
An Analytical Survey of Provenance Sanitization

James Cheney and Roly Perera

{jcheney, rperera}@inf.ed.ac.uk
School of Informatics, University of Edinburgh

Abstract. Security is likely to be a critical factor in the future adoption of
provenance technology, because of the risk of inadvertent disclosure of sensitive
information. In this survey paper we review the state of the art in secure prove-
nance, considering mechanisms for controlling access, and the extent to which
these mechanisms preserve provenance integrity. We examine seven systems or
approaches, comparing features and identifying areas for future work.

1 Introduction

Automatically associating data with metadata describing its provenance has emerged
as an important requirement in databases, scienti�c computing, and other domains
that place a premium on reproducibility, accountability or trust [27]. Providing such
metadata typically involves instrumenting a system with monitoring or logging that
tracks how results depend on inputs and on other, perhaps untrustworthy, sources.

Publishing the entire provenance record associated with a computation is not always
feasible or desirable. Disclosing certain information may violate security, privacy,
or need-to-know policies, or expose sensitive intellectual property. Sometimes the
complete provenance record may be too detailed for the intended audience, or may
leak irrelevant implementation detail. But simply omitting some of the provenance
information may leave it unable to certify the origins of the data product.

We refer to the general problem of ensuring that provenance solutions satisfy
not only disclosure requirements but also security or privacy requirements as the
problem of provenance sanitization or provenance abstraction. A number of approaches
to provenance sanitization have been proposed recently [3,8,15,16,18], sometimes under
other names such as provenance views or provenance redaction. These techniques have
been developed mainly for scienti�c work�ow systems, where provenance is viewed
as a directed acyclic graph, as in the Open Provenance Model [28].

Existing approaches have several elements in common. Typically, an obfuscation
policy speci�es the aspects of the provenance which are to be hidden. A disclosure
policy may additionally specify that certain other aspects of the provenance are to
remain visible. Sanitization then involves transforming the provenance graph to obtain
a view which satis�es both the obfuscation and the disclosure policies.

Few of the existing systems have been formally studied, and the security guaran-
tees they actually provide are unclear. Some do provide formal guarantees, but are
narrow in applicability or have other shortcomings. Moreover, many systems provide
some form of security or con�dentiality without considering the impact on the causal
or explanatory role of provenance. In this paper we review the state of the art in

provenance sanitization by reviewing seven systems or approaches: ZOOM [2,13],
security views [8], surrogates [3], ProPub [18], provenance views [15,16], provenance
abstraction [26], and provenance redaction [7].

2 Related work

The relationship between security and provenance has been considered in several survey
or vision papers [20,4,23,25]. This paper focuses narrowly on provenance sanitization
via graph transformations; here we brie�y mention some related topics.

Formal foundations. Chong [11] gave an early de�nition of provenance-related security
policies. Cheney [9] subsequently generalized this approach to notions of disclosure
and obfuscation with respect to a query Q on the underlying provenance, and a view P
of the provenance. Obfuscation is similar to (non-quantitative) opacity in computer
security [1], and means that P does not allow the user to determine whether the
underlying provenance satis�es Q. Disclosure means that P preserves Q-equivalence.

Secure provenance for evolving data. Provenance tracking is an especially critical issue
for data that changes over time [6], for which provenance can be hard to recover after the
fact. Work in this area to date includes tamper-resistant provenance for databases [30],
use of cryptographic techniques to ensure integrity of document version history [21],
and database audit log sanitization [22].

3 Background concepts and terminology

The solutions surveyed in §4 mainly target scienti�c work�ow systems, with similar
notions of provenance; we review some common concepts here. Some acquaintance
with basic graph theory will be useful. For more background on scienti�c work�ow
provenance, we refer the reader to Davidson and Freire [14].

