ Z. Sun, J. Zhou, H.-K. Mao, and R. Ahuja, Proceedings of the National Academy of Sciences 109, 5948 (2012).
- Y. Yao and D. D. Klug, Physical Review B 81, 140104 (2010).
- ²⁰ S. A. J. Kimber, A. Salamat, S. R. Evans, H. O. Jeschke, K. Muthukumar, M. Tomić, F. Salvat-Pujol, R. Valentí, M. V. Kaisheva, I. Zizak, and T. Chatterji, Proceedings of the National Academy of Sciences 111, 5106 (2014).
- ²¹ N. F. MOTT, Reviews of Modern Physics **40**, 677 (1968).
- ²² C. Castellani, C. R. Natoli, and J. Ranninger, Physical Review B 18, 5001 (1978).
- ²³ F. Mila, R. Shiina, F.-C. Zhang, A. Joshi, M. Ma, V. Anisimov, and T. M. Rice, Physical Review Letters 85, 1714 (2000).
- L. Paolasini, C. Vettier, F. de Bergevin, F. Yakhou, D. Mannix, A. Stunault, W. Neubeck, M. Altarelli, M. Fabrizio, P. A. Metcalf, and J. M. Honig, Physical Review Letters 82, 4719 (1999).
- ²⁵ M. Sandri, M. Capone, and M. Fabrizio, Physical Review B 87, 205108 (2013).
- ²⁶ F. Iori, F. Rodolakis, M. Gatti, L. Reining, M. Upton, Y. Shvyd'ko, J.-P. Rueff, and M. Marsi, Physical Review

- B **86**, 205132 (2012).
- ²⁷ D. Grieger, C. Piefke, O. E. Peil, and F. Lechermann, Physical Review B 86, 155121 (2012).
- ²⁸ I. Nebenzahl, Physical Review **177**, 1001 (1969).
- ²⁹ M. Preisinger, J. Will, M. Klemm, S. Klimm, and S. Horn, Physical Review B 69, 075423 (2004).
- ³⁰ A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko, Nature 457, 863 (2009).
- ³¹ Q. Zhang, X. Wu, and S. Qin, Chinese Physics Letters 29, 106101 (2012).
- ³² Y. Ding, C.-C. Chen, Q. Zeng, H.-S. Kim, M. J. Han, M. Balasubramanian, R. Gordon, F. Li, L. Bai, D. Popov, S. M. Heald, T. Gog, H.-k. Mao, and M. van Veenendaal, Physical Review Letters 112, 056401 (2014).
- ³³ S. A. Corr, M. Grossman, J. D. Furman, B. C. Melot, A. K. Cheetham, K. R. Heier, and R. Seshadri, Chemistry of Materials 20, 6396 (2008).
- ³⁴ H. K. Mao, J. Xu, and P. M. Bell, Journal of Geophysical Research 91, 4673 (1986).
- ³⁵ M. Rivers, V. B. Prakapenka, A. Kubo, C. Pullins, C. M. Holl, and S. D. Jacobsen, High Pressure Research 28, 273 (2008).
- ³⁶ G. Shen, P. Chow, Y. Xiao, S. Sinogeikin, Y. Meng, W. Yang, H.-P. Liermann, O. Shebanova, E. Rod, A. Bommannavar, and H.-K. Mao, High Pressure Research 28, 145 (2008).
- ³⁷ J. Rodríguez-Carvajal, Physica B: Condensed Matter **192**, 55 (1993).
- ³⁸ A. C. Larson and R.B. V. Dreele, Los Alamos National Laboratory Report LAUR, Tech. Rep. (2004).
- ³⁹ S. Klotz, J.-C. Chervin, P. Munsch, and G. L. Marchand, Journal of Physics D: Applied Physics 42, 075413 (2009).
- ⁴⁰ D. B. McWhan and J. P. Remeika, Physical Review B 2, 3734 (1970).
- ⁴¹ Y. Sato and S. Akimoto, Journal of Applied Physics 50 (1979).
- ⁴² L. W. Finger and R. M. Hazen, Journal of Applied Physics 51 (1980).
- ⁴³ S. V. O. Dubrovinsky, D. M. Trots, A. V. Kurnosov, W. Morgenroth, H.-P. Liermann, and Leonid, Journal of Physics: Condensed Matter 25, 385401 (2013).
- ⁴⁴ See Supplemental Material for further analysis of experimental data and theoretical calculations.
- ⁴⁵ Y. Wang, J. Lv, L. Zhu, and Y. Ma, Physical Review B 82, 094116 (2010).
- ⁴⁶ Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Physical Review Letters 102, 175506 (2009).
- ⁴⁷ Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen, Physical Review Letters **110**, 136403 (2013).
- ⁴⁸ Y. Wang, J. Lv, L. Zhu, and Y. Ma, Computer Physics Communications 183, 2063 (2012).
- ⁴⁹ G. Kresse and J. Furthmüller, Physical Review B 54, 11169 (1996).
- ⁵⁰ Y. Guo, S. J. Clark, and J. Robertson, Journal of Physics: Condensed Matter **24**, 325504 (2012).
- ⁵¹ Y. Guo, S. J. Clark, and J. Robertson, The Journal of Chemical Physics 140, (2014).