Work�ow systems and provenance graphs. A work�ow system, or simply work�ow, is a
directed graph capturing the high-level structure of a software-based business process
or scienti�c process. Nodes represent software components called modules, or tasks.
Edges represent links, or data channels, connecting modules. Sometimes modules are
considered to have input and output ports to which data channels are connected. Fig. 1a
shows a simple work�ow with modules m1 to m6.

m2

m3

m1

m4 m5

m6
run

m2

m1

m6

d2
(a) (b) d3m3 m4 d4 m3 d5 m4 d6 m5

d8

d9d1

d7

Fig. 1: Cyclic work�ow, plus bipartite provenance graph for a possible run

Node labels are typically used to identify modules. Iterative processes can be
modelled by cycles, if permitted, or via a built-in construct for iteration. Work�ow
systems often support other coordination patterns such as conditional branching and

2

synchronisation which are beyond scope of the systems considered here. Some permit
composite modules, i.e. modules that contain other modules.

A provenance graph is a directed, acyclic graph (DAG) recording the causal history
of a data product. Often such a graph represents the (coarse-grained) execution of a
software system, such as a work�ow; more generally, provenance graphs can describe
ad hoc processes or collaborations involving both human and software components.
The nodes of the graph represent participants, actions and intermediate artifacts.

Fig. 1b shows a provenance graph that captures one possible execution of the
work�ow in Fig. 1a. The rectangular nodes, or activities, represent invocations of
modules; the circular nodes d1 to d9, sometimes called entities, record data values
passed between modules. Moreover activities yield entities, and entities feed into
activities; a graph that is partitioned in this way is called bipartite. Bipartiteness is just
one of many possible design choices for graph-structured provenance; for example,
one could add d1, . . . , d9 as labels to the edges instead of using special nodes.

When a provenance graph represents a run of an iterative process, each module in-
vocation must give rise to a distinct node, to maintain acyclicity. If necessary additional
tags on the node label can be used to distinguish invocations of the same module.

Sanitizing provenance graphs The goal of provenance sanitization is to derive a sanitized
view which hides or abstracts sensitive details of a provenance graph, whilst preserving
some of its disclosure properties. Typically one wants the view itself to be a well-
formed provenance graph. Fig. 2 below illustrates a simple provenance graph with two
examples of views. On the right, tasks c1 and c2 have been abstracted into a single task
c3; on the left, entities d2 and d4 and intermediate task c2 have been abstracted into a
single entity d5.

d1

d2

d3

d4

c1

c2

view #1
d1

d2

d3

d4

c3

c3
d1 d3

d5

c1
c3

view #2
d5

Fig. 2: Two possible views of a provenance graph

Both views are examples of quotients, arguably the simplest notion of graph view. One
speci�es a quotient of a graph G = (V,E) by giving a partitioning V ′ = {V1, . . . , Vn}
of its nodes. The partitioning induces another graph G′ = (V ′, E′) where there is an
edge (Vi, Vj) ∈ E′ i� there is an edge in G between a node of Vi and a node of Vj ,
for any i 6= j. In Fig. 2 the dotted border labeled c3 determines a partitioning if we
consider each of the remaining nodes to inhabit a singleton partition; the dotted border
labeled d5 determines a di�erent partitioning, under a similar assumption.

Quotients are a natural forms of provenance view as they preserve paths, which
represent relationships of direct or indirect dependency between nodes. If paths are
preserved then related nodes are mapped to related nodes in the view; in other words,
every dependency in the original graph gives rise to a dependency between the corre-
sponding view nodes. Quotients preserve paths but not edges; for example the edges
(d4, c2) and (c2, d2) have no counterpart in view #2 because all three nodes are mapped
to d5. Indeed edge-preservation, or homomorphism, is a stronger property than we usu-

3

ally require for provenance sanitization, where dependency is assumed to be re�exive
and transitive.

It can also be important to consider whether paths are re�ected: whether nodes are
related in the view only if there exist related nodes in the original graph which map to
those nodes in the view. This too can be understood in terms of dependency, since it
means that every reported dependency arises from a dependency between correspond-
ing nodes in the original graph. Quotients do not in general re�ect paths, because they
coarsen the dependency relation: in view #1, for example, d1 now appears to depend
on d4, and d2 on d3. This can be problematic if it violates cardinality constraints, such
as a requirement that every artifact be generated by at most one activity [29].

4 Survey of techniques for provenance sanitization

In the ZOOM system of Biton, Cohen-Boulakia and Davidson [2,13], the user
obtains a provenance view by �rst de�ning an abstract work�ow view. A ZOOM
work�ow is a directed graph of atomic modules; a provenance graph is a DAG of
invocations with edges labeled with runtime values. A work�ow view is a quotienting
which partitions the system into composite modules; for a given run of the work�ow,
the corresponding “quotient run” can then be obtained automatically by deriving
invocations of each composite module from the invocations of its constituent modules.

m2

m3

m1

m6

m5

m4 m7

m8

c3

c2

run

abstract

m2

m3

m1

m6

m5m4 m3 m4 m7

m8

c3c3

m2

c3

m1 c2

m5

run
m2

c3

m1 c2

c3m5

(a) (c)

(b) (d)

abstract

c2

Fig. 3: ZOOM: deriving a provenance view from a work�ow view

Fig. 3 illustrates the ZOOM approach. In Fig. 3a we see the original work�ow with
the partitioning identi�ed by dashed borders labeled c2 and c3. The modules m1, m2

andm5 are assumed to be in singleton partitions. The induced work�ow view is shown
in Fig. 3b. Then, Fig. 3c shows an execution of the work�ow with data labels omitted;
here the dashed borders represent a partitioning of the invocations corresponding to
invocations of the composite modules c2 and c3. Fig. 3d shows the the corresponding
quotient run where each node is mapped to its equivalence class.

ZOOM is not overtly motivated by security, but its views can be seen as abstracting
away uninteresting parts of the graph while ensuring user-identi�ed “relevant” parts
remain visible. ZOOM is unique in respecting the semantic relationship between

4

program and provenance, as alluded to by the dotted run arrow relating Figs. 3b and 3d.
Moreover being able to derive provenance views from ex post facto modularisations of a
work�ow is extremely powerful. However, it seems unlikely that their method for doing
so (sketched only brie�y in the papers) will generalise to work�ows with non-trivial
control �ow or settings where submodules are shared by composite modules. In [13],
most of the focus is on work�ow views instead, in particular a method for deriving
work�ow views that preserve and re�ect certain structural properties of the work�ow,
given a user-speci�ed set of modules that are of interest.

The security views of Chebotko, Chang, Lu, Fotouhi and Yang [8] provide
both access control and abstraction for scienti�c work�ow provenance. Their work�ows
are DAGs with additional structure to model hierarchical tasks; the data channels of
a composite task are those of its constituent tasks that cross the boundary of the
composite task, relating composite tasks to the partitions of a quotient view. However,
composite tasks are �xed features of the work�ow rather than on-the-�y abstractions
as in ZOOM, above. Being acyclic, work�ows are unable to represent iteration.

To obtain a security view, one �rst speci�es the accessibility of the various tasks
and data channels, marking each element as accessible or inaccessible. Inheritance
rules de�ne the accessibility of an element if it is not given explicitly. Access control
can be speci�ed down to the level of individual ports; consistency constraints ensure
that (for example) a data value inaccessible on one port is not accessible via another
port. The access speci�cation is then used to derive a provenance view from which
inaccessible data values, tasks and channels have been removed.

t1 t3 t5 t6
t4

t2

abstractt1 t3 t5 t6

delete edge

t1 t3 t4
t2

(a)

(b) (c)

t4
t2

t1 t3 t5 t6
t4

t2
t1 t3 t4

t2

Fig. 4: Security views: combining abstraction with access control

Fig. 4a shows a run of a hierarchical work�ow with two levels of composite task;
both data nodes and ports have been elided for brevity. A node written as • indicates
an input or output. In Fig. 4b, the data channel between t3 and t5 has been deleted to
conform to the access speci�cation. Although dummy nodes, similar to the surrogates
of Blaustein et al. below [3], may be added to the view to preserve well-formedness
constraints, more general integrity requirements are not considered. For example once
the edge between t3 and t5 has been deleted, the view no longer preserves dependencies,
and so its ability to provide a full account of the output is compromised. Access control
can however be combined with quotienting. In Fig. 4c the composite module t4 has
been abstracted to a single node with two inputs, preserving the dependency structure
of Fig. 4b, even though the latter view is unsound.

Blaustein, Chapman, Seligman, Allen and Rosenthal [3] present an approach
based on surrogates. They de�ne a protected account of a graph G to be any graph G′,

5

along with a path-preserving function from the nodes of G′ to the nodes of G. Since by
de�nition every path in the view has an image in the original graph, a protected account
necessarily re�ects dependencies, but in general does not preserve them. Surrogates
are a mechanism for publishing dependency information in a way that still protects
sensitive nodes and edges.

Fig. 5a, adapted from [3], shows a typical graph with sensitive nodes and edges
in red. Fig. 5b shows a protected account where e has been deleted and f replaced by
a surrogate f ′, shown with a dotted border, that hides its sensitive data (perhaps its
identity). The view in Fig. 5c hides two more edges, breaking the indirect dependency
between c and g. This is repaired in Fig. 5d by a surrogate edge (dotted arrow).

b

c

e f g

b

c

f ′ g

b

c

f ′ g

b

c

f ′ g

(a) (b) (c) (d)

Fig. 5: Surrogates: provenance graph, plus three protected accounts

Blaustein et al.’s approach has three components: user privileges, which allow
the graph provider to control graph access down to the level of individual ports; an
algorithm for protecting graphs by deleting nodes and edges and adding surrogates;
and metrics for analyzing disclosure and obfuscation properties of the resulting graph.
For a given set of user privileges, their algorithm purportedly obtains a protected
account which is “maximally informative”, according to a utility metric derived from
the proportion of G-paths retained in G′ plus the similarity of each node in G′ to its
counterpart in G. However de�nitions given are rather informal, and the theorems
lack proofs, making this claim hard to evaluate.

Even when a protected account satis�es a particular obfuscation policy, an attacker
may still be able to infer the original graph G from G′. To study this, Blaustein et al.
introduce the notion of opacity, a measure of the di�culty of inferring an edge in G
that is not present in G′, given a user-supplied model of the attacker. (The notion of
opacity in the security literature [1] is somewhat di�erent.)

The ProPub framework of Dey, Zinn and Ludäscher [18], based on Datalog, pro-
vides what the authors refer to as “policy-aware” provenance sanitization. A provenance
query is expressed as a set of Datalog facts, asserting that the provenance for certain
data items is to be disclosed, plus additional requirements relating to sanitization and
disclosure. ProPub works directly with a provenance graph, which may not have been
derived from an underlying work�ow. A sanitization requirement might assert that
certain data associated with a particular node is to be erased, that several nodes are
to be abstracted into a single node, or that some nodes are to be deleted; a disclosure
constraint might insist that a speci�c node is always retained in the view. In addition
there will usually be global policies which hold across all queries (for example to
outlaw “false dependencies” of the kind illustrated earlier in Fig. 2), as well as the usual
well-formedness conditions such as acyclicity or bipartiteness.

A unique feature of ProPub is its ability to detect con�icts in the sanitization and
disclosure requirements and to assist with their resolution. When con�icts arise, ProPub

6

uses a ranking scheme and various auto-correction strategies to resolve them, with
the user also able to intervene to withdraw or modify a constraint in the light of the
con�icts. For example in Fig. 6, adapted from [18], a naïve abstraction of three nodes
into a single node c4 violates both acyclicity and bipartiteness:

d2

d3

d4

c1

c3

c2 d5

d6

d2

d3

c3

d5

d6

abstract

c4

c4

Fig. 6: ProPub:
con�ict detection

In this case a possible resolution would be to include d3 into the abstraction as well,
removing the cycle and restoring bipartiteness. Should applying a correction induce
other con�icts, the process of con�ict resolution continues. Only when a con�ict-free
variant of the query is obtained can a �nal sanitized view be derived. Any constraints
rescinded during con�ict resolution are reported alongside the sanitized view, provid-
ing a certain level of “meta-provenance”, also a unique feature amongst the systems
considered here. For example, it might record that a spurious dependency was tolerated
in order to accommodate an abstraction. ProPub’s logical foundation also means that
the �nal view is guaranteed to have the chosen disclosure and security properties.

Davidson et al. [15,16] tackle a rather di�erent problem with provenance views.
Work�ows are modelled as directed acyclic multigraphs (graphs with potentially more
than one edge between any two nodes). Edges are labeled with identi�ers called
attributes which identify the port that the edge starts from; because work�ows are
acyclic, the semantics of a work�ow can be given as a relation R over the set of all
attributes, where each tuple consists of the data values that arise during a possible
execution. (Equivalently, one can consider each tuple to be a labeling function assigning
data values to ports.) In Fig. 7 below, adapted from [15], the work�ow consists of three
modules computing Boolean functions. Port a4 of m1 is consumed by both m2 and m3.
The relation R for this particular work�ow in shown in the middle of Fig. 7. E�ectively
R is the natural join R1 ./ R2 ./ R3 of the relations R1, R2 and R3 capturing the
extension (input-output mapping) of the modules individually.

m2 m3

m1

a4 a4

a3 a5

a1 a2

a6 a7

a1 a2 a3 a4 a5 a6 a7
0 0 0 1 1 1 0
0 1 1 1 0 0 1
1 0 1 1 0 0 1
1 1 1 0 1 1 1

a1 a3 a5 a6 a7
0 0 1 1 0
0 1 0 0 1
1 1 0 0 1
1 1 1 1 1

all

abstract
possible
runs

R ΠV (R)

Fig. 7: Provenance views: hiding functional behaviour

Rather than hiding or abstracting parts of a particular run, Davidson et al. are
interested in hiding the extension of a sensitive module mi, namely the relation Ri,
regardless of how many di�erent executions the user observes. They classify modules
as either public, whose behaviour is known a priori, or private, whose behaviour must
be inferred by observing R. Their approach, which is quantitative, is based on an
extension of `-diversity [24] which they call Γ -privacy. A view is speci�ed by giving a
set V of visible attributes. The relation ΠV (R), the projection of R to V (Fig. 7, right),

7

de�nes the information that is publicly visible through V . For any positive natural
number Γ , a private module is Γ -private with respect to V if for each input, the number
of possible outputs from that module consistent with ΠV (R) is greater than Γ . With
only this information, an attacker is unable to predict the output of the module for a
given input with probability greater than 1/Γ .

The �rst paper [15] studies some speci�c cases, including standalone private mod-
ules, multiple private modules, and heterogeneous work�ows with a mixture of private
and public modules where public modules can be “privatized” by renaming, so that
their functional behaviour is no longer known. They show that standalone Γ -privacy
is composable in a work�ow consisting only of private modules. The authors also study
the problem of �nding minimum-cost views, given a cost function stating the penalty of
being denied access to hidden attributes. The second paper [16] studies a more general
solution for heterogeneous work�ows, which involves propagating hiding, i.e. hiding
attributes of public modules if they might disclose information about hidden attributes
of private modules. They present a composability result generalizing the one for the
all-private setting, to single-predecessor (that is, tree-like) work�ows.

The privacy problem studied by Davidson et al. is interesting, but their work so
far has a number of drawbacks. In particular, the PTIME bounds for the algorithms
for mixed work�ows [16] assume a �xed domain size, which in turn means that the
size of relation R is treated as a constant. If we take the domain size d and number of
attributes a into account, then the size of R is O(da), so treating it as a constant may
not be realistic. Moreover, it is also not always clear how to choose sensible values of
Γ . For example, with a domain of 1024×1024, 8-bit grayscale images, Γ may need to
be much higher than 106 to provide meaningful privacy, because changing a single
grayscale pixel does not hide much information. (This criticism also pertains to other
possibilistic de�nitions of security properties, such opacity [1] and obfuscation [9].)
Techniques from quantitative information �ow security [12], quantitative opacity [5]
or di�erential privacy [19] may be relevant here.

The provenance abstraction approach of Missier, Bryans, Gamble, Curcin
and Danger [26], implemented as ProvAbs, is based on graph quotienting and �nding
partionings that satisfy both security needs and well-formedness constraints. Their
provenance graphs follow the PROV model [29] and its associated constraints spec-
i�cation [10]. First, Missier et al. consider simple bipartite provenance graphs with
node types representing activities and entities, and de�ne three basic graph operations
pclose, extend and replace. Intuitively, pclose takes a subgraph which is a candidate
for replacement, and grows it until it is convex (there are no paths that lead out of the
subgraph and back in again); extend further grows the subgraph until both its “input”
nodes and its “output” nodes are homogeneous with respect to node type; and replace
contracts such subgraphs to single nodes and adjusts edges to preserve paths.

e3

e4

a1

a3

a2

a4

e3

e4

a1

a3

a2

a4

e5

a1

a3

a4extend abstract

e5

Fig. 8: ProvAbs: growing a partition so that abstraction preserves bipartiteness

8

Fig. 8, adapted from [26], illustrates extend and replace. In Fig. 8a, the user selects
activity a2 and entity e3 for abstraction. Replacing these two nodes by either an activity
or an entity whilst preserving paths would violate bipartiteness. In Fig. 8b, extend is
used to grow the target subgraph to include e4, so that the output nodes of the target
subgraph are uniformly entities. Replacing the subgraph by a single abstract entity e5
in Fig. 8c is now valid, although it coarsens the (transitive) dependencies by introducing
a path between a4 and a1.

Having shown how these transformations can be used to preserve basic validity
constraints, Missier et al. go on to consider graphs which incorporate the PROV agent
node type and associated relations such as attribution and delegation. They consider
three cases of increasing sophistication. Grouping a homogeneous set of agents into a
single abstract agent is relatively straightforward. Grouping agents and entities together
is trickier; the type of the target abstract node (entity or agent) must be speci�ed, and in
order to maintain the type-correctness of certain relations between actions and agents
(waw, “was associated with”) and between entities and agents (wat, “was attributed
to”), the subgraph to be abstracted must made larger. Finally, grouping arbitrary node
types together presents the additional di�culty of agent-to-agent delegation edges
(abo, “acted on behalf of”), which require similar treatment.

Like ProPub, a key feature of ProvAbs is that transformations operate directly
on the provenance graph, and are thus more suited to situations where there is no
underlying work�ow. Missier et al. claim that their system avoids introducing spurious
dependencies between nodes. However, their views are quotients, which in general
over-approximate dependencies, so technically this claim is only correct for provenance
applications where dependency is not required to be transitive.

The work of Cadenhead, Khadilkar, Kantarcioglu and Thuraisingham [7]
on provenance redaction is also based on graph rewriting. Their provenance graphs
are tripartite and conform to the Open Provenance Model’s labeled DAG format [28].
“Redacting”, or sanitizing, such a graph has two phases. First, the sensitive region GQ

(typically a single node or a path between two nodes) of the original graphG is isolated
using a graph query Q. Then, this region of the graph is transformed according to an
obfuscation policy expressed as rewrite rules. A rewrite rule has two components: a
production rule r : L → R, where L is matched against subgraphs of GQ, plus an
embedding speci�cation, which determines how edges are to be connected to R once it
has replaced L. The rewrites involve graph operations such as vertex contraction, edge
contraction, path contraction and node relabeling.

o

sp

r

dwdf wgb

wcb

wcbwcb

p

r

dwdf wgb

wcb

wcbabstract
Fig. 9: Provenance redaction:
abstraction by edge
contraction

In Fig. 9 above, adapted from [7], hexagons represent agents, rectangles represent
processes, and circles represent artifacts. In the left graph, the gray triangle indicates
an area of the graph that was previously redacted. On the right, a further subgraph
is redacted by contracting the the wcb (“was controlled by”) edge relating a heart

9

operation o to the surgeon s who carried out the operation, and replacing the two
nodes by another gray triangle.

Cadenhead et al.’s work is implementation-focused. Several formal de�nitions are
given but not always made use of, and neither are their provenance or disclosure
properties analyzed. One issue they do not appear to address, in contrast for example
to Missier et al. (above), is preservation of basic well-formedness properties of the
provenance graph. While edge contraction (as a particular kind of quotient) preserves
dependencies, the interaction with tripartiness is potentially problematic. For example
in the view in Fig. 9, the new triangle has both an incoming and an outgoing wcb edge,
because it subsumes both an agent and a process. Moreover, as the authors themselves
point out, the obfuscation policy is only applied to a subgraphGQ of the original graph
G. Sensitive information available elsewhere in G will not be subject to the policy.
Information �ow techniques [17] may be relevant here.

5 Conclusions and future directions

We conclude our survey with a brief feature comparison, summarised in Table 1. The
column headings refer to broad feature areas (discussed in more detail below);
indicates reasonably comprehensive support for that feature, # little or no support,
and G# somewhere in between. Necessarily this is a somewhat simplistic assessment.

System Int Dep Acc Qry Sem Form Conf Meta
ZOOM [2,13] G# G# # G# # # #
Security views [8] G# G# # # # G# #
Surrogates [3] # G# # # # G# #
ProPub [18] G# G# # G#
Provenance views [15,16] # G# G# G# G# # #
ProvAbs [26] G# # # G# #
Provenance redaction [7] G# # # # #

Table 1: Feature comparison for the approaches surveyed
Integrity. We divide integrity features into basic integrity maintenance (Int) and
integrity of causal or dependency structure (Dep). Even systems that make some e�ort
to preserve the latter, such as provenance redaction, may in so doing violate low-level
integrity constraints. In the future it seems likely that users will take low-level integrity
for granted.

Preservation or re�ection of dependency structure is more challenging because
of the inherent tensions with obfuscation requirements. When arbitrary nodes or
edges can be deleted, then the user may be responsible for repairing the damage, as
with security views or surrogates. ProPub o�ers greater automation through con�ict
detection; ProvAbs and provenance redaction make safer (if simplistic) assumptions, by
working mainly with quotient views.
Sanitization. Sanitization features range from explicit �ne-grained access control (Acc),
which all systems provide in some form or another, to query-based abstraction (Qry), as
o�ered by ProPub and provenance redaction. Query-based systems typically subsume
�ne-grained access control, via �ne-grained queries.

10

Formal and semantic properties. Few of the surveyed systems consider the problem of
relating provenance views to the semantics of the underlying system (Sem). Instead,
they operate directly on provenance graphs, without regard to how the graph was
created. This is �exible, but means one cannot easily treat the provenance view as
an (abstracted) account of how something was computed. ZOOM stands out in this
respect, in relating provenance views to work�ow views for simple kinds of work�ow.
On the other hand, this is a hard problem to solve in a general way.

Few existing systems provide formal guarantees of obfuscation or disclosure prop-
erties (Form). ProPub has the advantage of a solid logical foundation. The Γ -privacy of
provenance views is a formal notion of (quantitative) opacity, but the goal is somewhat
di�erent from the other systems considered.

Con�ict detection and resolution. As mentioned, ProPub stands out in being able to
automatically detect con�icts between obfuscation and disclosure requirements (Conf),
thanks to its logic-based approach. It is also the only system which makes con�ict
resolution an explicit and persistent part of the process, providing a certain level of
“meta-provenance” for the sanitization process (Meta). If provenance security tech-
niques are widely adopted, it seems likely that how provenance is manipulated to
hide or reveal information will itself often be the point of interest (cf. “provenance of
provenance” [29]).
Undoubtedly, controlling access to sensitive provenance metadata is of growing impor-
tance, and moreover we sometimes simply want to deliver provenance information at a
particular level of detail. However, as the summary above highlights, current methods
for provenance sanitization are immature. Future e�ort should focus on semantics,
formal guarantees, and techniques for detecting and resolving con�icting policies.

Acknowledgments We are grateful to Jeremy Bryans, Brian Gamble, and Paolo Missier
for comments on this paper. E�ort sponsored by the Air Force O�ce of Scienti�c
Research, Air Force Material Command, USAF, under grant number FA8655-13-1-3006.
The U.S. Government and University of Edinburgh are authorized to reproduce and
distribute reprints for their purposes notwithstanding any copyright notation thereon.

References

1. R. D. Bailliage and L. Mazaré. Using uni�cation for opacity properties. In Proceedings of
WITS 2004, pages 165–176, 2004.

2. O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara. Querying and managing
provenance through user views in scienti�c work�ows. In ICDE, pages 1072–1081. IEEE,
2008.

3. B. T. Blaustein, A. Chapman, L. Seligman, M. D. Allen, and A. Rosenthal. Surrogate parent-
hood: Protected and informative graphs. PVLDB, 4(8):518–527, 2011.

4. U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In Proceedings of the 3rd conference
on Hot topics in security, pages 4:1–4:5, 2008.

5. J. Bryans, M. Koutny, and C. Mu. Towards quantitative analysis of opacity. In C. Palamidessi
and M. Ryan, editors, Trustworthy Global Computing, volume 8191 of Lecture Notes in Com-
puter Science, pages 145–163. Springer, 2013.

11

6. P. Buneman, A. P. Chapman, and J. Cheney. Provenance management in curated databases.
In SIGMOD 2006, pages 539–550, 2006.

7. T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham. Transforming prove-
nance using redaction. In SACMAT, pages 93–102, New York, NY, USA, 2011. ACM.

8. A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang. Scienti�c work�ow provenance
querying with security views. In WAIM 2008, pages 349–356, 2008.

9. J. Cheney. A formal framework for provenance security. In CSF, pages 281–293. IEEE, 2011.
10. J. Cheney, P. Missier, L. Moreau (eds.), and T. De Nies. Constraints of the PROV data model.

W3C recommendation, W3C, April 2013.
11. S. Chong. Towards semantics for provenance security. In J. Cheney, editor, TaPP 2009.

USENIX, 2009.
12. D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con�dential data.

Electronic Notes in Theoretical Computer Science, 59(3):238 – 251, 2002. QAPL 2001.
13. S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson. Addressing the provenance challenge

using zoom. Concurrency and Computation: Practice and Experience, 20(5):497–506, Apr. 2008.
14. S. B. Davidson and J. Freire. Provenance and scienti�c work�ows: Challenges and opportu-

nities. In Proceedings of SIGMOD 2008, pages 1345–1350, New York, 2008. ACM.
15. S. B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and S. Roy. Provenance views for module

privacy. In PODS, pages 175–186, 2011.
16. S. B. Davidson, T. Milo, and S. Roy. A propagation model for provenance views of public/pri-

vate work�ows. In ICDT, pages 165–176, New York, NY, USA, 2013. ACM.
17. D. E. Denning and P. J. Denning. Certi�cation of programs for secure information �ow.

Communications of the ACM, 20(7):504–513, July 1977.
18. S. C. Dey, D. Zinn, and B. Ludäscher. ProPub: Towards a declarative approach for publishing

customized, policy-aware provenance. In SSDBM, pages 225–243, 2011.
19. C. Dwork. Di�erential privacy. In ICALP, pages 1–12. Springer, 2006.
20. R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance: problems and challenges.

In Proceedings of StorageSS 2007, pages 13–18, New York, NY, USA, 2007. ACM.
21. R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure provenance.

Trans. Storage, 5:12:1–12:43, December 2009.
22. W. Lu, G. Miklau, and N. Immerman. Auditing a database under retention policies. VLDB

Journal, 22(2):203–228, 2013.
23. J. Lyle and A. Martin. Trusted computing and provenance: better together. In Proceedings of

TAPP 2010, Berkeley, CA, USA, 2010. USENIX Association.
24. A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy

beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1), Mar. 2007.
25. A. Martin, J. Lyle, and C. Namilkuo. Provenance as a security control. In Proceedings of TaPP

2012, pages 3–3, Berkeley, CA, USA, 2012. USENIX Association.
26. P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger. Provenance graph abstraction by

node grouping. Technical Report CS-TR-1393, Newcastle University, 2013.
27. L. Moreau. The foundations for provenance on the web. Foundations and Trends in Web

Science, 2(2–3), 2010.
28. L. Moreau, B. Cli�ord, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles,

P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. Van den Bussche. The OPM core
speci�cation (v1.1). Future Generation Computer Systems, 27(6):743–756, June 2011.

29. L. Moreau and P. Missier (eds.). PROV-DM: The PROV Data Model. W3C Recommendation
REC-prov-dm-20130430, 2013.

30. J. Zhang, A. Chapman, and K. Lefevre. Do you know where your data’s been? — tamper-
evident database provenance. In Proceedings of SDM 2010. Springer-Verlag, 2009.

12

	An Analytical Survey of Provenance Sanitization

